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The many-body theory of systems containing two types of charged light particles, like electrons
and positrons, is investigated. The second quantized Hamiltonian, generalized Hartree-Fock equa-
tions and, in particular, the electron and positron Green's functions and self-energy parts (optical
potentials) are addressed. Exact properties of the latter quantities are discussed in some detail. A
systematic approximation scheme that has been successful in the case of electronic systems is ap-
plied to the Green's functions and self-energy parts of composite systems. Explicit working equa-
tions are derived.

I. INTRODUCTION

The method of Green's functions has been widely used
to study quantum properties of many-body systems. The
general theory (see, for instance, Refs. l and 2) has been
applied, for example, to nuclei, ' solids, ' and atoms and
molecules. ' In each field different approximations to
the exact Green's functions have to be introduced taking
into account the specific interactions characteristic of the
system under investigation.

The long-range interaction in solids and the short-
range interaction in nuclear matter allow one to derive
meaningful approximations by considering only partial
summations of particular types of Feynman diagrams.
These comprise the random-phase approximation (RPA)
and the ladder diagrams, respectively. ' For atoms, mol-
ecules, and possibly nuclei, the finite range of the system
generally prevents a single series of diagrams from dom-
inating the others. ' To achieve reliable results it is,
therefore, necessary to handle all Feynman diagrams up
to a given order of perturbation theory on the same foot-
ing and to estimate the higher orders in a systematic way.
This is explicitly attempted in the algebraic diagrammatic
construction (ADC) scheme. "' In the nth-order
scheme all diagrams up to nth order are included as well
as all series of diagrams arising from them. The ladder
diagrams of second and third order, for example, thus
generate the whole series of ladder diagrams. The ADC
has been applied to atoms and, in particular, to numerous
molecules. ' We would like to mention that other ap-
proximations to Green's functions are available which
have also been applied to atoms and molecules. An in-
complete list of references includes Refs. 14—16 and 10.

In the present work we investigate the many-body
theory of composite systems which contain two kinds of
charged light particles. To be specific we consider elec-
trons and positrons although the theory applies to other
particles as well, e.g. , muons. Particular attention is paid
to the electron and positron Green's function and to the
derivation of the ADC working equations. Green's func-
tions provide a suitable tool to investigate the binding of

particles to a system. The binding energy directly ap-
pears as a pole of the corresponding function. From the
experience with electrons we expect the ADC to be useful
in the calculations of the binding energy and other prop-
erties of the composite system. The literature on bound
composite systems reports on exotic systems like posi-
tronium bound to an electron, ' ' on muonic atoms, ' '

and positronium hydride. ' The literature on the binding
of positrons to molecules is scarce. It is assumed, howev-
er, that bound positron-molecule systems should exist. In
particular, it seems promising to search for positrons
bound to negative ions and to molecules where they re-
place a proton. We are not aware of work on systems
with more than one particle of each kind.

Most of the literature is concerned, however, with the
scattering of positrons by atoms and molecules. The
majority of computations is on positron scattering by hy-
drogen and helium atoms and hydrogen molecules, but a
number of systems like the oxygen and nitrogen mole-
cules have also been investigated. Model potentials are
commonly used in these calculations, and more recently
ab initio calculations have been performed as well. For a
review on the computational methods including a de-
tailed account of the literature see Ref. 22. Since the
self-energy part of the one-particle Green's function
represents an optical potential, scattering processes can
also be calculated by Green's-function methods. For the
ADC this has been successfully documented for
electron-molecule scattering. ' A few promising
scat tering calculations with different particles using
Green's-function approaches are already available in the
literature. These calculations comprise positron scatter-
ing by atomic helium, by atomic hydrogen, and by
molecu1ar hydrogen. "

The paper is organized as follows. In the next section
the Hamiltonian and the generalized Hartree-Fock equa-
tions are introduced. The electron and positron Green's
functions and their self-energies are discussed in Sec. III.
Section IV is devoted to the discussion of the approxima-
tion scheme and to the derivation of the working equa-
tions.
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II. HAMILTONIAN AND NOTATION

A. General

where the first and second bracket on the right-hand side
of the equation describe the electronic and positronic
subsystems, respectively, and V+ the interaction be-
tween them. T denotes the kinetic energy of the elec-
trons, V their interaction with the nuclei, and V the
electron-electron repulsion. The operators for the posi-
trons carry a plus subscript and are defined analogously.

To write the Hamiltonian in its second quantized form,
we introduce as usually' the field operator %(x, t) which
annihilates a particle at space-spin coordinates x and at
time t Let 4. (x, t) and 41+(x, t) be the field operators
for an electron and a positron, respectively. The ap-
propriate commutation relations for 4+(x, t) will be

[4 ( xt), %(y, t)) =5(x —y),

t %(x, t), +(y, t) j =0,
(2.2a)

(2.2b)

where 5(x —y) is the Dirac 5 function and [, I is the an-
ticornmutator. Since we consider electrons and positrons
to belong to different particle species, the field operators
of electrons are chosen to commute with those of posi-
trons

We consider a system composed of two types of light
particles which move in the external field of heavy parti-
cles and concentrate on the dynamics of the former ones.
To be specific we consider a molecule with X electrons
and P positrons moving in the field of the fixed nuclei
composing the molecular skeleton. It is clear that the
electrons and/or positrons can be replaced by other parti-
cles, e.g., muons, and that the theory can easily be ex-
tended to systems having more than two types of light
particles, although this case is not of practical relevance.

The Hamiltonian of the system reads

H =(T + V + V )+(T++V++ V++ )+ V+

(2. l)

The I g, I and Iy, ) are complete orthonormal sets of suit-
able functions (orbitals) still to be determined. The an-
nihilation operators a; (or b, ) for the electron (or posi-
tron) in the one-particle state ~y, ) (or ~y, ) ) obey the
commutation relations

[a, , a, I =5„,
I bt, b, I =5„, ,

Ia, , aj I
= [b„,b, I

=0,
[b„,a; ]= [b„,a; ]=0

(2.4a)

(2.4b)

(2.4c)

(2.4d)

which follow immediately from (2.2).
Using Eqs. (2.2) —(2.4) the Hatniltonian (2. 1) can easily

be expressed in the notation of second quantization. ' The
only quantity which deserves some attention is the
electron-positron interaction V+ given in atomic units
by

V+
1

t, s tsr
(2.5)

where r„ is the distance between the electron i and posi-
tron s. Although V+ is a two-particle interaction the
particles involved are of different nature and can be quan-
tized separately. This leads to

V+ = —QQV„,, b, a;a b,
r, s

(2.6a)

—l

;~tl, a, a~ aka
l, y, k, I

(2.6b)

r, s, t, J

(2.6c)

whereas the electron-electron and positron-positron in-

teractions

[4+(x, t), 4 (y, t)]= [++(x,t), 4 (y, t)) =0 (2.2c)

(2.3b)

where [, ] denotes the commutator. Choosing a commu-
tator makes the evaluation of expectation values simpler.
On the other hand, we may consider the electron and the
positron as one-particle species, as is done in quantum
electrodynamics, and choose instead of the commutator
an anticornmutator. This situation is similar to the one
in nuclear physics, where neutron and proton are con-
sidered to belong to the same particle species, namely the
nucleon. In the latter case also an anticommutator is
chosen. As long as we are not concerned here with the
annihilation of an electron-positron pair into photons or
with conversion of neutrons into protons we may choose
either comrnutators or antieommutators.

To proceed we expand the field operators according to

4+(x, t)=g b, (t)y, (x), (2.3a)

Xf,(x, )d x, d x, .

For later use we also define

(2.7a)

Vab ( cd ) Va bed Vabdc (2.7b)

for the case where all indices a, b, c,d belong to the same
particle species. Here and in the following we use the in-
dices i,j,k, 1, rn for electrons and r, s, t, u, U for positrons
and define

for a =i,j,k, I, m

for a =r, s, t, u, U . (2.g)

contain an additional factor —,'.
In all cases the Coulomb matrix elements take on the

same formal appearance

1
Vabcd a ~X1 b X2 d X2

X) X2

{x,t)=pa, (t)y, (x) .
In second quantized form the Hamiltonian now reads



172 M. MULLER AND L. S. CEDERBAUM 42

H =Ho+ V,

Ho=+ e, a; a;+g e, b, 'b, ,

(2.9a)

(2.9b)

%s x Z 0's x
Z

XP X1
(2.13a)

V =g W,"a, a +g W„,b„b, + V + V++ + V+
f', S

(2.9c)

(T+ + V+ —W+ )ip, =e, ip, ,

(T +V —W )y;=e, y, .

(2.10a)

(2.10b)

An interesting example for W+ is discussed in the next
subsection.

B. Generalized Hartree-Pock equations

The Hamiltonian and the many-body formalism of the
following sections do not depend on the choice of orbit-
als. On the other hand it is useful to choose orbitals, and
thus an unperturbed Hamiltonian Ho, which are physi-
cally meaningful and advantageous in practical applica-
tions. In electronic systems the Hartree-Fock potential is
of particular relevance and deserves attention also in the
present case of composite systems. In analogy to the
purely electronic case one seeks the orbitals minimizing
the energy functional

where V, V++, and V+ have already been given
above in (2.6). e; and e, denote the one-particle energies
of the electrons and of the positrons, respectively. For
convenience 8'; and W„, which are the matrix elements
of the one-particle potentials 8' and W+, are only dis-
cerned by their subscripts. These potentials have been in-
troduced to define the complete sets of orbitals

(2.13b)

ip,*(x2 )ip„(xz )
K+ip(x)= g,

I

d x2ip(x),
~X2 X,

" g,"(x&)g,(x2)
K y, (x))= g, '

I

d'x~y;(x, ),
~X2 X1

(2.13c)

(2.13d)

(T++ V+ —J- )V, =e,m, (2.14}

with summation over doubly occurring indices of the
ground-state orbitals. Clearly, an electron (positron) in-
teracts via Coulomb and exchange with the other elec-
trons (positrons), but in addition, it is also attracted by
the charge distribution of the P positrons (N electrons)
available.

The above coupled equations which we may call the
generalized Hartree-Fock equations (GHF) define com-
plete sets of orthonormal positronic and electronic func-
tions y and y, respectively. In the case of bound systems
the P orbitals y, and N orbitals g; which belong to the
lowest orbital energies e, and e„respectively, define the
so-called "occupied" orbitals. The complementary space
comprises the "unoccupied" or "virtual" orbitals which
describe states for an additional electron or positron, ei-
ther bound or scattered. If the system is unbound, (2.12)
define scattering states. Of particular interest is the case
P =0, i.e., the target molecule does not contain positrons.
In this case J+ and K+ vanish, (2.12b) describes the pure
electronic system, and (2.12a) becomes

E [0.]= & W. IHIP. & (2.11a)

where the test function I /0 & is a product of an electronic
and a positronic Slater determinant

describing possible bound orbitals of an extra positron,
but most of all, the scattering one-particle states of a pos-
itron from the electronic target system.

Finally, we give the explicit expressions for the matrix
elements W,, and W„, needed to complete (2.9} for the
full Hamiltonian of the system in the GHF picture

P N

I4.&= H b,'g I0& .
s=l

(2.11b)
N P

WiJ y ( Vikik Vikkj )+ y Virj'r i'

I& =1 r=1
(2.15a}

IO& is the vacuum state with no particles in it. The
minimization of E [i)}o] can be done in analogy to Ref. 4
and leads to the following coupled equations for the or-
bitals and orbital energies

P

Wrs g ( Vrusu Vruus )+ g Vrisi
u =1

as well as of the GHF total energy from (2.1la)

(2.15b)

(T+ + V+ +J+ —K+ —J }cp, =e,y, , (2.12a)
N N P

Eo~F= g e; —
—,
' g (V„„—V;,„)+g e,

(T +V +J —K —J+)y;=e;y, . (2.12b}
P P N

( Vrsrs Vrssr ) + g g Visis (2.16)
r, s =1 s=1 i =1

As usual these equations must be solved in a self-
consistent manner since the Coulomb and exchange
operators J and K themselves depend on the orbitals oc-
cupied in the ground state

I $0 &. For completeness we
give the explicit form of these operators:

The first two terms on the right-hand side of (2.16) de-
scribe the electronic energy, the following two terms the
positronic energy, and the last term is due to the
electron-positron interaction.
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III. GREEN'S FUNCTIONS AND SELF-ENERGIES

A. One-particle Green's functions

G+(x, ) t, )x2, t2) —g 0'„(x, )t,*(x2)G+„(t,) t2)
I)$

(3.3)

where 6+„, is the time-ordered ground-state expectation
value of the b operators in the Heisenberg picture:

G+„,(t „t,) = i ( Pp~
—T(b„(t, )b, (t, ) ) ~ Pp) . (3.4)

From now on we may drop the plus subscript in G+„, be-
cause of our index convention (see Sec. II). For electrons
a corresponding 6,, is defined. Remember that the in-
dices refer to a specific basis system, for instance to the
solutions of the generalized Hartree-Fock equations of
Sec. II B. We call G„, and G; the positron and electron
Green's function, respectively.

As in the purely electronic case there is a spectral rep-
resentation of G+ and 6 . By standard manipulations it
can be shown that the Fourier transform of a 6 consists
of two parts given as

The one-particle Green's function of a purely electron-
ic system is well known and its diagrammatics can be
found in any textbook on many-body problems (for in-
stance, Refs. 1 and 29). For the composite system con-
taining electrons as well as positrons we have to intro-
duce two types of one-particle Green's functions, one for
an electron and one for a positron. The electronic one-
particle Green's function is defined as the time-ordered
expectation value of the product of two field operators:

G (x»t, ; x2tz)= t(—folT(P (x„t,—)P (x2)t~))leap)

(3.1)

where
~ go) is the exact ground state of the system and T

denotes the time ordering operator. ' The positronic one-
particle Green's function is defined analogously:

G (+x ), t (', 2x, t 2 )

= —i(go~T(++(x(, t))%+(x~, t2))~gp) . (3.2)

We now use the expansion of the field operators to obtain

G„=g & Polb„IP+1,N &

r0+Eo E—++i ri

x.(P+ I,N)bt~y, &

+g &q„~b, IP —1,N)
co —Eo+E —i g

x (P —I, N~b„~ yp) (3.7a)

G,, =g &go~a, ~P, N+I &„
co+Eo —E„++ig

x „&P, N + 1 la,'I gp &

+y & go~a,"~P,N —1&„
co —Eo+E„—i g

x„&P,N i~a, ~li, &
—. (3.7b)

Here, of course, the quantities E„+ and E„are the ener-
gies of the states ~P, N + 1)„and P, N —1)„,respective-
ly.

In (3.7a) and (3.7b) an important feature of the Green's
function becomes apparent. The denominators give the
energies of the (P+1,N) and (P,N+1) states, or more
precisely, the changes in energy that the system experi-
ences when we add or take away one positron, or when
we add or take away one electron. This means, for in-
stance, that, if we can calculate the positron Green's
function for 0 positrons in the ground state we can get
the binding energy of a positron to the system. In such a
situation the GHF equations simplify considerably and
boil down to the usual HF equations for the electrons and
a single equation for the unoccupied orbitals of the posi-
tron in the field of the electrons. The positron Green's
function also becomes simpler since the second term on
the right-hand side of (3.7a) vanishes and the remaining
term is easier to compute (see following sections).

where g is a positive infinitesimal. Note that m refers to
(P+1,N) states in the first term and to (P —1,N) states
in the second term. The superscripts plus and minus
denote the (P+1,N) state energies. It is clear that if
P =0 the second term will be zero.

For the electron Green's function a similar analysis
and similar formulas hold. In particular one finds the fol-
lowing spectral representation:

G„(co)= ( golub„(to+Eo H+i r)) 'b,
~
Po—)

+(Po~b, (to Ep+H ir—i) 'b„~g )o—. (3.5)

Inserting in the first and second part of (3.5) a full set of
exact (P+1,N) and (P —I, N) states (where P and N
denote the number of positrons and electrons, respective-
ly), i.e., solutions to the eigenvalue problems

B. The proper self-energy

We note that we have defined the Green's function of
the fully interacting system, i.e., of the full Hamiltonian.
We can now choose unperturbed Hamiltonians, for in-
stance the GHF Hamiltonian, and define their so-called
free Green's functions. In energy space the free Green's
functions take on the following appearance:

and

H~P+ I,N &. =E.+ ~P+1,N &. (3.6a)

for the positron and

(3.7c)

HIP —1,N &. =E. IP —1,N &.

will lead to the spectral representations

(3.6b)
(3.7d)
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G„,=G„,+G„,X,„G„, (3.8a)

for the electron. Here e„and e, are the eigenvalues of the
corresponding GHF equations. As usual we can connect
the full Green's function and the free Green's function
via the Dyson equation

X(rxr)„,= W„,~++ . g V„„(„,) f G (co)dao
1

ur(us)
'r

+ W„, + — g V„,„ItIG,, (co)den
1

2&l
7

(3.10a)

for the positron, and

Gij Gij + GI'g Xg(GIJ' (3.8b)

for the positron, and

1
)k( W—ki- -+ . g VI,;(i,)fGJ(~)d~

27Tl
I,J

G=G +G XG (3.8c)

where all underlined quantities denote matrices. Particu-
larly useful equations of the Dyson equations are ob-
tained by inversion. One finds

for the electron. X„, and X, are the positron and elec-
tron proper self-energies. In the last terms of (3.8a) and
(3.8b) the summation convention is used for doubly
occurring indices. Each of the equations (3.8a) and (3.8b)
can be written in matrix notation

1+ Wi( +
——g Vk„i, )G„(co)dao

27Tl
(3.10b)

for the electron [for the definitions of the symbols V,b,d
and V,„~,d~ see (2.7a) and (2.7b}]. The contour of integra-
tion is closed in the upper half of the complex energy
plane. We have split up W+ into the parts W++ (the
purely positronic HF potential) and W+ (the positron-
electron HF potential) and W into the parts W and
W

and

6+ (co) =(col —e —X+ ) (3.8d)
P

W„, ++ = —g V„„(„„),
r=l

(3.11a)

G (co) = (col —e —2 ) (3.8e)

where e and e denote the diagonal matrices of eigenvalues
of the corresponding GHF equations, and X+ and X are
the proper self-energy matrices. In (3.8d) and (3.8e) we
omitted the infinitesimal imaginary terms +ig. "Di-
agonalizing" (3.8d} and (3.8e) enables us to calculate posi-
tron and electron ionization energies and positron and
electron affinities as seen in (3.7a) and (3.7b). How to do
the "diagonalization" will be shown in Sec. IV.

N

Wuu+ —= g Vurur

& =]
Ã

WkI- ———g Vir((r)
i=]

P

Wk( + = g Vk„i„.

(3.11b)

(3.11c)

(3.11d)

1. Static and dynamic parts

X(co) =[X(~ )+M(cu)] (3.9)

The static parts can be obtained from the following equa-
tions analogous to the purely electronic case

The proper self-energies for positrons and electrons
consist of a static part X(~ ) not depending on co and a
dynamic part M depending on co:

The summation is always over GHF ground-state orbit-
als. The missing minus sign in (3.11b) and (3.11d) is due
to the attraction of electrons and positrons. In the purely
electronic case only the first line of (3.10b) shows up due
to the fact that no positrons are present in the ground
state. If positron-molecule scattering is to be described
the first line on the right-hand side of (3.10a) vanishes.

We can now use the Dyson equations (3.8d') and (3.8e)
for the positron and electron Green's functions to rewrite
the right-hand sides of Eqs. (3.10a) and (3.10b) giving

&(~)„,= W„,+++ . g V„„(„)f [G„,(co) ' —X(rxr)„, —M„,(co)] 'des
27Tl

+W„,+ — . g V„;„ItI[G;,(co) ' —X(~);,—M„(co)] 'des .
2&l

(3.12)

For the electronic proper self-energy a similar equation
holds and is obtained by simply exchanging positronic
and electronic indices. Equation (3.12) shows that the
static self-energy part can be computed once the dynamic
self-energy part is known. Consequently, we shall con-
centrate below on the evaluation of the latter. We men-
tion that X{~ ) has been found to be an important quanti-
ty in purely electronic systems' and should be of

m~m~*
M„,=g

0 ~—Mf3+inup
(3.13)

relevance also in composite systems. A converging itera-
tive procedure for the numerical evaluation of X( ~ ) is
described in Ref. 13.

For later purposes it is useful to note that the dynamic
self-energy part possesses a spectral representation
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where cr&=+1. The terms with o&=+I are associated
with excitations of (P+ 1,N) or (P —1,N) states, respec-
tively. For electrons an analogous equation is valid with
0&=+ I associated with (P,N+1) states, respectively. In
both cases the energies cu& do not correspond to physical
states, i.e., must not be confused with the energies
+(Eo E —)a—ppearing in the spectral representation of
the Green's functions (3.7a) and (3.7b).

A few remarks on the physical meaning of the self-

energy are in order. Equation (3.8) suggests that X can be
viewed as an effective energy-dependent one-particle po-
tential caused by correlation effects. The orbitals of a
positron determined by

( T+ + V+ —IV+ )q&,
=e, q&,

are modified by the self-energy part to give

( T+ + V+ —IV+ +X+ )P = coP

(3.14)

In spatial representation X+ is a nonlocal operator given

by

X+(x,x', a))=g y„(x)X„,(~)y,*(x') .
I;5

(3.16)

Considering a scattering situation, i.e., the scattering of a
positron from the composite system as target, then co is
the energy of the incoming positron, and P„ is the optical
wave function of the scattering positron. It is important
to note that P„ fulfills the boundary condition that the ex-
act scattering wave function of the full Hamiltonian splits
up asymptotically into the product of the ground-state
wave function and the optical wave function. ' If X+
is known Eq. (3.15) can be solved using as an incoming
wave a free particle wave, and with the result one can
easily obtain the exact elastic cross section. An analo-
gous discussion holds for the case of electrons where X
is the scattering potential (for applications see, e.g. , Refs.
13 and 26).

To interpret the static self-energy X+( ao ) we introduce
the common nonlocal density operators

p+(x, x') = g 0+(x) p+(x')
spin

(3.17)

where the summation is over the spin indices which are
not written explicitly. The ground-state expectation
value of these operators is simply given by

1
p+(x, x') = . dc@ TrG+(x, x', cu)

27Tl
(3.18)

p+(x, x')
[x —x'i (3.19)

where the trace Tr is over the spin and the integration is
in the upper half plane. With the aid of (3.18}and (3.10}
we obtain the following expression for the static self-
energy part:

X+(x,x', ~ )= IV+(x, x')

p+(x() —
p (x))

+6(x —x') fdx,
ix —x, i

where

b,p+(x, x')

ix —x' (3.20a)

~p+ p+ p-- (3.20b)

is the difference between the exact density and the one
computed on the GHF level. It becomes evident that the
static self-energy part (3.20a) represents a correction to
the optical potential which depends only on the particles'
correlation in the ground state. Indeed, the perturbation
expansion of (3.20a) begins in third order owing to our
choice of the GHF potential.

Finally we remark that

P —N
X+(x,x', ~ )

—IV+ (x,x') = 5lx —x')
~~~ oo x

(3.21}

and, therefore, X+(x,x', oo }, vanishes at large distances if
the GHF potential is used to define the particles, i.e., the
free Green's function. The dynamic self-energy part
M+(co), on the other hand, is proportional to 1 j x~

asymptotically (see also Refs. 30 and 31).

2. Feynman diagrams

The Green's functions for positrons and electrons can
be evaluated perturbationally by Feynman diagrams.
Since our scheme to compute these functions (see next
section) relies on Feynman diagrams, we discuss these di-

agrams in the following.
We introduce the following symbols (Fig. 1): A solid

line with a direction from j to i denotes G, , a dashed line
with a direction from s to r denotes G,, Analogously,
double solid and dashed lines symbolize the electron and
positron Green's functions G; and G„,. A wavy line with
two incoming and two outgoing lines stands for the
Coulomb interaction matrix element V,&,&. A wavy line
with a dot denotes 8'„. The indices in each pair of in-

dices (a, c) and (b, d) denote either electronic or positron-
ic orbitals. It should be noted that the elements V,&,z are
matrix elements of 1/r &2 not taking account of the sign of
the particle charges [see (2.7)]. Therefore in the Feynman
rules a minus sign for the electron-positron interaction
has to be considered due to the different electrical
charges of the particles. The diagrams are calculated go-
ing from the left to the right. The first two indices denote

Here p(x) =p(x, x) is the local ground-state particle den-
sity. The static self-energy simply describes the Coulomb
interaction (local and exchange) of the incoming positron
with the ground-state charge distribution of the target. If
the target itself does not contain positrons, the positron
density p+(x, x') vanishes and (3.19) simplifies further.
8'+ is the one-particle potential used to define the unper-
turbed Hamiltonian, see (2.10).

If free particles are used then W+ describes the
positron-nuclei interaction (see 2.10a), i.e., W+ = V+.
Using the GHF potential, on the other hand, leads to

bp+(x, ) —hp (x, )

X+(x,x', ~ ) = 5(x —x'}Idx,
1
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FIG. 3. The canceling of diagrams as a consequence of the
equations shown in Fig. 2.

FIG. 1. Symbols used to draw the Feynman diagrams.

outgoing lines, the third and fourth incoming lines. The
rules to draw and to evaluate the Feynman diagrams are
collected in the Appendix.

If we choose the GHF Hamiltonian to be the unper-
turbed Hamiltonian, all first-order diagrams can be
dropped owing to cancellations. These cancellations are
depicted in Fig. 2 for the positron self-energy part. The
purely positronic tadpoles together with their exchange
are canceled by the matrix element of W++. Of course,
there is no exchange diagram corresponding to the dia-
gram where an electronic loop is coupled to a positron
line. The latter diagram cancels the matrix element of
W+

The above-mentioned cancellation of the first-order di-
agrams reduces considerably the number of diagrams to
be considered in higher orders of perturbation theory.
The diagrams of first order appear as parts of many
higher-order diagrams and the sum of these diagrams
vanishes. In Fig. 3 two series of diagrams are shown
where in each series the diagrams cancel each other. As

+Wr+ =0

a consequence only those diagrams have to be considered
where a free Green's-function line connects two different
Coulomb interaction matrix elements V,b«. The matrix
elements of W do not appear at all.

Choosing, for instance, the GHF equation for the elec-
trons but a different equation for the positrons we still en-
counter the compensation of many diagrams. The purely
electronic tadpoles and their exchange still cancel the
matrix elements of W and a similar result holds for
W + and the positronic loop diagram. In passing we
mention that if we consider a free particle equation in-
stead of the GHF equation, the interaction W„, stands for
the interaction of the positron with the potential of the
nuclei making up the molecular skeleton.

We briefly discuss the diagrams of the self-energy part
related to the GHF Hamiltonian as the unperturbed one.
The static self-energy part X(~ ),b consists of all dia-
grams of the self-energy part for which the indices a and
b are on the same Coulomb matrix element. The sum of
these diagrams can be collected into a few diagrams if we
may use the full Green's function G and not only the free
one 6 . The diagrammatic equation for X( ~ ) is depict-
ed in Fig. 4. If we investigate a target system with P =0
positrons, only the first two diagrams shown in the figure
contribute to the positron static self-energy part. All oth-
er diagrams vanish. In general, X(~) begins in third-
order perturbation theory when the GHF potential is
used. These diagrams of third order are collected in Fig.
5 for the positron Green's function. All diagrams except
the top left one vanish in the important case P =0
describing positron-molecule scattering. The diagrams of
the dynamic self-energy part are discussed in the follow-

+ ~ra++ =O

( )„=

=W„= W„+++IAJ„+

FIG. 2. The canceling of the first-order diagrams of the posi-
tron self-energy part when the GHF basis is used. Analogous
relations hold for the electron self-energy part.

FIG. 4. The diagrammatic equation for the positron static
self-energy part. The analogous equation for the electron static
self-energy part is obtained by replacing r and s by i and j and
interchanging the electron and positron Green's functions.
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/

/

/

(3.8) into algebraic form. For this purpose we introduce
a matrix which takes on the following appearance:

l

Y

/

Yl

I
/

0

0
g( II )

(4.4)

FIG. 5. The Feynman diagrams of third order of the positron
static self-energy part. To the diagrams shown there may corre-
spond exchange diagrams not shown here (one exchange dia-
gram for A, one for 8, none for C, and four for D).

Here, e denotes the diagonal matrix of all positron orbital
energies and X(00 ) stands for the static self-energy ma-

trix. We remind the reader that the latter can be com-
puted exactly once the dynamic self-energy part is known
(see Sec. III B1). The one-particle Green's function is
determined as the upper left block of the inverse of the
matrix T(co) =col A. M—ore precisely

ing chapter where they are explicitly needed for the con-
struction of the working equations. G„,(co)=(T ')„,=[col —3]„,' . (4.5)

IV. APPROXIMATION SCHEME

A. A closer look at the dynamic self-energy part

The Dyson equation immediately follows from the usual
relation between the elements of a matrix and its inverse.
Let

For the discussion of approximations to the dynamic
self-energy part it is useful to investigate in more detail
relevant exact properties of this quantity. As briefly men-
tioned in Sec. III B 1, the dynamic self-energy part M(co)
has a spectral representation. M can be written as the
sum of two parts M"' and M'"' analytical in the upper
and lower half of the complex ~ plane, respectively,

b

g C

c h

g =(a bd 'b—)

where a =aI1 —e —X( ao ). The usual relation

(4.6a)

(4.6b)

M„,(co) =M„',"(co)+M„'," (co) . (4.1)

M" =m"' (col Q"'+i ) —'m ' (4.2)

where 1 is the unit matrix, 0"' denotes the diagonal ma-
trix having the poles co& of M"' as elements and the ma-
trix m"' has elements mP' [see Eq. (3.13)]:

mt=(mP) . (4.3)

Analogous expressions hold for M'"'.
With the aid of (4.2) one can cast the Dyson equation

Here and in the following we confine ourselves to the dis-
cussion of the positron self-energy. In the general case of
X electrons and P positrons in the target's ground state
the electron self-energy is easily obtained from the posi-
tron one by a simple interchange of the appearing indices
and of P and 1V. Using matrix notation we may write

A X=XE X X=1 (4.7)

where E is the diagonal matrix of eigenvalues and X the
unitary eigenvector matrix. Comparing with (3.7a) shows
that the elements X, and X„„ofX are equal to

(P+1,/()t~b„~go) and (I/)o~b, ~P —1,/(/)„, respectively.
As known in the purely electronic case, the dynamic

self-energy is intimately related to the so-called two-
particle —one-hole response function. " A similar relation
can be established for the positron and electron self-
energies of a composite electronic-positronic system.
However, we now have two types of particles which must
be taken into consideration explicitly. We define a
Green's function with several indices which can be elec-
tronic and positronic and give as an example a six-point
function

is nothing but the Dyson equation in its version in (3.8d).
Equation (4.5) makes clear that the poles and residues

of the Green's function can be obtained by solving the ei-
genvalue equation of the Hermitian matrix A given
above. The secular equation for A in matrix notation
reads

G„,„„l=(—i) (QO~T(b, (t„)a,(t, )a„(t), )a( (tl)a, (t )b, (t, ))~fo) . (4.8)
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As seen, the last three indices refer to the Hermite conju-
gate operators and the sequence of the indices in front of
the comma runs in the given order of the operators,
whereas the indices behind the comma run in the oppo-
site direction of the Hermite conjugate operators. We in-
troduce a short-hand notation for the response functions

—1

123, 1'2'3' 6 123, 1'2'3' 623, 3'4 45 51, 1'2' (4.9a)

where summation and time integration over doubly
occurring indices is implied. The primed times, t', for in-

stance, refer to the primed indices in this definition, i.e.,
t', refers to 1'. The number of electronic indices must be
even, the same being true for positronic indices. An ex-
ample where indices are written explicitly reads

—1

rik, sjl rfk, sjl Giklm G, mn nr, sj

The response function needed in connection with the dy-
namic self-energy part is obtained by

H)33 )'3'3'(I, I' ) = lim R, 33 2 3'I
1, t 2 s t 3~t

t I I
t (, t2, t3~t

(4.10a)

per ~ L 4 ' pr(st) rst, uvuj ou(uuj)

+( Vpj'sk ) jsk, lum( Vtrlum )

+2( Vpk;)IIk. j,- v'. (. )

+-,' V,„„,11„„,„.( —V.",„.)] (4.11)

where summation is supposed over all indices except p
and e. The negative sign of the electron-positron attrac-
tion is explicitly indicated. The notation is as in the
preceding sections: i,j,k, l, m denote electronic indices,
r, s, t, u, v denote positronic indices. p and cr denote posi-
tronic indices of the self-energy. Of course, if we consid-
er the electronic self-energy we have only to change all
positronic indices into electronic ones and vice versa.
Note that a factor —,

' is attached to each positronic in-
teraction matrix element V„„,„. In the purely positronic
case only the first term on the right-hand side of (4.11)
has to be considered.

We now introduce an index restriction whenever a
purely positronic V appears and define two column vec-
tors

(—+ —
p )lsj Vpisj

(4.12a)

and depends only on the time difference t —t'. As an ex-
ample we give H, & l,

II,,k l„(t,t')= lim Rl, k „t, f, tl ( tj s

—
1lim (Gisk, umj sk, j. sy y(, um )t, t, tI ) t

J $
7

) t
1

'
L& Ptl

(4.10b)

Carrying out a similar calculation as done for the pure-
ly electronic case, we obtain for the dynamic self-energy
the following result:

These vectors can be put together into a single vector
which reads

—+ +pV
V =

j'+ (4.12b)

Analogously we define a 2X2 block matrix for the four
types of II which appear in (4.11):

~I rSt, uvtt) ~~ rSt, lum

~ ksg, uutLI l~ jsA:, lum

The final result for the dynamic self-energy part

M(co)p = VALI(co)V

(4.12c)

(4.13)

now takes on the same formal appearance as in the purely
electronic case. Equations (4.12) and (4.13) make clear
that the situation is more complex than in the latter case.
In particular, more elements appear and the
configuration space of M(tlj) contains additional types of
excitations which have to be taken care of when working
equations are derived (see next section).

B. Algebraic diagrammatic construction scheme

U(I) Y~ (I )

K"'+C"'= Y O'" Y .

(4.14b)

(4.14c)

Analogous relations hold for M'"' with a different choice
of the transformation Y, of course. With the above, the
matrix A in (4.4) is transformed to

'e + y( ~ )
U(1)t U(II)t

U"' (K+C)"' (4.1Sa)

U ( II ) 0
0

(L~+ C)'"'

The algebraic diagrammatic construction (ADC) is a
scheme to carry out in a systematic manner infinite par-
tial summations of Feynman diagrams. The nth-order
scheme ADC(n) is complete to nth order, i.e., it contains
all the Feynman diagrams up to nth order and infinitely
many diagrams of higher orders. The choice of the latter

diagrams is automatically dictated by the former ones
and the analytic structure of the exact dynamic self-
energy part. The scheme can be applied to a single com-
ponent of the Green's function' ' ' or directly to the
dynamic self-energy part. " In the present work we fol-
low the latter possibility. Since the method is described
in detail in the literature" for electronic systems, we dis-
cuss &t here only briefly and concentrate on the
differences arising due to the presence of positrons.

The self-energy is given in the preceding section in the
diagonal representation where its poles are explicitly
displayed. A general nondiaqonal representation is ob-
tained by inserting unity Y Y =1, where Y is a unitary
matrix, twice into Eq. (4.2). The result takes on the fol-
lowing appearance:

M( I) —U(1)$( 1 ~ (I) C(I) )
—

1 U(I ) (4.14a)

where
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and the equation (4.5) for the Green's function remains
unaltered;

G„(co)=[col—A']„, ' . (4.15b)

From now on we shall drop the superscripts (I) and (II)
whenever necessary. The ADC makes use of the pertur-
bation expansion of the effective coupling matrix U and
the effective interaction matrix C in terms of the
electron-electron and positron-positron repulsion, and
positron-electron attraction:

U(1)+ U(2j+ U(3)+

C(1)+C(2)+ C(3)+ ~ . .

(4. 16a)

(4.16b)

X[ 1+C(col —K)

+C(col —K ) 'C(col —K ) '+ ]

(4.17)

The result reads

M(co)= U"' (col —K) 'U"'+U' ' (~1 —K) 'U"'

+ U"' (col —K) 'U -'

+U ' (col —K) 'C "(col —K) 'U'''+

(4.18)

where all terms up to third order are displayed explicitly.
In the ADC the expansions of U and C are determined by
comparing (4.18) with the expansion of the self-energy via
Feynman diagrams. As can be seen from (4.18) the ex-
pansion of the dynamic self-energy begins in second or-
der. Equating the Feynman diagrams of second order
and the first term on the right-hand side of (4.18) allows
the determination of U' ". The Feynman diagrams of
third order can be divided into two sets according to
their dependence on (col —K) '. Since U''' is already
known, one set of diagrams determines U' ' and the other
allows the evaluation of C"' [see last term on the right-
hand side of (4.18)]. Higher orders are computed analo-
gously. The Feynman diagrams up to nth order are used
to evaluate U and C. The resulting quantities are then in-
serted into (4.14a) to obtain the dynamic self-energy part
in ADC(n). The Dyson equation is solved via the eigen-
value equation for the matrix 3' in (4.15). It should be
noted that the resulting self-energy and Green's function
are in ADC(n) correct up to nth order and contain
infinitely many terms of higher orders. On the other
hand, the perturbation expansion (4.18) used to determine

It is noted that the expansion of the effective coupling
and effective interaction matrices begins in first order of
perturbation theory. E is defined as the zeroth order of
the right-hand side of (4.14c). The perturbation expan-
sion of the self-energy itself immediately follows from
(4.16) and

(col —K —C)='= (col K)—

U and C only includes terms up to nth order, and, more
importantly, exhibits an incorrect dependence on co not
shared by the exact and ADC self-energy parts which are
both subject to a spectral representation,

From the spectral representation of the one-particle
Green's function (3.7a) we see that the space of the ma-
trix A ' comprises all possible states in the (N, P + 1) and
(N, P —1) systems. Since the target system is (N, P), i.e.,
contains N electrons and P positrons, we may classify this
space by p, 2@ lb, 3p2h, . . . and h, 2h 1p, 3h2p, . . . excita-
tions, where h and p denote holes and particles, respec-
tively. In contrast to the purely electronic case, the exci-
tation can now be electronic and/or positronic. We indi-
cate by the superscripts plus and minus positronic and
electronic excitations, respectively. As can be seen from
(4.15), the particle and hole space of e+X(~ ) is posi-
tronic, i.e. , p+ and h +, if the positronic Green's function
is studied. Equation (4.15a) implies that the space of M'"
comprises the excitations 2p lh, 3p2h, . . . , which explic-
itly include

2p 1A ",1p 1p 1A

3p+2h, 2p+ 1p 16+16,1p+2p 2A

etc. The space 1p 1p 1h, for instance, is spanned by
all possible excitations where a positron is added to a va-
cant orbital and an electron is removed from an occupied
orbital and inserted into an orbital vacant in the unper-
turbed ground state of the (N, P) target system. The re-
sulting system is characterized by iV electrons and P+1
positrons. Analogously, M "' comprises the excitations
2h 1p, 3h 2p, . . . , which explicitly include

2A +1p+, 1A 1A 1p

3h +2p, 2A
+ 1h 1p+ 1p, 1h 2h 2p

etc. which characterize a system with N electrons and
P —1 positrons. If the electronic Green's function of
(N, P) is studied, we just have to interchange P and N as
well as plus and minus.

Finally, we mention that the size of the configuration
space needed in ADC(n) is restricted. In ADC(2) the
space comprises 2p 1h and 2h 1p excitations and grows by
1p lh excitation at every higher order at which n is even.
The configuration space required by ADC(n) is substan-
tially smaller than that which is required by Rayleigh-
Schrodinger perturbation theory for obtaining the same
energies accurate to nth order. For a detailed discussion
of this relevant aspect of ADC, see Ref. 11.

C. Positron-molecule bound and scattering states

The case where the target system is purely electronic,
for example, a molecule, is of particular interest and is
treated first. The positronic Green's function then de-
scribes the attachment of a positron to the system. If the
positron is bound we may compute its binding energy (or
positron amenity), else only its scattering states, and relate
them to available experiments. Since P =0, we cannot
remove a positron from the target and the positronic
Green's function consists only of the first term shown on
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the right-hand side of (3.7a). Analogously, the expression
for the dynamic self-energy part simplifies considerably
and reads

pa pjsk jsk, lvm o Ivm (4.19)

with summation over doubly occurring indices on the
right-hand side of (4.19). In particular, M'"'=0 and we

can omit the last column and row of A and A '.
The ADC simplifies as well since we are left with U"'

and C"' and the number of Feynman diagrams is small.
All time-ordered diagrams which contain a positron line
pointing downwards vanish. In ADC(2) and ADC(3) the
configuration space is restricted to 1p+ 1p 1h excita-
tions and the nonvanishing elements of K") read

Al:

B1

A2:

B2:

A3:

B3:

(I)
Kjsk,jsk +~k ~j s k nj (4.20)

where n is the occupation number of orbital p which can
be either 1 or 0 and n = 1 —n . Since U"' begins at first

order, the dynamic self-energy at second order is readily
obtained from (4.19) if 11 is calculated to zeroth order.
The same result follows, of course, by evaluating the dia-
gram of second order depicted in Fig. 6. Since P =0,
only a single time-ordered diagram of second order is
available giving

C: D:

FIG. 6. The time-ordered diagrams contributing to the dy-

namic positron self-energy part in the absence of positrons in

the target system. All diagrams of second and third order are
shown.

CO e Ek +6'j

(4.21)

A brief comparison with the first term on the right-hand
side (4.18) determines U'"

U(1) Ve
ojsk crgsk ~sk cry

(4.22)

in the expansion of the self-energy. Adding up the con-
tributions of the above diagrams leads to

C(1)
jskj 's'k' ~ss' ~kj '(j k') ~jj ' Vsks'k'+ ~kk' Vsg's'g (4.23)

for the first order of the effective interaction. For the
external indices jsk and j's'k' we have used here
n n, nk = 1 and n 'n, nk. = 1, respectively. The first term
on the right-hand side of (4.23) arises from diagrams Al

and completes the calculation of M(co) on the ADC(2)
level.

To proceed we need the Feynman diagrams of third or-
der. Each Feynman diagram of nth order stands for n!
time-ordered diagrams. For P =0 most Feynman dia-
grams vanish and this is also true for the time-ordered di-

agrams of a contributing Feynman diagram. From the
six time-ordered diagrams of second order only a single
one does not vanish. In third order we encounter 108
time-ordered diagrams which contribute to the dynamic
self-energy if PAO. Their number is reduced to 8 by set-
ting P =0. These diagrams are shown in Fig. 6. Follow-
ing the rules to evaluate Feynman diagrams, the dia-
grams A1, B1, C, and D have denominators quadratic in
co owing to the two cuts available. Accordingly, these di-

agrams are seen to contribute to the term

and 81, the second and third terms from the diagrams C
and D, respectively.

The remaining time-ordered diagrams of Fig. 6 con-
tribute to the second and third terms in the expansion of
M(co) given in (4.18). The diagrams A2 and B2 clearly
correspond to the second term in this expansion. They
are sufficient for obtaining the effective coupling to
second order. The result takes on the following appear-
ance:

U —U(1)+ U(2)

C(1)
(4.25)

into Eq. (4.14a). The static self-energy can be determined
as explained in Sec. III B 1 and the Dyson equation can
subsequently be solved either directly or by solving the
secular equation for the matrix A'. The binding energy
of the positron and/or the scattering cross sections ob-
tained are correct to third order and enjoy the advantage
of being determined in a size-consistent manner.

D. ADC(3) working equations for a composite system

In the general case where the target system contains
electrons and positrons both parts M"' and M'"' contrib-
ute to the one-particle Green's function. Furthermore,
the excitation space grows due to the presence of posi-
trons in the target. In ADC(2) and ADC(3) this space
comprises 1p+ 1p 1h and 2p+1h+ excitations for M"'

( ) nj nk
crjsk ~ kk'(jj ') + ~sj 'o k'

j k 6j E) 6k 6k'

The computation of U"' to second order completes the
calculation of M(co) on the ADC(3) level. The ADC(3)
dynamic self-energy is obtained by inserting
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and Ih + lh Ip and 2h + Ip+ for M'"'. The nonvanish-

ing elements of E'" now read

(I)
Jsk, Jsk S k J s k J

(I)
erst rst es + t er ns nt nr

(4.26a}

(4.26b)

rr(&)~ e,jsk ' crjsk

rr(&) =a +~ o, rst ' er(st)

(4.27a}

(4.27b)

The term U~ J,k is obviously the same as in the P =0 case
and U"', can be obtained from the second-order dia-

grams where all lines are positronic. Equations (4.26) and
(4.27) complete the evaluation of the ADC(2). The evalu-
ation of the ADC(3) is much more complicated since
even U' ',k contains a number of terms not appearing in

and those of K'"' have the same appearance except that
particles and holes must be exchanged, i.e., n, nkn =1
and n, n, n„=1 hold instead of n, nknJ =1 and n, n, n, =1,
respectively.

In second order one encounters six time-ordered dia-
grams and their number grows to as much as 108 in third
order. Fortunately, the 60 time-ordered diagrams of
third order in which all the hole and particle lines are
positronic are, up to a trivial renaming of indices, identi-
cal to those already investigated in Ref. 11 for the purely
electronic case. This also applies to quantities of the
ADC resulting from these diagrams. The additional
Feynman diagrams arising due to the fact that we have a
composite system are the diagrams of second order and
the diagrams A1, B1, C, and D of third order depicted in

Fig. 6 (now as Feynman diagrams, i.e., all possible time
orderings must be considered) as well as the diagrams
collected in Fig. 7.

We first discuss M"' and drop the superscript (I}unless

explicitly needed. The effective coupling matrix U must
be calculated for both excitation spaces indicated in
(4.26). In first order we find

nunu

M, u
' e +e —e —e

~k. .
j u k u

(4.28a)

where the first term on the right-hand side stands for the
result obtained for the purely electronic target and given
in (4.24). For the 2p+ Ih+ configuration space the result
can be written more compactly:

6j +8 E'k e

(4.28b)

since most of the contributing terms are included in the
first expression on the right-hand side of the equation.
This expression stands for the result of a purely positron-
ic target and is easily determined from the analogous ex-
pression in Ref. 11 for electrons.

Due to the enlarged excitation space the effective in-

teraction C contains four kinds of matrix elements. In
first order CJ'",z'&', k is identical with the result (4.23) ob-

tained for a positron-free target. The elements C",'„, ,
are identical with the result of Ref. 11 for the electronic
Green's function if we rename the positronic indices to
electronic ones. We are left to determine the effective in-

teraction matrix elements which couple the spaces
1p+ 1p 1h and 2p+1h +. These elements easily follow
from diagrams E and G in Fig. 7. Only the time ordering
as depicted in the figure contributes to C"'. From E and
G we readily find

the P =0 situation. Some of these terms arise from the
remaining time-ordered diagrams corresponding to C and
D in Fig. 6. The diagrams shown in Fig. 7 contribute, on
the other hand, to both U' ',k and U' '„„. For the
1p+1p 1h configuration space our final result reads

U' ' = U' ' (P=O)cr, jsk o, jsk

n, nk
sk'uj + a k'uk

k', u Ej eu 6k' es

n, n'
skuj' + 0JuJ

J, u Ej e

I (1)-,.k, „r= —&„~k,Jt

~(1)
Crst,j s'k ~ss' tj rk

(4.29a)

(4.29b)

FIG. 7. Feynman diagrams contributing to the dynamic posi-
tron self-energy part in the presence of positrons in the target
system. To have all the Feynman diagrams in second and third
order one has to add the Feynman diagrams of the purely posi-
tronic case {these diagrams have only positron lines and are
identical to those given in the literature for the purely electronic
case), the second-order and third-order diagrams A1, 81, C and
D shown in Fig. 6, but considered as Feynman diagrams.

M'""q'( n, n ) = (
—1 )qM" "q'( n n )

( (II)(q)(n n )
—

( 1 )qC(I)(q)(n n)

U(II )(q)( & & ) ( 1 )q + I U(I )(q)(—

(4.30a)

(4.30b)

(4.30c)

Note the extra +1 in the exponent of the latter expres-
sion. n denotes holes and n particles. To obtain the

respectively.
The above completes the evaluation of M"' on the

ADC(3) level. Generally, the knowledge of explicit ex-
pressions of C"' and U"' is suScient to determine the
analogous expressions of C'"' and U'"' and hence of
M'"'. The qth order of these quantities specified by (II)
follows directly from those of (I):
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quantities specified by (II) from those specified by (I) one
has to replace the hole indices by particle indices and vice
versa.

V. CONCLUDING REMARKS

The generalized Hartree-Fock particles of the compos-
ite system represent the best independent particles in
analogy to the Hartree-Fock particles in an electronic or
nuclear system. Although the diagrammatic analysis can
be carried out with any choice of an unperturbed Hamil-
tonian, the use of the generalized Hartree-Fock Hamil-
tonian simplifies the analysis by considerably reducing
the number of contributing Feynman diagrams. The
electron and positron Green's functions are evaluated via
the Dyson equation which, as usually, relates them to
their self-energies. These play the role of optical poten-
tials in scattering calculations. The self-energies consist
of a static and a dynamic part. The static part is of par-
ticular relevance in cases of strongly correlated target
systems. It is shown that this part can be calculated from
the dynamic part. Particular attention has, therefore,
been paid to the exact properties and approximate evalu-
ation of the latter.

After the identification of the contributing elementary
excitations, the ideas behind the ADC can also be used
for composite systems. The working equations of the
ADC(3) have been derived explicitly. For a general com-
posite system, the equations, of course, contain several
terms more than for a purely, e.g. , electronic, system.
However, the numerical evaluation of the ADC(3) should
be manageable also for a composite system. On the other
hand, if we are interested in the bonding (or scattering) of
a single particle to (by) a system of difFerent particles, the
ADC(3) working equations as well as the Dyson equation
become particularly simple. It is then even possible to
derive and apply ADC(4) equations.
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APPENDIX: RULES FOR FEYNMAN DIAGRAMS
OF ELECTRONIC-POSITRONIC

COMPOSITE SYSTEMS

Drawing rules. To obtain the nth-order Feynman dia-
grams of the one-particle Green's function draw a11 con-
nected topologically distinct diagrams with all possible
combinations of n, interactions V,&,d and n2 interactions
8'„connected by 2n, + n z + 1 G lines. Of course,
n, +n2=n. The symbols for the interactions and G
lines are given in Fig. 1. The n interactions are drawn
one above the other, the vertical axis being the time axis.
Two 6 lines enter and two exit each interaction V,b«.
Analogously, one 6 line enters and one exits each W„.
Each Feynman diagram begins with a G line connected
to an interaction only at its upper end and ends with a G
line connected to an interaction only at its lower end. If
these external G lines are positron (electron) lines, the

diagram belongs to the positron (electron) Green's func-
tion. Note that each pair of indices (a, c) and (b, d) can
be electronic or positronic. Consequently, if a positron
6 line enters the interaction 8„,a positron line must
exit it, etc.

We remind the reader that the use of the generalized
Hartree-Fock potentia1 reduces the number of diagrams.
Then n2 =0, i.e., only the interactions V,b,„must be tak-
en into account, and, in addition, diagrams have to be
omitted in which the same G line enters and exits the in-
teraction V,g,d.

The Feynman diagrams for the self-energy part are
easily obtained from those of the Green's function. Only
those diagrams contribute which do not disconnect upon
cutting a single 6 line into two lines. After identifying
the contributing diagrams just remove its external G
lines.

Eualuation rules. To each interaction in a diagram of a
Green s function a time variable t, is attributed. The
external times of the diagram are t' and t. Multiply all
interactions and all 6 functions appearing in the dia-
gram, integrate over all internal times t and sum over all
internal indices. Multiply the result by an overall factor

L+n&
i "( —I) '. L is the number of loops in the diagram
and n 3 is the number of interactions V,b,d between elec-
trons and positrons, i.e., two of the indices are positronic
and two electronic.

With slight modifications these rules also apply to dia-
grams of the self-energy part ~ Since the external G lines
have been removed from the diagrams, the corresponding
interactions carry the external times t' and t. Therefore
there are two time variables t, less to integrate over.
Otherwise all rules stay the same as above except that the

L+n)+1
overall factor now reads i "( —I )

We now turn to the rules to evaluate diagrams directly
in co space. These rules can be derived from the rules in
time space. Draw all time-ordered diagrams. From each
nth-order Feynman diagram of the Green's function
(n+2)! time-ordered diagrams result (n! for the self-
energy part) by permuting the times t ', t, and the t,
Each of these time-ordered diagrams must be evaluated
separately. We note that the diagrams of the self-energy
part with t ) t' contribute to M"', those with t & t' toI'"', and those with t =t' to the static self-energy (the
external 6 lines which have been removed to obtain the
latter diagrams were both attached to the same interac-
tion element).

Draw auxiliary horizontal lines between all two succes-
sive times, i.e., n+1 and n —1 auxiliary lines for a
Green's function and self-energy diagram, respectively.
Each auxiliary line contributes a multiplicative term 1/x
to the diagram. x is easy to calculate: each G,, line cut
by the auxiliary line contributes additively e, (or e, if a is
a positron index) to x. The orbital energy enters with a
plus (minus) sign if the G line points downwards (up-
wards). If the auxiliary line is between t and t' add +co
or —co to x according to whether t ) t' or t ( t'.
Remember that a hole line (particle line) [G line point-
ing downwards (upwards)] is associated with an occupied
(empty) orbital.
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Multiply all the interactions and the contributions of
the auxiliary lines and sum over all the internal indices.
The final expression of the diagram is obtained by multi-

n3+Z+0
plying the result by the overall factor —

(
—1) ' for

n~+L+0
a Green's-function diagram and by (

—1) ' for a
self-energy diagram, where H is the number of hole lines.

As an example we briefiy discuss the evaluation of a
particular time-ordered diagram E1 obtained from the
Feynman diagram E in Fig. 8 by choosing the time order-
ing t, & t & t'. In this figure both diagrams are shown to-
gether with time variables and all necessary indices.
(Since G,b vanishes if aWb, it is sufficient to attribute a
single index to each G line). Obviously the diagram be-
longs to M„,". In co space the expression for the time-
ordered diagram takes on the appearance

ug yv
l

u'A
I

I

FIG. 8. A self-energy Feynman diagram E and a tirne-
ordered diagram E1. Since E is a Feynman diagram, t, t', and t,
are not related and each runs independently from —ao to + oo.
Since E1 has been defined to be a time-ordered diagram, we
have to take the depicted time ordering literally: The internal
time t, is larger than the external times t and t' (t ) t'). r and s
are (positronic) external indices.

71~n nk n„El =( —1) g V„t,„
k, g, u, u, U

~g+ eU ~j eu

n„
X V,k„.' "~ co+e —e —e ~

U ll

The diagram contains two loops (L =2), two hole lines
(H =2), and two Coulomb interactions between posi-
trons and electrons (n3=2). Only one auxiliary line is
between t and t ' leading to a single ~-dependent contribu-
tion.
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