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Limits on tradeoffs between third-order optical nonlinearity, absorption loss,
and pulse duration in self-induced transparency and real excitation
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Self-induced transparency in a resonant two-level system creates a 2m-soliton pulse, which real-

izes large optical nonlinearities with a small absorption loss a for a short pulse duration ~.
Quantum-mechanical zero-point field fluctuations introduce an ultimate dissipation loss in such a

resonant and coherent process and place fundamental limits on the y")/a~ value. This value is in-

dependent of the dipole moment, atomic density, and pulse duration and is uniquely determined by

an optical wavelength, e.g. , y'"/a~-1. 2X10"A, esucrn/s. The similar limit on y"'/a~ value is

obtained in a usual operation mode, when the pulse duration becomes much longer than the atomic

decay constants and the real excitation of the atoms occurs instead of the virtual excitation in self-

induced transparency. The implication of these limits on optical squeezed-state generation, quan-

tum nondemolition measurement, and reversible logic is discussed.

I. INTRODUCTION

Optical nonlinear processes can be divided into two
categories: nonresonant-coherent and resonant-
incoherent. If a field frequency is well detuned from an
atomic transition frequency, the excitation of atoms is
virtual; thus the response time ~ is fast and the absorp-
tion loss a is small, while the third-order susceptibility
y' ' is usually small. On the other hand, when a field fre-
quency is close to an atomic transition frequency, real ex-
citation of atoms occurs, resulting in the g' ' coefficient
being resonantly enhanced while both the ~ and a values
become large. It is believed that some trade-offs exist be-
tween the g' ' coefficient and the a and v. values. In fact,
a g' '/ar value is more or less constant for various non-
linear materials. ' However, so far there is no answer to
the question of whether there are any fundamental limits
on ag '/ar value.

In a previous paper, we demonstrated new optical
nonlinearities (of the third category) based on a 2m-

soliton pulse in self-induced transparency (SIT). The 2n
soliton pulse excites all the atoms into an upper state
with the leading edge of the pulse and stimulates a down
conversion to the ground state with the trailing edge of
the pulse. If the atoms are decoupled from all the reser-
voirs and are free from any relaxation processes, the 2m-

soliton pulse propagates without suffering from absorp-
tion loss at all. The 2m-soliton pulse features photon-
number-dependent self-phase modulation during its prop-
agation and has mutual-phase modulation during its col-
lision with the other soliton. These characteristics have
the potential to realize an extremely large y' ' coefficient.
Moreover, the pulse duration can be much shorter than
the relaxation time constants of the atoms. At first sight,
it seems to be an ideal nonlinear optical process. Howev-
er, a certain atom-reservoir coupling cannot be eliminat-
ed in principle. It is a radiative decay of atomic dipoles
due to quantum-mechanical zero-point field fluctuations.

Of course, it is possible to eliminate a field mode which
carries zero-point field fluctuations and to inhibit an
atom's spontaneous emission by the technique of cavity
quantum electrodynamics. In such a case, however, cou-
pling between the atoms and the 2m-soliton pulse is also
inhibited. This spontaneous emission decay introduces a
finite absorption loss to the 2m-soliton pulse and places
the fundamental limits on the y' '/ar value achieved
with the 2m solitons in SIT.

This paper is organized as follows. In Sec. II, the limit
on y' '/ar value defined by self-phase modulation in SIT
is derived. Moreover, it is demonstrated that the degree
of squeezing using self-phase modulation is limited by
such limits on y' '/ar value. In Sec. III, the limit on
y' '/ar value defined by mutual-phase modulation in SIT
is derived. The necessary minimum photon numbers in
quantum nondemolition (QND) measurement and rever-
sible logic are limited by such limits on y'3'/ar value.

II. LIMIT ON X' '/aw VALUE IN SELF-PHASE
MODULATION

The self-phase modulation P„,„of the 2n.-soliton pulse
is given by Eq. (3) in Ref. 2. The effective y' ' coefficient
is defined as the derivative of P„~& with respect to the in-

tensity Ip =N&Ace/3 p T of the soliton, giving

c ~o d0seif pzi" rs
2 2 4 3

o)z dIp Sfi [I+(hear, ) ]

Here N~ is the soliton photon number, A p is the cross-
sectional area, v., =~/2 is the soliton pulse half-duration,

p2, is the atomic moment, n is the atomic density, and
bee=co —~2, is the field frequency co detuned from the
atomic transition frequency co&2. We assume that the
atoms are in free space. Generalization of Eq. (l) to a
dielectric matrix with refractive index p is straightfor-

wardd.
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The spontaneous-emission lifetime (longitudinal relaxa-
tion time constant) T, for the atoms in free space is

A EpC
3

T]
2M P2i

(2)

This uniquely determines the upper limit on a transverse
relaxation time constant to be T2=2T, . Here we as-

I

sumed that the quantum-mechanical zero-point field fluc-
tuation is only one reservoir which dissipates the atomic
coherence and energy. Once the atoms have finite T, and

T2 time constants, the soliton loses energy partly because
the dipole moment loses phase memory and also because
the upper-state incoherently decays to the ground state.
The decrease in the soliton photon number is described
b4
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Even though the energy-dissipation process is nonlinear,
as shown in Eq. (3), the effective linear absorption
coeScient a can still be derived in a small-absorption
limit,

np2& co
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Here A, is an optical wavelength in centimeters. The
y' '/a~ value is independent of the dipole moment p2, ,
the pulse duration v., and the atomic density n. It is
uniquely determined by the optical wavelength k and is
proportional to k .

The spontaneous lifetime, Eq. (2), represents the total
radiative decay rate into all continuum modes in free
space. If an atom is put into a single-mode waveguide
surrounded by superconducting walls (or equivalent opti-
cal high-reflectivity mirrors), the atom is decoupled from
all continuum modes except one guided mode. The
spontaneous-emission lifetime for such a case is modified
to be

AEpcT*=
1 2 P

COP 2 I

Since the cross-sectional area Ap of the single-mode
waveguide must be in the order of -)(, /4, Eq. (7) is al-
most equal to Eq. (2), and the fundamental limit, Eq. (6)
for the g( '/az value, is preserved.

The effective linear absorption coefficient (6) holds only
for v ((T, , T2. In an opposite limiting case, ~))T], T2,
the self-induced transparency breaks down and the real

where Eq. (2) is used for T
&

and Tz =2T|.
From Eqs. (1) and (3), the X' '/ar value for a self-phase

modulation process is given by

3m'Gpc
(3) 2 4 AN'7

4fico 3[1+(hcor, ) ]+2
The X' '/ar value is zero both at the resonance point,
b,co=0, and far from the resonance point, hen))1/r,
The maximum X' '/ar value, in esu cm/s, is obtained at
the optimum frequency detuning, hco, ~,

=Q —', (1/r, ):

I

excitation of atoms occurs. For such a case, the y' ' and
a value are calculated by the usual theory, giving

p 2in T2 AcoT2

2R [1+(bcoT~) ]
(8)

a=
2M e c 1+(bcoTq)

(9)
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It is interesting to note that if the SIT pulse duration ~ is
replaced by the transverse relaxation time constant T2 in
Eqs. (1) and (4), they are reduced to the usual real excita-
tion X' ' and a values given by Eqs. (8) and (9). The
X' '/ar value is given by

(3) T] gQX (10)
~ 8m'h

Here the optimum detuning, bee,„,= 1/T&, and Tz =2T,
are assumed. The X' '/ar value depends on the pulse
duration ~ and the longitudinal time constant T&. The
y' '/av. value increases with decreasing ~ and approaches
the limit (6) when r = 10T, . In other words, the real exci-
tation y' ' process for ~))T&,T2 has the nearly equal
limit (6) under the minimum allowable pulse duration
w= 10Ti.

Figure 1 illustrates the fundamental limits on the
'/ar value as a function of the wavelength. X '/ar

values reported so far for various nonlinear materials
are also shown for comparison. These experimental re-
sults are not for the 2m. soliton in self-induced transparen-
cy, but are for the real excitation y( ' process. The rela-
tion ~=10T, is assumed for comparing the theory and
experiments.

The quantum phase diffusion (photon-number-
dependent self-phase modulation) in a X' ' medium pro-
duces a number-phase squeezed state. ' Optical solitons
are also squeezed by this process. ' However, an ab-
sorption loss in the g' ' medium introduces a vacuum
field fluctuation and partly destroys squeezing. The
quantum noise reduction is thus limited. The degree of
squeezing can easily be calculated by the operator evolu-
tion equation with a dissipation-fluctuation term, the re-
sult being
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where A p
= I, /4 is used. If Eq. (6} is used in Eq. (11), the

maximum degree of squeezing is uniquely determined by
the soliton photon number, (t5,& )/«& ) =10/Np . In
order to generate a squeezed soliton, the soliton photon
number must be greater than 50.

FIG. 1. The fundamental limits on y' /ar values as a func-
tion of the wavelength, and the estimated values for the various
nonlinear materials from the experimental data. In the estima-
tion, ~=10T~ is assumed. "Reference 6; ' 'Ref. 7; "Ref. 8;
' 'Ref. 9 "'Ref. 10; '"Ref. 11; ' 'Ref. 12; '"'Ref. 13; "'Ref. ].4;
«~)Ref. 15.

2 4~2

(& ~&', ).„,)'"=
P +mutual

(16)

In order to achieve measurement accuracy for "one pho-
ton" ((b,A' s) „,)' =1, the probe soliton loses energy
according to

tu, l /a~ is slightly smaller than y,',lf /aw.
The mutual-phase modulation between the signal and

probe pulses in a p' ' medium results in the quantum
nondemolition measurement of the signal photon num-
ber. ' The collision of two solitons also results in the
quantum nondernolition measurement of the signal pho-
ton number. ' Without attenuating the signal photon
number, it can be measured via the probe phase shift. As
demonstrated in Ref. 2, the collision of two 2~ solitons
results in a more efficient quantum nondemolition mea-
surement than the collision of two fiber solitons, ' when
soliton 1 at co is assigned as the signal and soliton 2 at co2l

is assigned as the probe. With this assignment, the signal
soliton has less absorption loss, due to frequency detun-
ing, and the probe soliton is free from self-phase rnOdul-
tion, due to on-resonant excitation of the atoms. Suppose
that the probe soliton is prepared in an optimum phase-
squeezed state; then the probe phase noise is given by
«bP p)ss —1/4(8'i, ), rather than «hgz)os=1/4«8'p)
for a coherent state. The measurement error
( «bA s ) „,)' of the signal photon number, defined by
the signal-to-quantum-noise ratio of unity, is given by

III. LIMIT ON g' '/uv VALUE IN MUTUAL-PHASE
MODULATION

C E'OA,

rico(A'p)az =
8m

a7
(3)

~mutual

=40hv . (17)

The mutual-phase modulation p „,„,l between two 2ir-
soliton pulses during the collision process is given by Eq.
(5) in Ref. 2. The efFective y' ' coefficient is defined as the
derivative of the phase shift p «u, l l of soliton 1 with
respect to the intensity I~2 of soliton 2, giving

4 3
p

32ri 1+(Ecole. )
(12)

5np4„~'2
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From (12) and (13), we obtain the y' '/a~ value for the
mutual-phase modulation process:

+mutual 3~~0C ~~+s(3) 2 4

80A'co 1+(ittcow, }
(14)

The maximum y' '/a~ value, in esu crn/s, is obtained at
the optimum detuning, Ace,„t

= 1/~„as

Here we assume that the frequency co of soliton 1 is
slightly detuned from the atomic transition frequency co2l
and that the frequency of soliton 2 is equal to co,2. Since
soliton 2 is on resonance, it suffers from a higher absorp-
tion loss than soliton 1:

rico4«kp )zest 3„',„„
4 2

1
VT C EOTs

The control soliton loses its energy according to

(18)

C EOA,
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There exists a minimum required energy dissipation per
one logic operation.

Here we use Eq. (15) in the second equality. This is the
ultimate energy dissipation of the probe per one quantum
nondemolition measurement. The energy dissipation of
the signal can be arbitrarily decreased by a large probe
photon number. There is no fundamental limit on the en-
ergy dissipation of the signal. This makes the quantum
nondemolition measurement to be a physically realizable
notion.

The mutual-phase modulation in a y( ' medium also
can be used to realize reversible optical logic, for in-
stance, an optical Fredkin gate. Without dissipating
the signal photon number, universal logic operations such
as AND, OR, NOT, and COPY can be constructed. For this
purpose, the signal soliton at co must be phase modulated
by m with the control soliton at m&2, which requires
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IV. CONCLUSION

It is shown that the limits on the trade-offs between a
third-order susceptibility y' ', linear absorption loss a,
and pulse duration ~ in SIT and real excitation. The
maximum value for a figure of merit, y' '/ar, is uniquely
determined by the optical wavelength and is proportional
to A, . The limits on optical squeezed-state generation,
quantum nondemolition measurement, and reversible log-
ic are determined by this trade-off relation. The calcula-
tion is based on the 2m soliton in self-induced transparen-
cy at one-photon resonance. The same limit is obtained
for the real excitation y' ' process under the optimum

condition. It is still an open question as to whether this
limit is a universal one or not, even though all the experi-
mental results reported so far are below this limit, as
shown in Fig. 1. Specifically, the relation does not neces-
sarily hold a y' ' process enhanced either by two-photon
resonance or by excitonic gigantic dipoles.
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