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Consequences of coherence effects in nonradiative decay
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The manifestation of coherence effects in quantum yield measurements probing nonradiative de-

cay is considered within the framework of effective Liouvillian dynamics. Special attention is given
to the theoretical treatment of the quantum yield problem for the Freed-Jortner mesoscopic model
for nonradiative decay. Exploiting the mathematical apparatus of dual Lanczos transformation
theory, we obtain infinite-order analytic expressions for the fluorescence quantum yield and nonra-
diative decay rate of the initially prepared state and the quantum yields of hot fiuorescence and hot
phosphorescence.

I. INTRODUCTION

Treatments of nonradiative decay' based on the Mar-
kovian approximation to the relevant Hamiltonian sub-
dynamics of a global effective Hamiltonian model with
radiative damping' yield results that would lead one to
believe that nonradiative transitions may serve as a mech-
anism for the storage of energy for an infinite period of
time in isolated molecules that are optically excited and
remain bounded. Given that molecules are always cou-
pled to the free-radiation field, which plays the role of a
dissipative sink, it seems that such energy storage is a
physical impossibility. This suggests that there is some-
thing fundamentally wrong with the aforementioned
Markovian approximation in some theories of nonradia-
tive decay. The purpose of this paper is to give a prelim-
inary report of some infinite order analytic results based
on effective Liouvillian dynamics that indicate that this is
indeed the case due to the neglect of coherence effects.
By coherence effects, we mean processes involving the
transformation of phase coherences associated with the
initially prepared state into other coherences and excita-
tions in the system and their back reaction.

sence of the interaction 0 each of the states exhibit sim-
ple exponential radiative decay.

By definition, the quantum yield 4 for the radiation
originating from the initially prepared state is given by

a'= f "dt[I (s,s)le]p(s, s;t), (2.I)
0

where I "(s,s)/A' is the radiative decay rate of the state
~P, ) and p(s, s;t) is the probability for finding the system
in this state at time t. It is convenient to write 4 as

C"=[r'(s,s)Ze] hm f dt exp( zt)p(s, s;t), —
z —+0+ 0

(2.2)

where the integral represents the Laplace transform of
p(s, s; t).

Adopting the effective Liouvillian dynamical model
corresponding to the mesoscopic model depicted in Fig.
1, it is a straightforward exercise in projection operator
algebra ' to show that the temporal evolution of
p(s, s;t) may be described in terms of the non-Markovian
equation of motion

II. EFFECTIVE LIOUVILLIAN TREATMENT
OF FREED-JORTNER MESOSCOPIC MODEL

In order to demonstrate the importance of coherence
efFects in nonradiative decay, let us consider the Freed-
Jortner mesoscopic model, ' which has played a central
role as a prototype model in discussions of such decay. A
schematic representation of this model is given in Fig. 1.

~ P, ) denotes some initially prepared state that carries os-
cillator strength to the ground state ~$0). The state ~P, )
is coupled via the intramolecular interaction 0 to some
densely packed but discrete states [~gt) I. All of the
states are assumed to be radiatively damped. In the ab-

-U(s, l)

I R (I's,s)

FIG. 1. Schematic representation of the Freed-Jortner
mesoscopic model for nonradiative decay.
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—p(s, s;t) = —[I (s,s)/fi]p(s, s;t)a

where

K( ss; s, s;t —t')

dt'K s,s;s,s; t —t' p s, s; t'
0

(2.3)

(N ILpg exp[ Egg (t t ) ]Egp IN }

(2.4)

In the above, Lpg=PLQ Lgp=QEP, and Lgg=QLQ,
where L is the transition operator embodying the details
of the mesoscopic model.

The Hermitian projection operator Q=Q)+Q2 (2.10)

As far as quantum yield measurements are concerned,
Eq. (2.8) is an exact expression for the nonradiative de-
cay rate KNR independent of whether or not the initially
prepared state

I P, ) exhibits exponential decay. Of
course, the nonradiative decay rate given by Eq. (2.8)
must be equal to the nonradiative decay rate deduced
from time-resolved photon counting measurements when
exponential decay is obtained.

In order to obtain insight into the various contribu-
tions to the nonradiative decay rate ENR and to construct
an infinite order expression for this rate, we find it con-
venient to partition the projection operator Q [see Eq.
(2.6)] as follows:

P = IN„)(N,",
I (2 5) where

projects onto that part I' of the global dynamical vector
space embedded with information about the population
of the state l(t), ). The Hermitian projection operator

Q= & [IN I )(N'I I+ INI, )(NI', I]+ g INII )(NII I

and

g —y g (I)

1

g y g (II')

(2.11)

(2.12)

projects onto that part Q of the global dynamical vector
space embedded with information about the phase coher-
ence between the state I(t), ) and the manifold { I(t)I ) I, the
phase coherence within the manifold { l(I)I )], and the
population of the { l))}I )1 manifold. P and Q satisfy the
usual relations P+Q =I, P =P, Q =Q, and
PQ=QP=O, where 0 is the null operator and I is the
identity operator for the global dynamical vector space.

The dynamical vectors { I Njk ) I appearing in Eqs.
(2.4)—(2.6) correspond to the operators {8~k = I()| ) ( (t)k I ],
where {IP ) I are the basis vectors in the Freed-Jortner
mesoscopic model. The left dynamical vector (N k I

and
the right dynamical vector IN k } are conr. ected by the re-
lation (N kl =

INJk ) . .

Making use of Eqs. (2.2) and (2.3), we find that the
quantum yield 4 for the radiation originating from the
initially prepared state is given by

~R=~R/(~R+~NR) (2.7)

where i().'R =[I (s,s)/A'] is the radiative decay rate and

ICNR= lim A(s, s;s, s;z)
z —0+

is the nonradiative decay rate, with

4 (s s s z): (N ILpg(zg +Lgg ) Lgp IN )

(2.8)

(2.9)

denoting the Laplace transform of the memory kernel
E (s,s;s, s; t).

with

and

g", ) = IN, I )(N,'I I
+ IN(, }(NI',

I
+

I NII )(NII I

g'"'=IN )(N'
I

(2. 13)

(2.14)

The projection operator Q, projects onto the subspace

Q) bearing information about the phase coherence be-
tween the state Ip, ) and the manifold { I)I}I ) I and the
population of the manifold {I/I ) I. [See Eqs. (2.11) and
(2.13).] The projection operator Qz projects onto the sub-
space Qz bearing information about the phase coherence
within the manifold { l)t)I ) ). [See Eqs. (2.12) and (2.14).]

A diagrammatic representation of the subspaces P, Q „

and Q~ and their coupling with each other is given in Fig.
2. Some of the terms giving rise to coherence effects in
the diagram of Fig. 2 are enumerated and classified in
Fig. 3. Note that we have classified these terms as
describing first-order coherence effects, second-order
coherence effects without interferences, and second-order
coherence effects with interferences. The interferences
correspond to processes in which the phase coherences
between the state IP, ) and the individual states of the
manifold { I(I)I ) I interfere due to the coupling of these
coherences to a common coherence within the manifold

Making use of the above-described partitioning, we
write Eq. (2.9) as follows:

4'(s, s;s, s;z)= —(N„ILpg [ Q z+L)g g (z)] Lg p{N ) (2.15a)

= —g (N„IL,), [zQ, +L g g (z)] 'L () IN„),
l l l

(2.15b)

where
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Q~Q QQ QQ Qi QQ QQ
A= gL (()Q(()+ g& ()) (zQi+&Q Q ) L

I, I' 2 2

(2.16a)

(2.16b)

is the effective transition operator for the subspace Qi with the z dependence arising from the coupling of this subspace
to the subspace Qi. The interactions contributing to Eqs. (2.15a)—(2.16b) are described by the diagrams in Figs. 2 and
3.

Inspection of the terms describing coherence effects suggests that first-order coherence effects are more important
than second-order coherence effects. Assuming this to be the case, we write [see Eqs. (2.15a)—(2.16b) and Figs. 2 and 3]

R(s, s;s,s;z)= gR'"(s, s;s,s;z),
I

where

R'"(s,s;s,s;z)= (N„t—L Q(()(zQ', "+LQ(()Q(()) 'EQ(()pe%„) .
1 1 1 1

(2.17)

(2.18)

Exploiting the mathematical apparatus of dual Lanczos transformation theory, one can readily show that
%'"(s,s;s, s;z) may be written in the form of the rational function "' '

R("(s,s;s, s;z) =[2~ U(s, l)~ /A'][[fiz+d „(s,l)] —d (s, l)[lz+d+(s, l)] j

X [[iriz+d+(s, l)] —d (s, l)[(riz+d+(s, l)] +b(s, l)[fiz+d+(s, l)]—d (s, l)e(s, l)i] (2.19)

where d+(s, l)=( —,')[I "(s,s)+I (I, l)], e(s, l)=g, —
g, , and b(s, l)=2tU(s, l)t +e(s, l), with g, and g, denoting the en-

ergies of the states ~{{),) and ~P& ), respectively.
Taking the z~0+ limit of the spectral function %'(s,s;s,s;z), we obtain the following infinite-order expression for

the nonradiative decay rate:

KNit=(2/iri) g tU(s, l)t 1+(s,l)/[e(s, l) +d+(s, l) +2~ U(s, l)~ d+(s, l)/[d+(s, l) —d (s, l)]I .
I

(2.20)

This result combined with Eq. (2.7) provides us with an infinite-order expression for the quantum yield 4 for the radia-
tion originating from the initially prepared state.
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FIG. 2. Diagrammatic representation of the subspaces P, Q, ,
and Q2 and their coupling with each other for the Freed-Jortner
mesoscopic model. [See discussion of Eqs. {2.15a)—{2.16b).]
The solid lines represent the interaction between superstates.

FIG. 3. Diagrammatic representation of some of the terms
giving rise to coherence effects in the diagram of Fig. 2 and their
classification. See caption of Fig. 2 for definition of symbols.
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For e(s, /) +d+(s, l) &)2[U(s, /}l d+(s, l)/[d+(s, l)
—d (s, 1)] for all I, Eq. (2.20) assumes the weak-coupling
form'

KN„=(2/iri) g lU(s, /)l d (s, /)/[e(s, l) +d (s, l) ] .
I

(2.21)

The above result may be regarded as a variant of the
result'

(2.22)

obtained when the Markovian approximation is imposed
on the relevant Hamiltonian subdynamics of the global
effective Hamiltonian model. In the above,

%', (s,s;g)=(1/fi) g l U(s, /)l /[i(g+g, )+(—,')I (l, l)],
I

(2.23)

where g is the energy parameter appearing in effective
Hamiltonian theories. '

It should be clear that Eq. (2.20} is at a higher level of
approximation than Eq. (2.22), which neglects coherence
effects altogether. Equation (2.20) includes first-order
coherence effects to infinite order in the interaction Obe-
tween the state lP, ) and the manifold [lP, ) j. Moreover,
Eq. (2.20) is exact for a two-state system.

If we let the manifold [ l{{}&) j become completely dark,
i.e., I (l, l)=0 for all 1, we find that the result given by
Eq. (2.20) for KNR vanishes. Then 4 =1. This result is
consistent with our earlier assertion that nonradiative
transitions cannot serve as a mechanism for the storage
of energy for an infinite period of time in isolated mole-
cules that are optically excited and remain bounded.
Clearly, the result given by Eq. (2.22) is inconsistent with
this and only requires 0 to be nonvanishing in order to
obtain 4 & l. In sharp contrast, Eq. (2.20) requires the
widths of the states in the manifold [ l{(}I) j to be nonvan-
ishing in order to obtain 4"(1 (see Fig. 4). Of course,

and

E'(s, 1)=e(s, 1)+b, e'(s, 1) (2.24)

d+(s, /) =d+(s, l)+Ad(s, l), (2.25)

where

be(s, /)= — g lU(s, l')l e(/', /)/[e(/', 1) +d+(1', 1) ]
I' (Cl)

(2.26)

and

these widths [I (1, /) j may be due to the coupling of the

[ i/I ) j manifold to both radiative and nonradiative (dis-
sociative, collisional, etc.) dissipative continua. [In gen-
eral, d+(s, /) =

—,
' [I (s,s)+I {/,1)], where I (s,s) and I (1,1)

are the total width of the states. ]
It is easy to show that the quantum yield N for the

radiation originating from the manifold [ lP& ) j is given

by 4 =KN„/(Ka+KNR) when radiative decay is the
only open dissipative channel for an isolated molecule
that remains bounded. As one might expect, the quan-
tum yields 4 and 4 conform to the relation

+4"=l. If the manifold [i/I) j is comprised of
singlet and triplet states, we can partition ENR as

NR=I( re+I(:rsc where Krc and I(:rsc are the internal
conversion and intersystem crossing rates, respectively.
K,c (It,sc ) may be obtained from Eq. (2.20) by simply re-
stricting the sum over all 1 to run over all singlet (triplet)
electronic-nuclear states. Then the quantum yield 4
may be written 4R' 4ic+ @isc where 4rc &rc /
(l~ R +It ic + I{'isc} and @ l~ Isc /(+R +etc+ I{'Isc )

respectively, denote the quantum yields for hot Auores-
cence and hot phosphorescence.

Second-order coherence effects without interferences
[see Figs. 2 and 3]. may be readily incorporated into Eq.
(2.20} with the aid of dual Lanczos transformation
theory. The inclusion of these effects leads to an expres-
sion for the nonradiative decay rate ENR that is identical
in structure to Eq. (2.20) with e(s, l) and d~(s, /) replaced
by the renormalized forms
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FIG. 4 Comparison of exact and approximate weak-coupling results for the radiative quantum yield 4' and nonradiative deca
rate A „ofthe initially prepared state lp, ) of a twostate system for which [e{s /)'/I &{s1)l']=&»nd K"{ss)'/1«s /)I']=4 o.
The radiative quantum yield 4" for for the state i/i ) is also displaye&.
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Ad(s, l)= g ~U(s, l')~ d+(I', I)/[e(I', I) +d+(I', I) ],
I' (Xl)

(2.27}

with d (I', I)=—,'[I (I', I')+I (1,1}]and e(l', I}=gt —gt.
Apart from introducing energy shifts I b.e(s, I&) and ad-

ditional broadening [ hd(s, I) }, the basic structure of Eq.
(2.20) is preserved when e(s, l) and d+(s, l) are replaced
by the renormalized forms Z(s, l) and d+(s, l). The phys-
ics discussed earlier is essentially the same provided the

system remains bounded in the I [Pt ) J manifold. If some
of these states become unbounded in the infinite volume
limit, as in the case of dissociation, the physics dramati-
cally changes. The contribution 2~ U(s, 1„)~d+(s, l„)/
[d+(s, l„)—d (s, l„)]made by the unbounded state ~Pt )

to the properly renormalized form Eq. (2.20) vanishes in

the infinite volume limit. Then the contribution K„made
by the unbounded states to the nonradiative decay rate
KNR assumes the form

K„=(2/fi)f d gt p(gt )
~
U(s, I„)~'d+ (s, I„)/[Z'(s,I„)'+d+(s,I„)'], (2.28)

where p(gt ) is the density of states for the unbounded
tt

part I ~Pt ) ) of the [~Pt) ] manifold. Clearly, K„ is

nonzero even when the states t ~ Pt ) ) are radiatively dark
tt

and not coupled to any other continua, i.e., when
d+(s, l„)=(—,')Ps, s) or the bare widths [I (1„,1„)Ivan-

ish. [Of course, the renormalized form d + (s, I„)appears
in Eq. (2.28).] Then the radiative quantum yield 4 for
the initially prepared state is less than unity due to the
fact that the states I ~ Pt ) ) assume the role of a truly dis-

sipative continuum in the absence of additional damping.
Another attractive feature of our results is that they

bridge the gap between the adiabatic and nonadiabatic re-
gimes. More specifically, we find that when the condi-
tion

2 U(s, l) d+(s, l)/[d+(s, l) —d (s, l)]

)&r(s, I)'+d+ (s, li

is satisfied for some state ~pt ), the contribution made by
that state to the properly renormalized form of Eq. (2.20}
is given by [I (l, l)/R], i.e., the contribution made by the
state ~(t t ) is given by the rate at which it decays via dissi-
pative processes. Recent experiments on photo-induced
intramolecular electron transfer in polar solvents appear
to be in agreement with this result.

mesoscopic model' within the framework of effective
Liouvillian dynamics. It was shown that the treatment
based on the Markovian approximation to the relevant
Hamiltonian subdynamics is at best a weak-coupling ap-
proximation to the effective Liouvillian treatment due to
the discarding of dynamical information about coherence
effects. In fact, we found that the former approach is not
equivalent to the effect Liouvillian treatment even for a
two-state system. Our results suggest that, in general,
treatments of photophysical phenomena based on the
Markovian approximation to a Hamiltonian subdynamics
must be viewed with some caution and that they may
lead to results endowed with wrong physics.

Exploiting the mathematical apparatus of dual Lanc-
zos transformation theory, we obtained infinite-order an-
alytic expressions for the radiative quantum yield and
nonradiative decay rate for the initially prepared state in
the Freed-Jortner mesoscopic model. ' Also, we obtained
infinite-order analytic expressions for the quantum yields
of hot fluorescence and hot phosphorescence. Models in-
volving a detailed description of intramolecular interac-
tions and dissipative processes may be readily substituted
into our results for computational studies. Another at-
tractive feature of our results is that they bridge the gap
between the adiabatic and nonadiabatic regimes in a
manner that is consistent with experiment.
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