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Collision-induced coherence transfer between infrared molecular transitions is studied using a
technique that permits the complete distribution of accompanying velocity changes to be deter-
mined in a simple way. The experiments are carried out by measuring the intensity of two pulse

photon echoes as a function of applied Stark field at fixed large echo time delay. The velocity
change distribution for coherence-transfer collisions is obtained directly as the shape of the echo in-

tensity versus Stark field curve. Previously unpublished data for dipole-quadrupole and van der
%'aals interactions are presented, and a theory of coherence-transfer velocity-changing kernels is

developed that is in good agreement with the data.

I. INTRODUCTION

Recently we suggested and demonstrated a new
method to study infrared and optical coherence
transfer. ' In the basic coherence-transfer process (Fig.
I), optical coherence initially created on the a'-b' transi-
tion is collisionally transferred to the a-b transition. Both
the excited- and ground-state amplitudes of the active
molecule simultaneously change in this process, accom-
panied by a velocity change hv. The technique used in
these studies, which we call tunable energy compensa-
tion, has been applied to measure both the rates and the
distribution of velocity changes which accompany in-
frared coherence transfer (i.e., the one-dimensional ker-
nel). In the experiments, coherence transfer occurs be-
tween adjacent Stark-split transitions in ' CH3F (Fig. 2).
During coherence transfer, the excited- and the ground-
state magnetic quantum numbers both change by either
AM=1 or —1, as discussed below. The coherence-
transfer collision kernel W&M(AU), where AU is the veloc-

ity change along one axis, gives the distribution of veloci-
ty changes.

The coherence-transfer kernel is obtained directly as
the shape of a two-pulse photon echo intensity I, versus
Stark-field curve, at fixed large echo time delay T. The
method works by singling out those collisions for which
the collision-induced Doppler shift is compensated by the
tunable Stark frequency change which accompanies in-
frared coherence transfer in the applied Stark field.

For ' CH3F, which has a large permanent electric di-

pole moment, collisions with perturbers with permanent
multipole moments predominantly cause infrared coher-
ence transfer between adjacent transitions (see Fig. 2)
which differ in magnetic quantum number by an amount
AM, obeying dipole selection rules: AM =0, +1. In this
case, the (initial-M-averaged) one-dimensional kernel for
velocity change EU and coherence transfer with ~hM~ = I
is obtained from the echo data in the remarkably simple
form'

I, (v, =b v/A. )
Re Wi~M~, (b, u) = ln

4A, I, (v, ~ ao )

where the kernel is in units (rad/s)/(cm/s). The delay
time T is taken suSciently long that T»A, /(2m. bu),
where A, is the infrared transition wavelength. It is as-

-V=1
b J=5

-V=O-3
a J=4

FIG. 1. Coherence-transfer process. FIG. 2. Energy levels and transitions in a weak dc Stark field.
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sumed that the laser field and the Stark field are z polar-
ized. v, is the transition Stark frequency shift (Hz) per
unit M (i.e., the excited-state shift minus the ground-state
shift at M= 1) which is linearly proportional to the Stark
voltage. Finally, the laser pulse bandwidth is assumed
large compared to both the transition Stark shifts and the
collision-induced Doppler shifts.

Physically, Eq. (1}is easy to understand. At large echo
time delay, T »A, l(2mb, v), the random collision-induced
Doppler shifts b, v/A, (Hz units) tend to destroy the mac-
roscopic polarization and hence reduce the echo signal.
However, in the Stark field, collision-induced coherence
transfer between adjacent transitions differing in magnet-
ic quantum number by 1 (EM= I} causes an additional
frequency change AMv, . In this case, collisions for
which hv/A, +AMv, =0 cause no net frequency change
of the oscillator, thereby eliminating the echo degrada-
tion due to the velocity change hv. The "probability" of
these energy-compensated collisions occurring, which
determines lnI, is the order of the time scale of the echo
experiment T, times the rate at which such collisions
occur. The rate is the order of the product of
the coherence-transfer velocity-changing kernel
W&M(du=a, b,Mv, ) (rate per unit velocity for coherence
transfer between adjacent transitions differing in magnet-
ic quantum number by AM with velocity change b, v)
times the velocity resolution for the echo experiment
A. l(2n T). Since the time T cancels in the "probability, "
the kernel and lnI, are directly proportional in the large-
T limit.

An important feature of this technique is that the ker-
nels are obtained on an absolute scale, trivially. Hence,
the shapes of the kernels, for example, the values of the
kernels at zero velocity change, are readily obtained for
comparison with theory.

Infrared and optical coherence-transfer collisions are
described by the quantum-transport equation and
have in principle been known for some time. However,
the conditions under which collision-induced coherence
transfer can occur are not well established and have only
recently been investigated experimentally. The work de-
scribed in this paper and Refs. 1-4 are the only studies,
we believe, which explore the correlation between coher-
ence transfer and the accompanying velocity changes.
Processes of this type have been analyzed theoretically in
some detail with neglect of the accompanying velocity
changes. ' Previous experiments have studied collision-
induced Zeeman coherence and microwave coherence ro-
tational transfer (intramolecular), for which velocity
changes were not measured. ' Studies of the Stark-
splitting dependence of the line-broadening rates, " also
involve coherence transfer between transitions differing
in magnetic quantum numbers, but the accompanying ve-
locity change distributions have not been measured.

In this paper, we exploit Eq. (1) to measure the
velocity-changing kernels for ' CH3F-' CH3F (dipole-
dipole) and ' CH3F-CO& (dipole-quadrupole) coherence-
transfer collisions. Results for ' CH3F-Ar (van der
Waals) collisions are also described. Briefiy, the organi-
zation of this paper is as follows. Section II reviews the
theory of echo formation in a we@.k Stark field to derive

Eq. (1). The experiments are discussed in Sec. III, where
experimentally measured kernels are presented. In the
Appendix, average one-dimensional coherence-transfer
kernels are derived from first principles and evaluated
within the framework of a simple model. The model ker-
nels are compared to the data in Sec. IV. Finally, a dis-
cussion of why phase disruption does not preclude
collision-induced coherence transfer in this system is
presented in Sec. V.

H. THEORY

A. Echo formation without collisions

We consider first the excitation of a high-J molecular
transition in the absence of collisions, assuming a z-
polarized excitation laser field of the form

E(x, t)= —,'zEc(t)e'~' "+c.c. , (2)

where the infrared wave vector is q =2m. /A, and co=cq.
In this case, transitions between the ground vibrational
state a and the excited vibrational state b occur between
all pairs of states with identical magnetic quantum num-
ber M (Fig. 2). For R branch lines (J& =J, +1) there will

be 2J, + 1 independent transitions ( —J, ~ M ~ J, ), three
of which (M, M'=M+1) are shown in the figure. Now
we apply a sma]1 z-polarized dc electric field E, to the
sample molecules, which are assumed to be symmetric
top molecules with a permanent dipole moment. Then,
the infrared transition frequency cob, is shifted by'

Es Pb Pa

Jq(Jq+1) J,(J, +1) (3)

where K is the projection of the molecular angular
momentum on the molecular symmetry axis. Note that
we use states of definite K which diagonalize the Stark-
field interaction rather than states of definite parity. The
shift given by Eq. (3) is just the difference between the ex-
cited b and ground-state a first-order Stark shifts. Each
transition resonance frequency is shifted by an amount
proportional to M so that Eq. (3) defines the Stark shift
per unit M, co, =2m.v, . For vibrational transitions, the
permanent dipole moments p,, and pb differ by only
about 1% (Ref. 12) and the primary contribution to Eq.
(3) is due to the difference between the rotational quan-
tum numbers Jb and J, .

In order to generate a two-pulse echo in a gaseous
medium, two short excitation pulses, separated by a time
delay T, are used to excite the sample. An echo pulse is
then emitted at time 2T after the first pulse. ' As is well
known, ' in a vapor-phase echo experiment the first pulse
produces an array of radiating dipoles which are initially
in phase, exhibiting an oscillating macroscopic dipole
moment. This dipole moment quickly undergoes
Doppler dephasing due to the inhomogeneous transla-
tional motion. A second pulse conjugates the polariza-
tion, thereby reversing the dephasing process, leading to
the buildup of a macroscopic polarization in the medium
at time 2T, which generates the echo signal.

In the present experiments, the macroscopic dipole
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M+1 kv

2T relative to the first input pulse in the echo experiment
as described above. For z-polarized laser excitation, the
macroscopic molecular polarization P is given by

P=zRe2+ f du p,b(M)p, b(M, v, t), (4)

M-1 kv

M-2

FIG. 3. Overlapping doppler profiles for Stark split transi-
tions.

B. Coherence-transfer collisions

As suggested in the above discussion, in the presence of
a Stark field, the M dependence of the transition frequen-
cy for a high-J system leads to an effective frequency in-
homogeneity in addition to the usual Doppler inhomo-
geneity. By analogy to the echo techniques which have
been developed to study vapor-phase velocity-changing
collisions, a variety of new techniques can be developed
to study molecular coherence-transfer velocity-changing
kernels, using for data analysis approximations similar to
those applied previously for elastic velocity-changing col-
lisions. In this section, we exploit this analogy to develop
techniques to study infrared coherence-transfer velocity-
changing kernels, and present a theory of echo formation
in the presence of coherence transfer.

The echo intensity is proportional to the square of the
macroscopic polarization when the echo occurs at time

moments for each of the independent transitions shown
in Fig. 2 undergo the same dephasing-rephasing process
described above, leading to echo formation at a time 2T
after the first pulse. It is interesting to note, however,
that even if the all of the molecules were at rest (no
Doppler dephasing), an echo signal would still arise when
a small Stark field is applied. This is due to the M depen-
dence of the frequency shift, Eq. (3), which results in an
effective frequency inhomogeneity. The dipoles for tran-
sitions of different M radiate different frequencies which
dephase and rephase exactly as in the Doppler-broadened
case.

An important feature of the experiments described in
this paper is that they employ excitation pulse band-
widths and transition Stark frequency shifts which are
small compared to the Doppler width. This has the
consequence, as shown in Fig. 3, that the echo field emit-
ted by the radiating dipoles for each M transition has a
center frequency equal to that of the excitation laser field
cu. Hence, no beating phenomena are expected in the ab-
sence of collisions' and the peak echo intensity at time
2T will be independent of Stark field in this case. This is
in contrast to some sublevel and quantum beat experi-
ments. '

a a—+v pb, (M&v)= —t (cvba+cv, M)pba(M&u)
dt c)x

—I M(u)pb, (M, u)

+ g JdvWM M(v+ —u')
M'

Xpb, (M', v') . (5)

In writing Eq. (5), we assume that the perturber pressure
is low enough that collisional evolution during the laser
pulses is negligible compared to that occurring in the
time delay T in between the pulses. The right-hand side
of Eq. (5) contains the infrared or optical transition fre-
quency cub, which is shifted for each M (Fig. 2) due to the
applied Stark field by cu, M, according to Eq. (3). The rate
I M(v) is the total coherence loss rate due to inelastic col-
lisions (J changing, etc.), elastic coherence-transfer be-
tween transitions, M ~M'WM, and elastic velocity
changes M~M and u~u'. The spontaneous rate also
can be included, but is negligible in the present experi-
ments. The kernels WM M (u~v') describe the rate per
unit velocity for velocity change v'~v with coherence
transfer between transitions labeled by M' and M (Fig. 2).
Generally, as shown in the Appendix, the kernels are four
index quantities describing coherence transfer between
pairs of transitions (a', b')~(a, b), as depicted in Fig. 1.
However, since we choose z-polarized laser excitation,
and impose approximate spherical symmetry on the ker-
nels, levels a and b have the same magnetic quantum
number M, and levels a' and b' must have the same mag-
netic quantum number M' (i.e., the ground- and excited-
state amplitudes must reorient by the same amount
AM =M —M' in a spherically symmetric approxima-
tion). The rather cumbersome notation for the four index
kernels is therefore abbreviated using

WaM aM'(u v )= WM M(v v ) (6)

where )Lc,b(M) is the infrared or optical transition dipole
moment between states a and b for magnetic quantum
number M. pb, (M, v ) is the corresponding density matrix
element for atoms with velocity component u along the
laser field propagation direction x. In the absence of co~-

lisions, the polarization dephasing and rephasing process-
es described above lead to an echo at a time 2T relative to
the first input pulse.

The collisional evolution of the echo signal versus time
delay T can be derived from the equation of motion for

pb, (M, u, t) with the laser field olf, assuming that the input
pulses are of short duration compared to the time in be-
tween pulses. Assuming spherically averaged kernels (see
the Appendix), ' and using the kernel abbreviations given
in Eq. (6) below, the coherence evolution due to collisions
is given by
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The total loss rate I bt(u) has been similarly abbreviated.
It is convenient to eliminate the collision-free evolution

from Eq. (5) by defining

(7)

In the limit of velocity selective excitation, of interest in
the present experiments, the functions dbt (v, t) are peaked
for v such that cu —

cob,
—qv —co,M=O. Hence the center

frequency of pb, (M, u, t) is equal to that of the laser cu and
is independent of M, as discussed above. Hence no beat-
ing phenomena occur in the absence of collisions. [By
contrast, for broadband excitation of the entire Doppler
proNe, the dM functions peak at v=O and each Stark
shifted component, pb, (M, u, t) radiates at a different fre-

quency, leading to beats. ] By substituting Eq. (7) for pb,
into the evolution equation (5), the dbt functions are
found to obey'

+ g f dv'Wbt bt(u~u')
M'

r [q(u —U')+re, (M —M')]t
Xe M'u (8)

The one-dimensional kernels Wbt bt (u~u') take the
form of Eq. (29) as obtained from isotropically averaged
three-dimensional kernels, Eq. (27), and so depend only
on ~Au =~u —v'~. Equation (8) shows that the arrival
term for the coherence oscillates in time due to the phase
[q (u —u')+tv, (M —M')]t. Physically, the oscillation
arises because at certain times, adjacent transitions ini-
tially excited at t=O have the same phase, and collisional
transfer of coherence at such times adds constructively.

An analytic solution to Eq. (8) can be obtained with the
following fairly general simplifying assumptions (i) an
excitation bandwidth much larger than the Stark shifts
accompanying collision induced coherence transfer
(M —M')tu, and associated Doppler shifts q(v —v'), as
well as all decay rates; (ii) a velocity selective excitation
with v' small compared to the perturber speed so that the
kernel is symmetric in Av for the small-angle collisions
which the coherence survives without destruction due to
inelastic processes [see discussion following Eq. (26) in
the Appendix]; (iii) a high J limit so that both dbt and
8'M M are slowly varying functions of M' for the transi-
tions which contribute most to the echo signal. Further,
we assume that coherence transfer occurs between transi-
tions differing in magnetic quantum only by AM ((J. In
this case, the kernels can be averaged over initial M'
values holding b M =M —M' constant, yielding one-
dimensional kernels according to Eqs. (29) and (62) which

are functions of ) bM~ and ~b v~ only. Further, in this ap-
proximation, dbt —-dbt and I bt(v)=I'. With these as-
sumptions, the slowly varying echo polarization at time
2T is readily obtained from Eq. (8) as

d~(2T)= d~(0)e

Xexp —g f dt f d(b, v)W~bt(hv)

—
& (qhu +~,AM)t

Xe

+C.C. (9)

The complex-conjugate term in the exponent of Eq. (9)
arises from the polarization conjugation at time T due to
the second input pulse in the echo experiment. The first
term in the exponent arises from the collisional evolution
between T and 2T with the substitution t'=t —T in the
frequency-dependent phase. All coherences with
different orientations M have the same decay function
within the framework of the above approximations. The
echo signal intensity, which is proportional to the square
of the macroscopic polarization, is then obtained in the
form

I,(2T) = I, (0)e

Xexp —2g f 'dr f'" d(hu)Wbt)t(b, v)

—i(qhU+co bM)t
Xe

+c.c. (10)

As a function of the delay time T a collision-induced os.
cillatory echo decay curve lnI, (2T)/I, (0) arises, contain-
ing a frequency component co, bM for each coherence-
transfer kernel 8'~M according to this result. If co, is
chosen to be larger than the average collision-induced
Doppler shift qhv, Fourier transformation of the slope of
lnI, (tu„T)versus T at fixed cu, can be used to obtain all
of the kernels, including EM=0 as a series of peaks with
separation co, . The shape of each peak shifted from
AM=0 by bMtu, is the kernel Wbbt(b, u).

In this paper, we consider an alternative experiment,
namely, we measure the curves obtained by varying co, at
fixed time delay T. ' It is particularly convenient to
measure the ratio of the echo intensity with the Stark
field off (cu, =O) and on (co, &0), so that all voltage-
independent collisions are suppressed, and pure
coherence-transfer collisions with AMMO are isolated for
study. Using the symmetry of the kernels in AM and hv,
one obtains from Eq. (10) for fixed T

I, (tu, =0; T) T
ln

' ' =16Re g f d(bu)W&()t(bu) f dt cos(qhvt)[1 cos(bMtu, t)] .—
I~ cu~; T AM)0 0

As a function of cu„Eq.(11) shows that an oscillatory
curve is again obtained containing a frequency com-
ponent for each coherence-transfer kernel. The kernels

I

and hence the curves are linearly proportional to per-
turber gas pressure and are independent of the sample's
absorption coefficient, the detector efficiency,
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valid for positive values of the 5-function arguments.
Then, retaining only the dominant kernel for one value of
b,M, Eq. (11) takes the form

I, (tu, =0)
ln

I, (cu, )

8~
Re W~M(0) —

W~M bv =
q

(13)

For large tu, ~ oo (i.e. , &&qhv, „),the second term on
the right-hand side of Eq. (13) is W~M(hu~oo)~0.
Hence

I, (tu, =0)
Re Wt, M (0)= ln

Stt I, Ev, ~oo

Using this in Eq. (13), one obtains

I, (tv, =qbu/bM)
Re WaM(kv) ln

8w I Eu ~ CO
(14)

where bM &0 and T »1/(qhu). With q =2m. /k, and
Ev, =2mv„Eq. (14) reproduces Eq. (1) for EM= 1.

Equation (14) shows that a simple plot of echo intensity
(ln scale) versus Stark voltage at fixed large time delay T
yields the kernel directly relative to the baseline,
lnI, (tu, ~ oo ). The limit T~ oc is readily ascertained by
measuring curves for different T and noting when the
curve no longer changes shape as T is increased. The
abscissa unit is scaled to cm/s according to Av =AMv, A,

and the ordinate is scaled by 1/(4A, ) to units of
[(rad/s)/Torr]/(cm/s) after dividing the measured loga-
rithms by the perturber pressure in Torr. Twice the area
under the scaled data curve (integral of the velocity
change distribution) gives the coherence-transfer rate for
the dominant AM.

A particularly important feature of Eq. (14) is that it
yields kernels directly from data in absolute units, assum-
ing only that the Stark tuning frequency co„transition
wavelength k, and perturber pressure are accurately
known. Hence the value of Wt, M (Au=0) is measured
along with the kernel shape, width, and total rate for
coherence transfer between transitions differing in mag-
netic quantum number by hM.

amplification, spontaneous decay, and transit time decay
which normally affect echo versus time delay signals.

When one kernel for some given b,MAO is dominant,
Eq. (11) can be dramatically simplified in the large time
delay limit. For ' CH3F collisions with molecular per-
turbers having permanent multipole moments, the per-
manent dipole interaction of the active molecule implies
the selection rule AM =0,+1 for ' CH3F infrared coher-
ence transfer (see the Appendix). Hence, only one term,
with ~b,M~ =1 in Eq. (11) is nonzero. In this case, the
dominant kernel (with

~
b,M~ = 1) can be obtained directly

from the data. Mathematically, the time integral in Eq.
(11) yields 5 functions in the limit T~ oo

[T»1/(qbu)],

I dt cos(qbut)[l —cos(bMEu, t)]
0

=—[5(qhu) —5(qbu+bMtv, )], (12)

In the following section, coherence transfer is studied
using Eq. (1) for collisions between ' CH3F and 'zCH3F,

CO2, or Ar perturbers. The results are compared to the
model theoretical predictions given in the Appendix and
summarized in Sec. IV.

III. EXPERIMENT
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FIG. 4. Experimental arrangement.

The experimental arrangement employed throughout
this work is shown in Fig. 4. ' Acousto-optic (AO) in-

tensity modulation of continuous wave (cw) CO2 laser ra-
diation is used to generate the input pulses for the echo
experiments. The laser frequency is locked to the side of
its own gain profile so that both frequency and intensity
are very stable. During the input pulses, a second AO
modulator acts as a blinder and protects the detector.
This AO is turned on just after the two input pulses to let
the echo signal reach the detector. Reproducible input
pulse generation with a repetition rate of 20 kHz is
achieved with this technique, A novel digitally con-
trolled TTL oscillator is employed to replace the com-
mercial oscillator which drives the AO modulators. '

There is no rf leakage between input pulses, since the os-
cillator is disabled during that period, so that the on/off
rejection ratio of the AO is scattered light limited at
10:1, yielding echoes with very high signal-to-
background ratio (Fig. 5).

In the experiments, a dc Stark field is applied over the
length of a 1.4-m absorption cell by means of two parallel
aluminum plates 5.1 cm wide and 2.54+0.003-cm spac-
ing. These give a uniform field over the 1-cm laser spot
size. A wire grid infrared linear polarizer is placed just
before the input to the cell to make the laser polarization
parallel to the Stark field. Any small Stark-field inhomo-
geneity does not affect the echo signal because the re-
phasing process remo. e" all inh=mogeneous dephasing.
The effects of the Stark-field inhomogeneity on collision-
induced signals were investigated and found to be unim-
portant. '

The molecule ' CH3F is chosen for the experiments be-
cause of its strong R (u3, J=4, E =3) coincidence with
the 9P(32) COz laser line at 1035.47 cm '. ' The large
K/J ratio and strong permanent dipole tnoment give this
molecule the advantage of being easily tipped by long-
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C

C)

FIG. 5. Echo signal.

range anisotropic dipole-multipole collision potentials.
According to Eq. (3), the transition Stark tuning rate for
z-polarized laser excitation is (co, /2n V) = 17.5 kHz/V for
unit M using the Stark plates described above.

The experiments are performed quite simply by record-
ing the echo intensity versus Stark field at fixed time de-
lay T between the input pulses. The peak echo intensity
is monitored using a boxcar (10-ns gate), the output of
which is sent to a microcomputer. The microcomputer is
used to scan a Kepco power supply from 0-100 V with a
0-V output between every two voltage points. In this
way, the ratio of the echo intensity with the Stark field on
and off can be directly measured in the experiments, elim-
inating the need to determine signal attenuation and gain
changes.

' CH3F and perturber pressures are measured using an
MKS capacitance manometer (Model 390, I-Torr range).
The ' CH3F gas sample is supplied by MDISOTOPES
and is 90%%uo enriched.

This system has been applied to study ' CH3F
coherence-transfer collisions and to determine the distri-
bution of accompanying velocity changes (i.e., the kernel)
for the perturbers ' CH3F, CO2, and Ar. In this way,
dipole-dipole, dipole-quadrupole, and van der Waals in-
teractions are studied.

50 100
Stark voltage(v)

FIG. 6. Echo intensity vs Stark field for methyl fluoride per-
turbers at 2T=2 ps. ' CH3F pressure fixed at 3.9 mTorr.
Curves a, b, and c represent the total pressure of
' CH3F+' CH3F: 3.9, 7.9, and 11.6 mTorr, respectively.

studied. The oscillatory curves obtained in Fig. 6 are of
the form expected if

~
b,M~ = 1 coherence-transfer col-

lisions are dominant (i.e., only one Fourier component is
present). Note that 3M=0 and inelastic collisions are
Stark-field independent and do not contribute to the sig-
nal when the ratio I' /I'" is taken.

Since the coherence-transfer collisions with ~b,M~=1
are dominant, Eq. (1) shows that the distribution of veloc-
ity changes accompanying the coherence transfer can be
obtained directly from the shape of the echo intensity
versus Stark voltage curve at fixed large time delay T
where the shape is independent of T. Figure 7 shows how
the shape of this curve evolves from oscillatory (a,b,c) to
the kernel shape (d or e) which is T independent. Note

A. Coherence transfer by dipole-dipole collisions

Dipole-dipole collisions are studied using methyl
fluoride as a perturber. Figure 6 shows the signals ob-
tained for ' CH3F self-collisions as well as for ' CH3F-
' CH3F collisions. For the latter case, ' CH3F does not
interact with the laser pulses and introduction of ' CH3F
causes the echo intensity to drop both with the Stark field
on (I'") and off (I' ), but ln(I' /I'") increases linearly
with perturber pressure. ' This is exactly as predicted
according to Eq. (11). Identical curves are obtained for
pure ' CH3F at the same total pressure as expected, since
the permanent dipole moments are almost identical for
' CH3F and ' CH3F. Note that the dependence of the
echo intensity on the laser absorption coeScient cancels
out in the ratio I' /I'" so that only collisional erat'ects are

O
t

O

c= I

I

I

I

L

ys (V)
Av

j00
1750 cm/s

FIG. 7. Variation of echo intensity with time delay. The
shape of the curve approaches that of the coherence-transfer
kernel at large T. Curves a, b, c, d, and e; 2T=1, 2, 3, 4, and 5

ps, respectively. Full vertical scale: ln(I' /I'") =242 Torr
8'~~, (EU ) = 10.0 [(kHz/Torr)/(cm/s)].
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that if velocity changes did not occur, the oscillatory
curve amplitudes would increase linearly with T. To ob-
tain the kernel, the horizontal scale is transformed to
cm/s using Eq. (1), b, U =A,v„where the transition Stark
tuning rate is v, =17.5 kHz/V. The vertical scale is
transformed from Torr ' to [(rad/s)/Torr]/(cin/s) by the
factor (4A, ) in Eq. (1). (Dividing by an additional factor
of 2m. converts the rad/s unit to Hz units. ) Note that the
baseline for the kernel is approximately the horizontal
line through the asymptote of curves d or e. The results
of the measurements are discussed in Sec. IV, where the
experimental and theoretical kernels and rates are com-
pared.

0.5

B. Coherence transfer
by dipole-quadrupole collisions Stark Voltage (V) 100

Introducing CO2 as a perturber with no permanent di-

pole moment and a large quadrupole moment, we investi-
gate dipole-quadrupole collisions. Since the active mole-
cule ' CH3F is expected to exhibit dipole selection rules,
Eq. (1) can be used to obtain the kernel for coherence
transfer in this case also. Figure 8 shows the result of
adding CO2 gas to ' CH3F. The ' CH3F pressure is fixed
at 1.4 mTorr, and CO2 is added up to 30 mTorr. The
echo intensities of both I' and I'" (Stark field off or on)
are degraded by the J-changing destruction rate of about
7 MHz/Torr. ' However, ln(I' /I'") increases linearly
with CO2 pressure. The coherence transfer due to CO2
collisions can be singled out by subtracting the data curve

0.6

FIG. 9. Echo intensity vs Stark voltage for argon perturbers
at 2T=1.5 ps. Three curves are plotted: pure "CH3F at 2

mTorr and "CH3F+Ar at total pressures of 23.5 and 13.2
mTorr. All three curves coincide within the signal-to-noise ra-
tio showing that argon is ineffective at inducing coherence
transfer in this case.

with pure ' CH3F from those with CO& as shown in the
lower curves of Fig. 8. At an echo formation time of
2T= 1 ps, the oscillation caused by the coherence
transfer still remains in the CO2 collision curves, analo-
gous to Fig. 7(b). As 2T is increased to 1.5 and 2 ps, the
oscillation disappears in the data curves, and the long-
time curves have identical shape and height. Hence, the
lower Fig. 8 curves (d —a), which subtract out the effect of
' CH3 self-collisions, give the kernel shape plotted upside
down. The kernel full vertical scale is 0.28/[(30 —1.4)
mTorr] =9.66 Torr ' which is equivalent to 0.40
(kHz/Torr)/(cm/s) by scaling with 1/(8n. i, ). The hor-
izontal full scale is 1750 cm/s, since the transition Stark
frequency shift v, is unchanged from the dipole-dipole
experiment. The kernel shape and collision rates are dis-
cussed in Sec. IV.

0
0.3

0

0

Stark Voltage (V) 100

FIG. 8. Echo intensity vs Stark voltage for CO2 perturbers at
2T=1.5 ps. Curve a: Pure ' CH3F at 1.4 mTorr. Curves b, c,
and d: total "CH,F+CO& pressure of 10, 20, and 30 mTorr, re-
spectively. Lower curves show the effect of COz by subtracting
the pure "CH3F data. These curves show the shape of the
coherence-transfer kernel for CO2 perturbers plotted upside
down.

C. Coherence transfer by van der Waals collisions

For rare-gas perturbers, there are no permanent mo-
ments and the lowest-order interaction with the active
methyl fluoride molecule is the dipole-induced-dipole or
van der Waals force. Figure 9 shows the result of adding
up to 23.5 mTorr of argon gas to ' CH3F at a fixed par-
tial pressure of 2 mTorr. There is no measurable change
in the ln(I' /I'") signal even though the echo intensities
degrade at the argon line-broadening rate of 3
MHz/Torr, ' more than a factor of 3 in the experiment.
Hence, the van der Waals force is not effective in causing
coherence transfer in this system, compared to the inelas-
tic rates which destroy the coherence. This is discussed
further in Sec. IV.

IV. COHERENCE- TRANSFER COLLISION KERNELS

In this section, we compare the coherence-transfer ker-
nels obtained from the experiments with those derived us-

ing a model which is described in detail in the Appendix
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Perturber

CH3F
CO2

'Reference 12.
Reference 20.

'Reference 18.

TABLE I. Molecular collision parameters.

Multipole moment

@0=1.86X10 ' esucm'
Q„=8.6X10 "esucm'-'

Line-broadening rate

15.5 MHz/Torr
7 MHz/Torr'

and summarized brieAy here. The model assumes that
for the small-angle collisions of interest here, coherence-
transfer interactions occur only for long-range active
molecule-perturber encounters outside of some minimum
radius b . Inside this radius, it is assumed that inelastic
processes (for example, J-changing interactions) dominate
and the coherence is destroyed rather than transferred.
The destruction radius b is determined from the known
coherence destruction rate (i.e., the line-broadening rate).
For simplicity, the perturber final states are limited to
those corresponding to elastic scattering in the calcula-
tion of the coherence-transfer rates. It is assumed that
for an interaction where the perturber inelastically
scatters, the active molecule also would inelastically
scatter, destroying the coherence. This assumption,
which leads to good agreement with experiment, limits
the maximum coherence velocity changes for which the
theory is valid to those which are small enough that ener-

gy conservation prohibits inelastic perturber scattering:
the maximum possible translational energy transfer must
be lower than the threshold for perturber inelastic col-
lisions. Note that the active molecule must scatter elasti-
cally for transfer of coherence between magnetic sub-
states as studied here. We examine the threshold condi-
tion for inelastic scattering in each case below. Scatter-
ing amplitudes are calculated by taking the z axis in the
collision frame to be along the initial relative velocity and
using a simple first Born approximation with the
minimum impact parameter limited to b . This ensures
convergence of the integrals. The theory does not apply
to elastic 6M=0 scattering because shadow scattering
(which arises from inelastic processes) is not included in
the theory for the region of impact-parameter cutoff
below b . Finally, it is assumed that the dominant po-
tential is the permanent multipole potential. The effect of
other potentials, such as scalar van der Waals, on the tra-
jectories is not included. It is assumed that they are of
shorter range, and hence do not affect the calculated ve-
locity changes. With these assumptions, the one-
dimensional initial M averaged kernels are determined.
The spherical averaging and isotropic approximations

used to simplify the results are described in the Appen-
dix. The one-dimensional kernels take the following sim-

ple forms: For dipole-dipole scattering, Eq. (73) is

2
J|(y)~' 'i= (~ )=)'i~Md= f~U

(15)

and for dipole-quadrupole scattering, Eq. (81) is
2

4 J,(y)
~i aM(= 1 ( ~v ) 7

i AM]= 1 f (16)

The scale of velocity change is

2A

M, b
(17)

which corresponds to diffractive scattering at the inelas-
tic radius b . For dipole-dipole scattering, the line-
broadening rate given by Eq. (68) determines b, while

Eq. (79) determines b for dipole-quadrupole scattering.
The kernels given by Eqs. (15) and (16) are normalized so
that the integral over one-dimensional velocity changes
AU from —00 to ~ gives the rate of transfer of coherence
between transitions differing in magnetic quantum num-
ber by AM=1 or —l,y~&~i=, . For dipole-dipole or
dipole-quadrupole collisions the respective rates are given
by Eqs. (66) and (77).

Molecular constants for ' ' CH3F and CO2 and
' CH3F line-broadening rates, are summaried in Table I.
Using these parameters, coherence transfer rates, kernel
1/e widths, and maximum values W(b, v =0) are calcu-
lated and summarized in Table II, where they are com-
pared to experimental results. The error estimate for the
measured kernel 1/e widths assumes that the velocity
resolution is determined by qhvREsT=1 or
bv„,=A, (2mT). Considering the simplicity of the ap-
proximations, the agreement is quite good, particularly
for the kernel maximum values, which are measured
directly in absolute units in the experiments.

Qualitatively, the shapes of the experimental kernels of
Figs. 7 and 8 appear to be in good agreement with the

TABLE II. Measured and calculated collision parameters. (Calculated values in parentheses. )

Perturber

' CH, F
CO2

~Uire
(cm/s)

230+60 (180)
800+200 (570)

/AM
(MHz/Torr)

3.1 (3.6)
0.45 (0.46)

[(kHz/Torr/(cm/s)]

8.9 (10.2)
0.40 (0.36)
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FIG. 10. Calculated dipole-dipole coherence-transfer kernel.
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FIG. 11. Calculated dipole-quadrupole coherence-transfer
kernel.

~pvq+Ep = ~pv „+Ep (18)

model kernels of Figs. 10 and 11. The dipole-quadrupole
kernel seems to flatten near tv=0, while the dipole-
dipole kernel has a nonzero slope, i.e., the dipole-dipole
kernel appears to have a cusp at t v=0 as is normally ex-
pected for one-dimensional collision kernels. ' The zero
slope near Av=O can be traced back to the three-
dirnensional kernels. The dipole-quadrupole model
three-dimensional kernel vanishes at ~Eve =0. One ex-
pects this behavior since collisions which change the
magnetic quantum numbers must be accompanied by a
nonzero velocity change. Hence, all three-dimensional
coherence-transfer kernels (with bMAO) should vanish
at ~b, v~ =0. This leads to a one-dimensional kernel with
no cusp. For dipole-dipole collisions, the R potential
falls off so slowly that the corresponding model three-
dimensional kernel does not vanish at the origin (it is
finite). However, at very long range, retardation effects
modify the R force, leading to a faster roll off. Hence,
one expects that in this case, if the correct dipole-dipole
interaction were used, the corresponding three-
dimensional kernel for EM=1 coherence transfer also
would vanish for sufficiently small ~Ave. Then the one-
dimensional kernel would have a zero slope at the origin.
In the present experiments, the velocity resolution is not
high enough to observe the exact behavior of the one-
dimensional dipole-dipole kernel near the origin, since
the measured velocity changes are already quite small. In
this case, Eq. (15) is an adequate approximation. Hence,
the agreement between the model and data kernels is
reasonable.

The good agreement between the experimental and
theoretical coherence-transfer rates, Table II, suggests
that the assumption that the perturber does not inelasti-
cally scatter is approximately correct in this case. We ex-
amine this assumption by noting that if the active rnole-
cule states do not change J (as required for coherence
transfer between transitions differing only in magnetic
quantum number as studied here), energy conservation
requires that J' 2 J

P (J') = (2J'+ 1) (20)

where the prime denotes the initial state, E is the per-
turber internal energy, and v„ the relative speed.
For small-angle scattering, v„—v' „=(v„+Av„)—v'

„

=2v'„hv„.The minimum ib, v„~ occurs for b,v„parallel
to v'„and according to Eq. (18) is bv„~=~E~ E~~/—
()uU,'). Hence, in the laboratory, the active molecule ve-

locity change hv =@,b,v„/M, must be greater than

1 Ep Ep I—P (19)
M, v„'

for inelastic perturber scattering to occur. For CH3F-
COz scattering, ~E E i

=2ficB—J, where the CO& rota-
tional constant 8=0.3 cm ' and J, =20 at T=293 K.
The relative speed U„'=u„=&2kT/p=5.0X10 cm/s,
and the methyl fluoride mass is M, =35 arnu. In this
case, ihv~ &828 cm/s is required for perturber inelastic
scattering. The coherence-transfer kernel for CH3F-CO&
scattering (Fig. 7) has a 1/e width near 800 cm/s. Hence,
the perturbers will be scattered elastically over most of
the kernel width. For CH3F-CH3F collisions, the small-
est rotational constant B =0.85 cm ' and u„=5.3X10
cm/s. In this case, ) b,vi & 2000 cm/s for perturber inelas-
tic scattering, so that the elastic assumption should be
quite valid.

Finally, it is interesting to discuss the lack of coherence
transfer for argon perturbers, which is expected to in-
teract via a van der Waals potential. For a given state
JEM, the rate for JKM ~J'KM' collisions is proportion-
al in lowest order to the square of the matrix element of
the collision potential. Since we are interested in coher-
ence transfer between state which dier in magnetic
quantum number, only the rank two part of the van der
Waals' potential is relevant. The scalar part cannot
change M. In the framework of the isotropic approxima-
tion, it is easy to show that the rate for a fixed final J'
summed over all possible final M' is proportional to

2
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gP(J')=I . (21)

The P(J') which are independent of the initial M obey
the sum rule

According to Eq. (24) with J =J, the integral factor is of
order unity. Using the dipole matrix elements and the
Wigner-Eckart theorem, we then have

From Eq. (21) the P (J') may be interpreted as the proba-
bility for collisions which take the initial J to one final J
independent of final M'. Hence the probability of col-
lisions which do not change J, as required for coherence
transfer, is just P (J'= J), where

I~@I=
J, (J, +1) —1J„(Jb+ 1)

J, 1 J,
—M 0 M

—M +1 M+1

[3K —J(J+1)]
J(J + 1)(2J—1)(2J+3) (22)

For low M where the off-diagonal matrix elements are
largest, and coherence transfer most likely, the last factor
is less than 1 and

This includes the possibility of M'=M collisions and
so overestimates the coherence-transfer probability
slightly. For J=4, K=3, we find P(J'=J)= —„',=0.03.
Hence, the coherence-transfer rate is at most 3% of the
rate for J changing collisions in this system. Thus the
echo signal decays exponentially due to inelastic col-
lisions when argon is added, but the ratio of the echo sig-
nal with the Stark field on to that which the Stark field
off, which measures coherence transfer, does not change
appreciably.

J,(J, +1)
J (J +1) (25)

VI. CONCLUSIONS

For a high-J transition, the upper and lower states are
shifted similarly and

~
b, iP ~

&& 1, while for low J,
significant phase shifts can occur, which destroy coher-
ence. In our case, J, =4, Jb=5, and ~by~ & —,'. Hence,
the phase shift is not very important.

V. PHASE DISRUPTION

Collision-induced infrared coherence transfer is partic-
ularly effective in infrared transitions when the inelastic
(J changing, etc.) rates do not overwhelm the elastic M
changing processes. In addition, it is necessary that the
elastic phase shifts acquired by individual transitions not
be large. A simple estimate of the collision-induced
phase change b g for impact parameters where coherence
transfers occurs can be made as follows. The phase
change which occurs for a particular AM=0 transition
J„M~Jb, M is approximately

—f [V (M, M) —V, (M, M)]dt (23)

VJ M, M+1 dt =A, (24)

where the off-diagonal matrix element of the potential for
either J state is the order of the transition torque and we
assume J=J, =Jb for large J. Equation (24) can be used
to eliminate the field from Eq. (23). Assuming that all
components of the perturber field are of equa1 magnitude
on the average, the phase can be written in the form

Vb(M, M) V, (M, M)

V, (M, M) V, (M, M, +1)

where V= pE~(t), E~(t—) is the field of the perturber
which interacts with the active molecule, and V(M, M) is
a diagonal matrix element. The integrated torque exerted
on the molecule to reorient the radiator by one unit of an-
gular momentum and transfer coherence is approximate-
ly such that

We have demonstrated that the technique of measuring
the logarithm of two-pulse echo intensity versus Stark
field permits study of the velocity change distributions
(kernels) for coherence-transfer collisions. The method is
based on the concept of compensating the Doppler shifts
accompanying collision-induced velocity changes with
the frequency shifts accompanying coherence M changes
in the applied Stark field. The results of the measure-
ments for the AM= 1 coherence-transfer rate and the ker-
nel peak height at AU=0, which differ by more than an
order of magnitude between dipole-dipole and dipole-
quadrupole potentials, are in good agreement with a sim-
ple theory which cuts off the impact parameter when in-
elastic collisions begin to occur. The calculated kernel
1/e widths are in reasonable agreement with the data
considering the simplicity of the approximations made.
The neglect of scalar van der Waals forces in the dipole-
quadrupole case may not be quite justified.

The good agreement between the measurements and
the simple theory shows that the tunable energy compen-
sation technique yields reliable results. This suggests that
the method, using either Stark or Zeeman fields, may be
used to measure the shape of a variety of coherence-
transfer collision kernels with much more detail than has
been obtained in the present work.
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APPENDIX: COHERENCE-TRANSFER
VELOCITY-CHANGING KERNELS

X — V, M, M+1 dt In this section, we develop a genera1 framework for
calculating the average one-dimensional kernels which
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are measured in the experiments. The kernels are then
evaluated using a simplified model of the scattering am-
plitudes.

A. Kernel structure

The coherence-transfer process of interest is depicted
in Fig. 1. Infrared coherence initially created on the

transition b'-a' of frequency cob, is transferred to the
transition b-a of frequency cob, in a collision with a per-
turber which changes internal state from p'~p.

The three-dimensional kernel, which describes the ar-
rival rate of coherence into the b-a transition accom-
panied by a velocity change of the active molecule v'~ v
is given by

2(E Ep —
)

W,","'(v+—v')=2Np g W„„(E,)fdv„fdv'„W„„,(v' —v'„)6 v —v' — (v„—v'„) 5 u„' u„'—+

Xfbbpp(VV)f pp(VV) (26)

In Eq. (26), f is a scattering amplitude, N the perturber
density, 8' „,are normalized Boltzmann distributions of
the initial perturber internal state of energy E ~ and ve-

locity v' =v' —v'„. v, v' are the final and initial active
molecule velocities and v„,v'„are the final and initial ac-
tive molecule-perturber relative velocities. p is the re-
duced mass and M, is the active molecule mass. The 5
functions conserve total momentum and energy. Note
that for the problem at hand, the active molecule energy
change for either the excited state b'~b or the ground
state a ~a is negligible, since this transfer is between
nearly degenerate (compared to the collision bandwidth)
magnetic substates. For this reason, only the perturber
energy change EP —EP appears in the energy-conserving
5 function. Since the perturber bath is thermalized, an
incoherent average over initial perturber states and a sum
over final perturber states is employed for the kernel
average.

One-dimensional kernels can be directly derived from
Eq. (26) by averaging over a transverse distribution of ac-
tive molecule initial velocities (VI) and integrating over
final transverse velocities (v~). ' The resulting kernels
are rather complicated, containing detailed information
about the correlation between the velocity change along
the laser field propagation direction and the magnetic
state quantum numbers of the active molecule. For exci-
tation with o+ laser radiation propagating along the
quantization axis (z), the cylindrical symmetry of the
one-dimensional kernels ensures that the reorientation
(b,M ) in the excited state Mb —Mb must be the same (for
the cylindrical average) as that in the ground state
(M, —M, ). However, with arbitrary laser polarizations
in applied fields there is not always cylindrical symmetry.

I

d Qq„
W, , (Ib,VI):—f f dv'W, (v')W, , (v~v')

4m

=2N g W,„,(E ) fdv„f dv'„W„(u„')
PP

It is well known that within the framework of the isotro-
pic collision model for the decay rates, one can assume
spherical symmetry. The active molecule sees a more
or less spherical distribution of perturbing molecule rela-
tive velocities, so long as the active molecules are excited
near the center of the velocity distribution along the laser
field propagation direction. Even with this approxima-
tion, the one-dimensional kernels generally will not have
simple magnetic state behavior, because the measurement
of the velocity change along a particular direction des-
troys the spherical symmetry. However, we expect that
the departure from spherical symmetry will not be too
large for the small-angle scattering which is of interest
here. In order not to overload the derivation with details,
we therefore impose spherical symmetry on the three-
dimensional kernels by averaging first with a complete
Maxwellian distribution W, (v ) of active molecule initial
velocities holding the velocity change Av =v —v' con-
stant. Then, the resulting kernels are spherically aver-
aged by integrating over solid angle d Q&„and dividing by
4~. In this way, an approximate isotropic three-
dimensional kernel is obtained which has a simple struc-
ture and a velocity dependence only on Ib,v . Integrated
over IXVI, the kernel yields the usual isotropic model col-
lision rates. The physical content of the three-
dimensional kernels is then to relate the magnitude of the
velocity change

I
b,vI to the coherence transfer between

adjacent transitions differing in magnetic quantum nurn-
ber by AM in both the excited and ground states. One-
dimensional kernels are then obtained by integrating over
transverse components of hv.

With these approximations, the isotropic three-
dimensional kernels obtained from Eq. (26) are given by

5( lavl —" Iv„—v'„I)

a

4~IxVI'

2(E E )—~

v2 —v,
2

Xfb~b'p p'(Vr V'rfa~a' p~p'(Vr V'r ) (27)
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where W„(u„')is a Maxwellian distribution of relative ve-

locity, p is the reduced mass, and M, is the active mole-
cule mass. Integrating Eq. (27) with 4m lb, vl did, vI im-
mediately gives the isotropic collision rates. Letting Av

be the velocity change along the laser field propagation
direction, and p the magnitude of the perpendicular com-
ponent of Av, we have

COLL I S I ON

FRAME

lhvl =+p +(bu) (28)

and the one-dimensional kernels are obtained by integrat-
ing over the transverse velocity changes as

W.'-.", (au) =2~J' " dlxvl lzvl W.'-.", (Iavl), (29)

where pdp= Ibvld lbv and at p=0, Ibvl = lou I.
In the following, we determine first the general struc-

ture of the isotropic kernels, Eq. (27), which turns out to
be quite simple, as one would expect. Then, within the
framework of a model, approximate scattering ampli-
tudes are derived and one-dimensional kernels obtained.

Since we intend to use approximate WKB scattering
amplitudes, we choose a collision frame as shown in Fig.
12. The collision frame is chosen so that the initial and
final relative velocities v„' and v„respectively, lie in the
x'-z' plane. Hence, the polar angle 8 of the z'=v'„axis
with respect to the laboratory z axis, and the azimuthal
rotation g of the v'„about the laboratory z axis, deter-
mine two of the Euler angles of the collision frame. The
rotation y of the x ', y

' axes about the z ' axis, needed to
bring v, into the x '-z ' plane, determines the final Euler
angle. In the collision frame, the angle between the in-
coming and outgoing relative velocity is 8, . The
perturber-active molecule relative position is taken to be
R=bb+z'z' in the collision frame, where b is in the
x '-y ' plane at an angle y, with respect to the x ' axis.

FIG. 12. Collision frame showing Euler angles.

There are a great many ways of representing the
laboratory-frame scattering amplitudes in terms of col-
lision frame matrix elements. As we intend to perform
simple lowest-order calculations for permanent multipole
interactions, we expand the scattering operator f, which
must be a scalar with respect to total angular momentum
(active plus perturber plus relative orbital) in tensor
operator form as

where T operates on the active molecule (a ) only and U
operates on the perturber (p ) and the relative motion
(rel). Choosing a laboratory representation and taking
matrix elements of Eq. (30) with respect to a laboratory
angular momentum basis for the actiue molecule yields
(using the Wigner-Eckart theorem for the active molecule
operator T)

(a If(p, rel) la' &
= g ( —I )

'
(1'q 1

I, J, ( ~
(a II

T 'Ila' & U ' (p, rel), (3l)

where J„m„J„andm, are angular momentum and laboratory-frame magnetic quantum numbers for the active
molecule state a(a').

Although we have chosen a laboratory representation for the T and U operators, the matrix elements for the relative
motion contained in U are most easily evaluated using the corresponding collision frame operators. The laboratory
frame ( q, ) and collision frame (q ', ) U operators are related according to

U'=y U!n,' (X),ql q I q lql
qi

(32)

where A—=y, 0, $ are the Euler angles of the collision frame with respect to the laboratory frame. Combining Eqs.
(30)—(32) yields the matrix off in the form

& ap Ilf ( v, v,
'

) I
a 'p '

&
= g (

—I )
'

ll, ql

J, I, J, (
(A)&apllf ', (v„,v', )Ilap&, {33)

where
I ~

&apllf, '(v„v;)llap&=&alIT 'lla'&&plU, '. (v„v'„)Ip'&.

(34)

Note that the matrix of f ,'in Eq. (33) is reduced (double

bar) with respect to the actiue molecule states only. The
form of Eq. (33) is still quite general.

The integrations over v„,v'„required to evaluate the
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I
v„—v'„

I

= (u„+u„' —2u„u„'cos8, )
' (36)

kernel 27 can be carried out using

d v„=du„u„(sin8,)d8,dy,
d v'„=du„'u„'(sin8)d8dq&,

~here the v, integration is done to a frame rotated so
that z "=v '„.This frame differs from the collision frame
by the azimuthal rotation y about z "=z '=v '„needed to
bring v, into the x '-z ' plane of Fig. 12. With this choice
of angles,

The matrix of f ', (v„,v'„)depends only on the angle 8,
since v„and v'„always lie in the x'-z' plane in the col-
lision frame. Using %:—y, 8,g and 1%:—sin8d8dpdy,
the matrices of the rotation operator obey the ortho-
gonality relationship

Equations (27}, (33) and (37} yield the three-dimensional
kernels in the following form:

W, ," (Ibvl)=2N g W~„(E )f du„'u„' W„(u„')
PP

2(Ep Ep )—
X f du„u,5 u„—u„' +

0 p

5[lhvl (p/M—, )(u„+u„'—2u„u„'cos8,)' ]
X dO, sinO,

0 4m bv

J, J. Jb
X (

—1)J~ —m~+ Jb —
mb

(, q,
—ma q] ma —mb q] mb

7T2 II

2( +, X &bpllf, ', (u, u,
' 8, )lib'&'&apllf, ', (u, u,

' 8, )llap'&.
]

(38)

In the small-angle (8, «1) long-range scattering limit, sin8, =8, and 2(E E)«u„' .—For this case, the kernel
reduces to

W."-."(Iavl) =f "du„'4~u„'W„(u„')W.'-.'(Iavl, u„')=—& W.'-.", (Iavl, u„')&,
0

where

(39)

M,
W, , (lbvl, u,')=X u„'

PVr 2I +1
PP 1

J, I, J,
ma q1 ma'

Jb I, Jb

mb q] mb

x X &bpllf, '(u, u,
' 8, }llbp'&*&opllf, '(u„u,', 8, )llap'& (40)

M, lhvl E E—
I Ur I Vr

2 ]/2

(41)

B. Scattering amplitudes

Generally, the scattering amplitudes can always be
written in the form

and u„=u„' (E E)/(pu„')—in f—', . Note that for

nonzero contributions to the kernel with E —E .%0, the
minimum

I
hvl required by energy and momentum con-

servation is IE~ E~.I/{M, u„'), acco—rding to Eq. (41), in
agreement with Eq. (19).

PV0
v ap (42)

ik-R

&Rlv„ap &
= la &Ip & ,

vo
(43)

where A'k=pv„and R is the active molecule-perturber
relative separation.

where Vo is the quantization volume, V the collision po-
tential, and 4'+ ' the scattering state which reduces to the
incoming active-perturber internal-relative motion state
at large distance prior to the scattering region, where V is
zero. The final state lv„ap & is given by (box normaliza-
tion)
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The scattering state can be represented in the form
(with haik' =pv'„)

i k'.R
«Iq'„'+.', &

=
v ap (44)

P d 3g ei(k' —k) R ap VF a ~p

2~%
(45)

By using the WKB approximation in the collision
fraine with R=b+zz' (Fig. 12), it is straightforward to
substitute Eq. (44) into the Schrodinger equation and to
obtain a formal expression for the position-dependent
operator F(R) and hence for the scattering amplitudes.
Then the tensorial components of the scattering ampli-
tudes with respect to the active molecule internal states
can be determined by comparing with the analog of Eq.

1

(30) in the collision frame. This determines U, and

hence the matrix elements given by Eq. (34). For the pur-
pose of this paper, we consider a simple approximation
instead of calculating the exact structure of the F opera-
tor, since our interest is, from the outset, in lowest-order
results.

The coherence-transfer process which is of interest
here requires that coherence between the two states
(a', b') of Fig. 1 survive to a significant extent the
transfer to some neighboring transition (a, b). For the
case where the states (a', b') have the same magnetic
quantum number M' and (a, b ) the magnetic quantum
number M, this process corresponds to a tipping of the
radiator by b,M =M —M'. One expects that for
sufFiciently close encounters between active and perturber
molecules, J changing collisions will occur with high
probability and the optical coherence of the active rnole-
cule will be destroyed. Since for molecules with per-
manent moments J changes will occur at quite long
range, one expects that coherence transfer in such sys-
tems also must occur predominantly at long range, ac-
companied by very small velocity changes. This will be
true provided that the scalar potential (e.g. , scalar van
der Waals) which preserves rotational states, does not ex-
tend significantly outside the destruction radius. Further,
for vibrational (infrared) transitions in the high-J limit,
one expects similar collision potentials and little dephas-
ing. '

Based on these ideas, we consider the fo11owing ap-
proximation for small velocity changes.

(i) Inside some minimum radius b, the F operator can
be considered to vanish for any input state and further
can be taken as a scalar. The radius b is derived from
the known destruction (broadening) cross section, as-
sumed due to predominantly J-changing collisions.
This is equivalent to introducing complex partial wave
phase shifts for which the imaginary part (destruction) is
large for b (b, and negligible for b )b . Note that our

where F(R) is an operator on the active molecule and
perturber internal states (a',p') which tends to the identi-
ty operator I at large relative distance IRI. Equations
(42)—(44) yield the scattering amplitudes in the form

(ap If(v„,v,') Ia'p' &

V(R) =
117127m l 7m27m

I, l2 I +1~
X

m ) f772
(46)

where

(i) 4'~
1/2

dX T Y1m 8 ~f' pl X (47)

are the active molecule (i =a ) or perturber (i =p ) per-
manent multipole operators, and the relative motion
operator is given by

[2(I, + 12 ) ]!47r R '
YI ( R )

(2l, )!(21')! R 21+]

(48)

where l=l i+i& in Eq. (48). R'Y& is a solid harmonic
which can be written in terms of Cartesian components
ofR

Using Eqs. (30), (45), and (46) we identify T '(a) with

q,
"' (i.e., q, =m, ). Hence,
l l

(49)

Further, for F scalar,

treatment is reasonable only for bMWO collisions since
we neglect elastic shadow scattering which arises from
the absorbing region, b (b, when we set F=O. As our
experiment studies only coherence transfer with b,MAO,
as described above, this approximation is acceptable.
Admittedly, the coherence transfer and J-changing pro-
cesses probably occur at quite similar ranges for per-
manent multipole interactions, so that the abrupt cutofI'

approximation for impact parameters below b is not ex-
pected to be very accurate. Nevertheless, we use it any-
way in order to obtain a simple treatment and demon-
strate that the experiments yield reasonable results.

(ii) We consider velocity changes
I
hv

I
smaller than the

threshold E~ E~—I /(M, U„') for inelastic perturber
scattering [see Eq. (41)]. In this case, the perturber rota-
tional quantum numbers J and Kp do not change. This
is justified above, using the magnitude of the active mole-
cule velocity changes measured in the experiments. Note
that for the coherence-transfer process measured in the
present experiments, only the magnetic states of the ac-
tive molecule change and E, —E,.=0, as discussed above.

(iii) We assume that the dominant M-changing collision
potential V is the lowest-order permanent multipole in-
teraction.

(iv) We consider symmetric top and linear molecules
only.

The permanent multipole interaction V is written in
the form
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I ~U' (pR)=—
l ) 12 L )+12

F(R) .
I ~0 l +l"' X ' '(R}

l2 2 q~l, m , m

The reduced scattering amplitudes, Eq. (34), are then given by

l1 l2 I) +l2
l +I

(ap /f f~', (v„,v'„f/a'p') = — (a //qI' [fa') g (p )QI~', /p'). . . S ' '(8, ),
p

l2, m 2, m

(51)

where the matrix element is reduced only with respect to
the actiue molecule internal states and J (x)=( —1) J (x)=J (

—x) . (55}
(8 ) f d3R F(R) r(k' —k~ RX 1 2 (R) (52)

X f dz X ', '(b, z, X, =0),

(53)

where J ~ is a Bessel function of order m',

J (k'b8, ) =( i ) f— dX, e
0

(54)

All magnetic quantum numbers (q I, m z, m') are referred
to the collision frame.

Using R=bb+zz' for the relative position in the col-
lision frame, Fig. 12 shows that (k' —k) R
= —k'b8, cosy„for 6, «1." The F operator is taken
as F(R)=0 for b & b and 1 otherwise. With
dR=b db dX, dz, Eq. (52) takes the form

S ' '(8, )=( —1) f b db J (k'b8, }

The three-dimensional kernels, Eq. (40), are now evalu-
ated using the symmetric top angular momentum states:

~a)—:~J,K, m, ),
~a') =~J,K, m, .),
Ip&—= IJ,K, m, &,

(p') = J,K, m, .),

(56)

where J is the rotational quantum number and K the pro-
jection on the molecular symmetry axis. Note that we as-
sume that the perturber scatters without changing inter-
nal energy (J =J, K =K ) for the small velocity
changes of interest here, as discussed above. Since the
perturber states are isotropically distributed and appear
in the kernel as ~p ) (p ~

and ~p') (p'~, the sums over mag-
netic states in the collision kernel are straightforwardly
carried out using the Wigner-Eckart theorem and 3j sym-
bol sum rules to obtain

W ' " ". ' (ibvi, v„')

l, J,li JbJb J,
g (

—1) " ' ' 'Q(2Js+1}(2J,+1)
1 q

mb q& mb m, q& m,

Jb l ) Jb J, l, J,
x( —1) ' " ' 'Q(2Js+1)(2J, +1) K 0 K K 0 K g WI I (~hv, v„'), (57)

where

(M, /A' ) iqi, o i i%,o i [S ' '(M, /Ave lpu„')/
W«( hv, u„')=Xg(lq)

2v„'~gv~ 21, +1 21~+1, 2(1, +12)+1 (5g)

The small vibrational change in the permanent moments
between the a and b states has been neglected in Eq. (58).
The active and perturber permanent multipole moments
(referred to the molecule symmetry axis) are qI'o and qI'~o,

l 2
'

l
1
+12

respectively. S ~ (8, ) is given by Eq. (53) and

J,K 8
p p

z
2

J ~ 1'2 J ~

—K 0 K

J., K

g(12)= g (2J +1)

(59)
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The g-function averages the perturber multipole moment
over J and I(, the projection of J on the perturber
symmetry axis. Z is the perturber partition function. It
is assumed that AJ =0, as discussed above, for long-
range coherence-preserving collisions.

For the Stark tunable energy compensation experi-
ments with z-polarized laser and Stark fields, we have
m, =mb =M' and m, =mb =M. Further, for the
U3 0~ l transition of "CH3F, K, =Lb =E. In the
high-J limit, J ))l„which was assumed in order to ob-

J, +JbJ= =J, =Jb»l, . (60)

For a given M —M'=b, M, only terms in Eq. (57) with

q& =5M contribute to the kernel. In this case, initial M'
averaged kernels are obtained with the approximation

tain the simple relationship between the echo intensity
versus Stark field and the coherence-transfer kernels, we
can take

Jb —M+ J —M Jb I
& Jb+"J+'"2J~+" —M b,M M

L

J, I, J,
—M hM M'

J li

1
&(2J+" MS—M MM'

e(l, —ibMi)

21' + 1

where the step function e(x)=1 for x )0 and is zero otherwise. The initial M' averaged kernels for ibMi) 0 then
take the simplified form [with J given by Eq. (60)]

e(1, [aM[)—
(2J+1)

21, +1
J 1, J

y W( ( (ibvi, U„'),
12

(62)

y'z~= f 4nd, 'Aviibvi ( Wz~([bv/, v„')),
0

(63)

which is symmetric in AM due to the initial M averag-
ing. In this approximation, infrared coherence-transfer
kernels are identical to state population transfer kernels,
for magnetic quantum number changing collisions. This
assumption has been used previously in studies of elastic
velocity changing collisions, where it was assumed that
the ground- and excited-state scattering amplitudes for
infrared transitions were nearly identical, so that the ker-
nel could be taken as real (the phase change is neglect-
ed). ' Note that Eq. (62) is valid only for coherence
transfer (b,MAO), as discussed above, since elastic sha-
dow scattering is neglected.

For later use, the integral of Eq. (62) over ihvi yields
the coherence-transfer rate for AM%0 collisions

where the average over initial relative velocity U,
' accord-

ing to Eq. (39) is denoted by ( ).

C. Permanent multipole coherence-transfer kernels

1. Dipole-dipole scattering

The simplest permanent moment interaction is the
dipole-dipole potential which dominates for symmetric
top active and perturber molecules with large permanent
dipole moments along the symmetry axis. For this case,
I& =12=1 and the kernel in Eq. (58) takes the form

(M /R ) ipo" i ipI("i 2iSz+'(M, ihvi Ipu„')i
II'»(1~vI, U„')=x,g(I)

2U„' b,v 5
(64)

S'+'(0, ) = —2&5f db

J(khan,

)—
m

J, (kb 8, )= —2&S
kb 0,

(65)

where p0' is the active molecule permanent dipole mo-
ment and pI' that of the perturber. The z integrals in the
S functions of Eq. (53) vanish except for q'=+2. With
k =k'=pU„'/A,

It is interesting to note that according to Eq. (53), for
l l

+ l2m'WO, S ' '(0, =0)~0, provided that the integrand
vanishes suSciently fast as b~ao, as it does for the
dipole-quadrupole interaction discussed below. This is
reasonable, since for b,MAO collisions, one expects that if
ib vi =0 (no active molecule velocity change) which im-
plies ihv„i=0, there can be no change in the magnetic
quantum numbers. For the dipole-dipole interaction, we
find that the b integrand vanishes too slowly, leading to



42 COLLISION-INDUCED COHERENCE TRANSFER STUDIED BY. . . 1685

peak at 8, =0. In reality, however, one expects that the
dipole-dipole potential ( ~R ) is altered at long range
by retardation effects and vanishes faster than R, so
that for small O„S(0,)—+0, as it should. For the
present, we will neglect this more exact behavior, since
for the velocity resolution attainable in our experiment,
the one-dimensional kernels which are derived using Eq.
(65) adequately model the data. With this approxima-
tion, the hM = 1 coherence-transfer rate averaged over v„'
is obtained by direct integration of Eq. (63) in the form

where

EJ )r =BJp(J +I)+(A B—)ICp .
P P

(70}

n(5u) Ibvl

J) (2l &v
I /5u )

(2I hvl /5v )

For CH3F perturbers, Tl(1)=0.138. Using the rate given
by Eq. (66), the three-dimensional kernel takes the form

2

b4
d d 0

Pgl —
1 =Np Qp7T 2b

(66)
where

(71)

where u„=+2k2)T/p, , with p, the reduced mass and

8 ~2 I)MO')I'Ipg'I'
b 21 1

9 3J(J+1) gu
(67)

y2)=N (v„)mb =N u„—nb
2

1T
(68)

In Eq. (68), we neglect the dependence of b on the rela-
tive speed, which has little effect on the accuracy. A
more accurate treatment would allow a probability of de-
struction P(b) for each impact parameter in the de-
struction cross section and a corresponding factor in the
impact parameter integration for the scattering ampli-
tudes. However, the three-dimensional kernels would not
be obtainable in closed form. Finally, assuming that the
perturber internal energy does not change for the small
velocity changes of interest here, Eq. (59) yields

K2)1= p

J~(J~ + 1) )

The destruction radius b is determined from the line-
broadening rate yz. Since an abrupt cutoff is used in the
scattering amplitude impact parameter integration, for
consistency, an abrupt cutoff is used to determine the de-
struction radius from the line-broadening rate. Hence,
the destruction cross section is taken as n.b . Then

2

M, b
(72)

~ZM=) («)=r2M )=
5V 2ihu i/5u

'2
J)(y)

(73)

where hv is the component of the velocity change along
the laser field propagation direction. From this, the value
of the kernel for Av =0 is readily obtained, as is the ker-
nel 1/e width. One finds b, u, z, =0.65v.

2. Dipole-quadrupole scattering

For dipole-quadrupole scattering, I, =1, l2=2, and
qIO'=pa", q20'=Q„/2, where

Q„=fdr'p(r')(3z' r' }— (74}

The weak dependence of 5v on the relative speed v„' is
neglected so that the integral of Eq. (71) over lhvl ac-
cording to Eq. (63) yields the rate y&M ) given by Eq.
(66).

The one-dimensional kernel obtained according to Eq.
(29) from the three-dimensional kernel of Eq. (71}is given
by

—EJ k Ik2) T

Z J (J +1) (69) is the perturber permanent quadrupole moment. In this
case, Eq. (58) takes the form

(M /A' ) Ipo" I IQ,'p'I 2IS3+ (M, Ihvl/ v(„('2)I

W„(1~vI,u,') =N, q(2)
2v„' b,v 7

(75}

S 1+2(g 7x16
3

7x16
3

1/2

f db J (kb8, )

J2(kb 8, )

kb 0,
(76)

The z integrals in the S functions of Eq. (53) vanish ex-
cept for q'=+3, where

1/2

tained from Eq. (63) as
1/3

b6).':
where the factor in the angular brackets is 1.02 and

lp(a)I2IQ(p)I2

45 3J(J+1) A)22

(77)

(78)

The v„'averaged rate for hM = 1 coherence transfer is ob- with 2)(2) given by Eq. (59) for 12=2. For CO2, Kp=0
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and ri(2) =0.25. The destruction radius is determined us-

ing Eq. (68), which assumes an abrupt cutoff radius:

2y~=N u ~ ibm~ 7T
(79)

Using the rate given by Eq. (77), the three-dimensional
kernel takes the form

J,(2ib,v i/5U )

(2ibvi/5v)

(80)

where 5u takes the form of Eq. (72) and b is determined
by Eq. (79). The dependence of b in 5u on the relative

4 e) J&(y)
~aM=1(~U ) YAM=I ~3

5U (2(b, U
~
/5U )

(81)

Equation (81) yields the kernel 1/e width b,v, z, = l. 325U.

speed is neglected in Eq. (80) so that the integral of the
kernel with 4tr~IJ, v~ d~hv~ yields the rate given by Eq.
(77).

An interesting feature of the three-dimensional kernel,
Eq. (80), is that it vanishes for ~bv~~O. As discussed
above, this is expected for EM%0 collisions and implies
that the corresponding one-dimensional kernel, as given
by Eq. (29), has no cusp at du =0, where b, u is the com-
ponent of the velocity change along the laser field propa-
gation direction. This one-dimensional kernel is given by
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