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Multiphoton processes in an intense laser field. IV. The static-field limit
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We explore the similarity between dc-field ionization and low-frequency multiphoton ioniza-
tion of atoms. If the frequency w of the light is below the characteristic atomic-orbital frequency
wat, ionization of the atom occurs by tunneling provided that the intensity I is sufficiently high
that the ratio of the tunneling time to the cycle time—this is essentially the “Keldysh parame-
ter” y—is less than unity. However, if I exceeds a critical intensity, I, the electron flows over
the top of the potential barrier rather than tunneling through it. I, depends on the magnetic
quantum number, m, of the initial bound state, and is proportional to, but significantly less
than, the characteristic atomic intensity. We give a simple approximate expression for I in
terms of m, valid in the absence of an exceptional symmetry (such as exists for hydrogen).
We find that I, increases as m does; consequently, electrons with m = 0 are stripped first
as the intensity rises, and the residual ion will be left in a state of alignment, in agreement
with calculations of ionization rates for Xe [K. C. Kulander, Phys. Rev. A 38, 778 (1988)]. We
present results of Floquet calculations of rates for ionization of H(1s) by circularly or linearly
polarized light in the wavelength range 355 to 1064 nm, at intensities somewhat below I.,. At
these wavelengths, the rates approach more or less the same value as I increases, in accord with
the Keldysh tunneling theory. We show that, provided w < wa, the ac shift and the ac width,
respectively, tend to the dc shift and the dc width (cycle averaged over the instantaneous field)
once I is sufficiently large that ¥ < 1. On the other hand, we show that for w > wa: there is
no tunneling regime; rather, in the absence of strong intermediate resonances, the ionization
rate reaches a peak when v &= 1, and decreases toward zero as ¥ does. Presumably the Floquet
picture becomes inadequate when the ionization width I' approaches the photon energy hw, for
then ionization takes place in less than a cycle. We speculate as to how the Floquet picture
breaks down and, finally, we show that the statement I' &~ hw,: yields the correct Z scaling of
I, for ionization in a Coulomb field.

1 AUGUST 1990

I. INTRODUCTION

Atomic ionization by strong low-frequency radiation
may closely resemble static-field ionization. This is ap-
parent from measurements of photoelectron energy spec-
tra, which can be readily interpreted by assuming that
the photoelectrons emerge at a particular phase of the
oscillating field.1'2 A further indication is that the thresh-
old for measurable ionization by low-frequency radia-
tion often occurs at the “critical” field for static-field
ionization.? In this paper we explore the onset of static-
field ionization when an atom is irradiated by a strong
low-frequency field.

The classical potential of an electron moving in both an
atomic field and an applied static electric field F'Z (a caret
denotes a unit vector) has a barrier with a saddle point.?
An initially bound electron can tunnel out through this
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barrier, although if F' is small the tunneling ionization
rate is exponentially small. However, the potential en-
ergy at the saddle point decreases as the strength F of
the applied field increases, and when F' reaches a critical
value F. the saddle-point potential energy becomes equal
to the atomic binding energy of the electron. Above the
critical field the electron simply flows over the top of the
barrier, and ionization occurs rapidly;>% in fact, as we
see later, complete ionization occurs within a time of the
order of the atomic-orbital period of the initially bound
electron.

We are interested in ionization by an oscillating elec-
tric field of frequency w. We treat this field as spatially
homogeneous (the dipole approximation is valid at low
frequencies). Taking the polarization plane to be the z-2
plane, we introduce the complex field amplitude F, de-
fined as
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F = Flz + itan((/2)%], (1a)

where F is real and positive, and where ( is the ellip-
ticity parameter, with ( = 0 (7/2) for linear (circular)
polarization. The instantaneous electric field is

Re(Fe™ ™) = F[cos(wt)z + tan((/2) sin(wt)x], (1b)

and its maximum magnitude is F; in the case of cir-
cular polarization the instantaneous field has magni-
tude F at all times. The root-mean-square strength of
the field is Frms = Fsec((/2)/V/2, and the intensity is
I = (cF?/8m)sec?((/2). The cycle-averaged energy of a
free electron that oscillates in this field but that is on av-
erage at rest (its drift velocity is zero) is the ponderomo-
tive energy P = e2F2  /(2pw?), that is, (2me?I/pcw?),
where e and p are the electron charge and mass.

If F is below F¢., ionization occurs via the electron tun-
neling through the barrier formed by the atomic potential
and by the maximum instantaneous field—provided that
the time taken for the electron to pass through the barrier
(the tunneling time) is short compared to the cycle time,
so that the oscillating field is effectively a static field of
strength F' while tunneling occurs. Note that the tunnel-
ing time is not the ionization time. Indeed, if F is well
below F,. the probability for tunneling during one cycle
is exponentially small, and although the photoelectron
tunnels out at a particular phase of the cycle, ionization
proceeds over many cycles—the ionization time is very
much longer than the tunneling time. As pointed out by
Keldysh,? the ratio of the tunneling time to the cycle time
is essentially the parameter v = \flE(°)|/2P, where E(®)
is the initial unperturbed binding energy of the electron;
therefore, tunneling commences roughly when v drops
below unity (which for rare gases usually occurs long be-
fore the saturation intensity is reached). To understand
this interpretation of v, first observe that the character-
istic width of the barrier is |E(®) /eF| and that the char-
acteristic speed at which the electron tunnels through
the barrier is the atomic-orbital speed, which is approx-
imately |2E(®)/u|'/2; the tunneling time is the barrier
width divided by the tunneling speed, and dividing this
time by the cycle time gives, to within a constant of order
unity, 7. Since ¥ decreases as F' increases, ionization by
fields of relatively high frequency may occur via tunnel-
ing at sufficiently high field strengths. However, if w is
larger than the atomic-orbital frequency wye, there is no
tunneling regime since v does not decrease below unity
until F exceeds F... Rather, we find that if w > w,; the
ionization rate reaches a maximum as I increases, at the
point where ¥ =~ 1, and as I increases further, the rate
falls toward zero, provided that there are no strong in-
termediate resonances; this atomic “stability” has been
predicted previously.® At very low frequencies tunneling
may commence at very low field strengths, but appar-
ently the photoelectron signal is hardly measurable until
the critical field is reached, at least in the case of rare
gases.3 When the threshold for measurable ionization by
a very low-frequency field occurs well below the critical
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field the ionization process is a multiphoton one. For ex-
ample, ionization from high Rydberg states by microwave
fields can occur well below the critical field through res-
onant multiphoton Landau-Zener transitions.® In mul-
tiphoton ionization, photoelectrons do not emerge at a
particular phase of the field.

In Sec. II of this paper we obtain the value of the crit-
ical intensity, I, at which very rapid ionization occurs,
assuming that w is below a critical frequency w... We see
that I is proportional to, but significantly less than, the
characteristic atomic intensity, while w.: is equal to the
characteristic atomic-orbital frequency, w,;. We extend
previous derivations of I.; by taking into account the or-
bital angular momentum of the initially bound electron,
and we express I, as a simple function of the magnetic
quantum number m of the initial bound state. How-
ever, this expression is only valid in the absence of an
exceptional symmetry, and so does not apply to atomic
hydrogen® (or a hydrogenlike ion). Excluding hydrogen,
I.. increases as m increases. In Sec. III we briefly dis-
cuss the Floquet method for calculating the width T in-
duced in a bound level by an oscillating field. The to-
tal ionization rate is ['/h. At intensities above I, ion-
ization occurs in a time of order 2w /wy, and we have
I' ® (hwat/27). When T’ becomes comparable to, or ex-
ceeds, hw, the Floquet method becomes inadequate to
describe the details of the ionization process since ion-
ization takes place in less than a cycle, while T'/h is a
cycle-averaged rate. Nevertheless, h/T still gives an in-
dication of the time required for ionization. We discuss
how the Floquet method breaks down when I' &~ hw. We
also show that the statement I' &~ (hwa./27) gives the
correct Z scaling of I in the case of a hydrogenlike ion
of atomic number Z. In Sec. IV we discuss ionization
of atomic hydrogen. To determine I accurately in the
case of a hydrogen atom (or hydrogenlike ion) we must
take into account the special symmetry expressed by the
separability of the Schrodinger equation for an electron
moving in both a pure Coulomb potential and a static
field. This symmetry results in a considerably higher
value of I, for H(1s), about 8 x 10'*sec?(¢/2) W/cm?,
than would be obtained on the basis of the classical po-
tential. In fact, this I.. exceeds the saturation intensity
for H(1s) for all but very short pulses. The critical inten-
sities for the rare gases in their ground states are quite a
bit lower; for example, I ~ 9 x 10'3sec?({/2) W/cm?
for Xe. We note, incidentally, that calculations of mul-
tiphoton ionization rates for Xe have been carried out
by Kulander,'® and these calculations indicate the onset
of tunneling at intensities below 104 W/cm?. Despite
the fact that hydrogen is somewhat anomalous, it is the
simplest atom for which calculations can be performed,
and in Sec. IV we present results of Floquet calcula-
tions of rates for ionization of H(1s) by linearly or cir-
cularly polarized light with frequencies well below w,;.
We also present estimates of energy shifts. We see that
as I increases, the rates become insensitive to frequency
(if w < wat), and for I large (but below I.) the rates
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approximately obey a law that is similar to the tunnel-
ing law predicted by Keldysh.” More significantly, as I
increases, both the ac rates and ac shifts approach the dc
rates and dc shifts when the latter are evaluated at the
instantaneous ac-field and averaged over one cycle. We
conclude Sec. IV by briefly considering, for the purpose
of contrast, the case w > w,;. We present results that
suggest the ionization signal maximizes when y =~ 1 if
W > Wat.

II. CRITICAL FREQUENCY AND FIELD

Ionization of an atom by an oscillating electric field
Re(Fe~**!) takes only a fraction of a cycle when, simul-
taneously,

I > IC[‘) (23')

w < Wer, (2b)

where I.. and w. are critical values of the intensity
and frequency. It is well known from field ionization
studies?=611 that the critical intensity is reached when
the classical potential barrier peak is lowered to the dc-
Stark-shifted energy of the atom in its initial state. Then
the electron simply flows over the top of the barrier. How-
ever, it must do so in a time ¢, that is short compared
to the cycle time 27 /w. The characteristic distance that
the electron must travel to reach the barrier peak is the
atomic binding radius, a, say. If v, denotes the charac-
teristic atomic orbital speed we have (assuming the elec-
tron is not significantly accelerated by the electric field,
a point we return to below) t., & 27a/va¢, the atomic-
orbital period, and hence we, is equal to way = vat/a, the
atomic-orbital frequency. Actually, t., may be a few or-
bital periods because the barrier peak is a saddle point,
and to flow over the barrier the electron must travel
through a valley. However, we will see below that the
valley is not narrow on the scale of the atomic radius a,
and therefore we take w.. to be the atomic-orbital fre-
quency, ws,¢, simply keeping in mind that the electron
must channel through the valley.

We can easily determine I, assuming that the barrier
peak occurs at a distance where the atomic potential is
the pure Coulomb potential —Ze?/r. Suppose that the
maximum instantaneous field points along the z axis, so
that the effective static field 1s F'z. If the electron ini-
tially has magnetic quantum number m, with the z axis
the quantization axis, and if we write FF = —e/r?, the
classical potential is, in cylindrical coordinates (p, 2),

R2m?  Ze? €2z
Va(p, 2) = 2 e T 3)
where r = /p? + z2. Differentiating with respect to
p and z, and introducing dimensionless variables p =
p/(VZm), 7 = 2/(VZn), 1’ = v/(VZry), and (m')? =
h2m2/(\/ﬁurle2), we find that Vg(p, z) has a station-
ary point when (p')* = (m’)?(+')® and 2/ = (v')%. At a
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stationary point we have

Im'| = V(1 = ()], (4)
and

Valp, z) = =(VZe2/2r7")[1 + 3(')*]. (5)

We set V(p, z) = —E, where here E = EO 4 Ay with
E© the unperturbed energy of the bound electron and
with Ay. the dc Stark shift. Solving for r; in terms of
7', we obtain the critical field strength!!

For = e/r} = A(m)(E?/4Z¢3), (6)

where the “enhancement factor”

atm = +43r(lr')4>2 @

depends on |m| through ', as implied by Eq.(4).
Note that at a stationary point the classical potential
has a minimum with respect to p:

2 2
_La ‘/Cl(p)z) - _ l ) (8&)
QVd 8p2 r
At the critical field r and »’ are related by
2.7
r= ———2Z€ " (8b)

E\/A(m)

Since |m’| is real and positive we require that 0 < " < 1.
However, »’ is not a single-valued function of |m’|; there
are two values of 7’ in the range 0 < ' < 1 which give
the same value of |m/|. In fact, |m’| vanishes at both
" =0 and 7 = 1, and has a maximum value of (2)3'1/4
at ' = 1/+/3. For a fixed value of |m’| < (%)3_1/4, both
values of r’ give stationary points of V¢(p, z), but only
values of »’ in the range ' > 3~1/4 give a saddle point
which is a mazimum along the z axis (and a minimum
with respect to p). We discard the solution in the range
r < 3714 since it gives a well, that is, a minimum in
both the p and z directions. Contour plots of the classical
potential are shown in Fig. 1 for m = 0 and 1. Note that
the saddle-point region is fairly flat.

If m = 0 we have ' = 1 and therefore A(0) = 1,
which yields the same critical field strength that is well
known in field-ionization studies.*=® However, if m # 0
we have 7 < 1; writing v’ = 1 — ¢ we have, if € is
small, A(m) = 1+ 4¢ + 7¢2 > 1. Thus I is magni-
fied by A%2(m) when m # 0. This is a consequence of two
facts:'2 (i) The atomic potential is spherically symmet-
ric, and so the atomic energy is shared between motion
along the z axis and motion in the plane perpendicular
to the z axis, and (i1) when m # 0 the angular momen-
tum barrier pushes the electron off the z axis, so that a
stronger field is required to pull the electron along the z
axis. The maximum allowed value of A(m), reached at
r = 3-1/4 is 4/\/§ We see that the critical intensity is
magnified by about a factor of 5 for sufficiently large m.
It follows that electrons with magnetic quantum number
m = 0 are ejected first as the intensity rises. Therefore,
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in the case of linear polarization, if an outer subshell is
not fully stripped the residual ion will be left in a state
of alignment.!® This is consistent with the detailed nu-
merical calculations of Kulander,'® who found that for
ionization of Xe by linearly polarized 1064-nm light the
rate for removal of a 5p electron is about 20 times larger
for m = 0 than for m = 1 at a fixed high intensity. Note
that the angular momentum quantization axis, which lies
along the direction of polarization, is fixed in space in the
case of linear polarization. In the case of circular polar-
ization, this axis rotates in space, and if hw is larger than
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FIG. 1. Tne classical potential—see Eq. (2) of the text—
for Z =1, ¢/r} = 0.07 a.u., and (a) m =0, and (b) m = 1.
The potential is symmetric with respect to rotations about
the z axis. When m = 0 there is an infinitely deep well at
7 = 0 and a saddle point (indicated by an arrow) on the z
axis at z = r;. When m = 1 there is a shallow well not far
from the origin, and there is a saddle point (again indicated
by an arrow) displaced off the z axis at a distance somewhat.
less than r; from the origin.
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the Stark splittings of the m = 0 and 1 levels, the rota-
tion is too rapid for the atom to adiabatically follow the
axis, so that an electron that is in a state with a definite
value of m at one point of the cycle will be in a superpo-
sition of states with different values of m, in particular
m = 0, at another point of the cycle; the alignment of
the ion will then be reduced.
It is useful to introduce the number

n* =+/Z%?%/2a0|E|, (9)

where ag = h*/pe?. We have

m/n" = [1- ()" ]V[1+3()]. (10)
After a little algebra, we find, for small m/n*,
ml , 19 (Im[\®
A Hlt—+=|—
(m) + 2n* + 64 \ n* (11a)
L= (ml/n) (i)

= $mi/n)

where the Padé extrapolation (11b) is more accurate than
(11a). In Fig. 2 we plot A(m) versus |m|/n*; this is a
universal curve (the same for all Z). Provided that the dc
Stark shift is less than or comparable to £(°), which we
believe to be the case,!3 n* is of the order of the effective
principal quantum number of the unperturbed atomic
level. Hence, on physical grounds (namely, |m| < |,
where [ is the orbital angular momentum quantum num-
ber, which is less than or of the order of n*) we expect
|m|/n* to be less than or of the order of unity; in fact,
the maximum value of |m|/n* is 2/2/3 ~ 0.94, reached
at v’ = 37Y/4 The comparison, in Fig. 2, of the exact
value of A(m) with the Padé approximation (11b) shows
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FIG. 2. Enhancement factor A(m) of the critical field, vs

m/n*, for ionization of an atom in a state with magnetic
quantum number m. (If the dc Stark shift is negligible, n*
is the effective principal quantum number of the state.) The
dashed curve is the Padé approximation, Eq.(11b), of the text.
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that this simple approximation is reliable over most of
the range of interest. For the outer (5p) subshell'® of Xe,
n* ~ 1; putting m = 1 yields A%(m) =~ 5. Note, inciden-
tally, that the critical intensity I.. = (cF2/87)sec?((/2)
for removing an m = 0 electron from Xe, in its ground
state, is about 9 x 10'3sec?(¢/2) W/cm?.

Since n* is comparable to the effective principal quan-
tum number, we have a = (n*)%a¢/Z and vy, = Zvg/n*,
where vy = e2/h. It follows that the critical frequency is

72?2 e

Wer = Wat = Wm

(12a)
From Eq. (8b) we see that the saddle point occurs at
r = 4a, and it follows from Eq. (8a) that the sides of
the valley do not rise steeply as p increases over dis-
tances that are small compared to a. Therefore we do
not expect the electron to have great difficulty chan-
neling through the valley along the z axis. Note that
Fer = A(m)Z3e/16(n*)%a? ~ [A(m)/16])(Ze?/a?), which
is proportional to but substantially less than the charac-
teristic atomic field Ze2/a?, and therefore we were jus-
tified in neglecting the electric field in computing our
order-of-magnitude estimate of ¢... Note further that
the “Keldysh” parameter’ v = /E(®/2P is of order
[16/A(m)](w/wat) at the critical field. It follows that if
w > wyy we have ¥ > 1 for I < I, and therefore there
ts no tunneling regime; this is consistent with wer = way.
It is perhaps worth emphasizing that the conditions for
the onset of rapid ionization are no more than that (i)
the frequency be significantly less than the characteristic
atomic-orbital frequency and that (ii) the field be greater
than a critical field that is proportional to (but signif-
icantly less than) the characteristic atomic field. The
critical intensity is!!

cA%(m)Z%e?

s
I.. = sec (C/Q)—__Qllw(n‘)aag ,

(12b)
and this is proportional to (but significantly less than)
the atomic intensity.

III. FLOQUET PICTURE

A. Floquet ansatz

Let |¥(t)) denote the state vector of an initially bound
atomic electron that interacts with the oscillating elec-
tric field Re(Fe~*?). The time-dependent Schrodinger
equation is

(13)

where H, is the atomic Hamiltonian and where V (¢)
is the electron-field interaction. The essence of the
multiphoton picture is the Floquet ansatz: |[¥(t)) =
| F(t))e *BH" | where | F(t)) is periodic in t, with period
27 /w. Here FE is a quasienergy that can be written as
E = E(® 4+ A—4iT'/2, where A and T are the field-induced

ih%hll(t)) = [Ha + VO]9 (1)),
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shift and width of the initial bound level whose unper-
turbed energy is E(°). The total ionization rate is I'/A.
The minimum number of photons, Np, which the atom
must absorb to ionize is the smallest integer N for which
E©® 4+ A 4+ Nhw is positive.

In the velocity gauge we have

V(t) = —(e/pc)A(?) - p, (14)

where A(t) = (c/w)Im(Fe~%“!), the vector potential, and
where p is the canonical momentum operator. We have
removed the |A(t)|? term from V(t) by a simple gauge
transformation; this term would shift the continuous en-
ergy spectrum upwards by the ponderomotive energy
P = (2me%l/pcw?), so its removal results in a down-
ward contribution of P to the shift of the bound levels.
Thus A = Aac — P, where A, is the ac Stark shift.
For w <« wat, we have A,c = [sec?((/2)/2]Agc, when the
two shifts are evaluated at the same value of F'; the fac-
tor of sec?({/2)/2 arises from the cycle-averaging of the
square modulus of the instantaneous electric field. As I
increases, so does |A| (if w < wa), and Ny may increase.
Both A and the ionization width T' are determined by
solving an eigenvalue problem.!* Expanding |F(t)) in the
harmonic series

IF@) =Y e F), (15)
n
writing
V(t) = Vee ™ 4 V e, (16)

and substituting the Floquet ansatz into Eq. (14) we ob-
tain the following set of coupled time-independent equa-
tions for the harmonic components |F,):
(E+Tlhw—Ha)|fn) = V+|]-'n_1)+V_|.7-'n+1). (17)
These homogeneous equations, together with outgoing
wave boundary conditions, form an eigenvalue problem.
Note that the harmonic component |F,) represents an
electron that has absorbed n real or virtual photons.
However, since the Riemann energy surface has in-
finitely many sheets, with branch points at the multipho-
ton ionization thresholds, the eigenvalue E has infinitely
many branches; associated with any “dominant” eigen-
value, corresponding to the Floquet eigenvector that rep-
resents a physically realizable state, are infinitely many
“shadow” eigenvalues on unphysical sheets of the Rie-
mann energy surface.!® At a fixed value of the intensity
I the shadow eigenvalues usually correspond to Floquet
eigenvectors that are of no physical significance, but as
I increases, |A| increases, and at sufficiently high in-
tensities the dominant eigenvalue passes a multiphoton
ionization threshold; at this point the dominant eigen-
value changes roles with a nearby shadow eigenvalue, that
is, the eigenvector that originally corresponded to the
shadow eigenvalue acquires the physical character of the
eigenvector that originally corresponded to the dominant
eigenvalue, and the latter eigenvector acquires the un-
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physical character originally possessed by the former.!®

Close to the threshold the exact state vector is a super-
position of these two Floquet eigenvectors, but the sepa-
ration of the dominant and nearby shadow eigenvalues at
the threshold is of order I'; and provided that the inten-
sity sweeps past the threshold in a transit time ¢, that is
short compared to h/T, the switchover between shadow
and dominant eigenvalues occurs diabatically, with no no-
ticeable effect on the state of the atom. Now, an assump-
tion underlying the Floquet ansatz is that the frequency
bandwidth be very small compared to w. It follows that
the intensity should vary slowly over a cycle, and hence
that the transit time ¢, should be much larger than the
cycle time. However, under this restriction, if " is of the
order of hw we have ti; > 27/w =~ h/T and the atom
ionizes during the transit time, in which case the passage
past a threshold is not diabatic. In fact, if I' > hw the
separation hw of consecutive thresholds is much smaller
than the separation of shadow and dominant eigenvalues,
so it is not possible to distinguish between shadow and
dominant eigenvalues. In this circumstance the atomic
state vector is a superposition of many Floquet eigenvec-
tors, with time-dependent coefficients that are not pe-
riodic; a single Floquet eigenvector cannot represent the
dynamical ionization process. This indicates, not surpris-
ingly, that the Floquet method is inadequate for treating

(x

subject to the boundary cendition that at time t = 0
the electron is in the initial bound state. In terms of
the scaled variables x’ = Zx, F/ = F/Z3, t' = Z%t, and
w' = w/Z?, the Schrodinger equation and the boundary
condition are independent of Z. Substituting the Flo-
quet ansatz for |¥(t)) into Eq.(19), and transforming to
the scaled variables, we see that to the extent that the
Floquet ansatz is valid we have the scaling law

(2, Z2%w/wo, Z8|F|?/F2) /2% = T(1,w/wo, |F|?*/ FR).
(20)

[The shift A = A(Z,w/wo, |F|?/FE) satisfies a similar
scaling law.] Now, since the solution of Eq.(18) is insen-
sitive to w, we are free to multiply w by any factor 3,
provided that fw & w,. We choose 8 = Z2, so that
Eq.(18) becomes, dividing both sides by Z2,

[(Z,Z%0 Jwo, FL/F2) 2% = hw,,/272Z%; - (21)

the right-hand side of this equation is independent of Z,
and comparing with the scaling law (20) we see that F2,
and therefore I_., scale with Z as Z% in accord with
Eq.(12b). (Even though the classical potential does not
yield an accurate value of I, in the case of a hydro-
genlike ion,!! we expect it to yield the correct Z scal-
ing.) Incidentally, in the weak-field limit the ionization

J

2u r

2 2 i
(h—Vi _Ze ex - Re(Fe ™) — 2'71%) ’ \Il(t)> =0,
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lonization at intensities near or above the critical inten-
sity; for as I approaches I.; the ionization rate becomes
of order 27 /w,, and therefore the width T' (whether this
be the width of the dominant or shadow eigenvalue) ex-
ceeds hw (assuming, of course, that w < wa;). The rate
I'/h is a cycle-averaged rate, which is unsuitable for de-
scribing ionization that takes place in less than a cycle;
nevertheless, A/T does give a good indication of the time
required for ionization.

B. Z scaling

We can define the critical intensity I.. as the inten-
sity for which /T & 2m/w,, (provided that w < way).
We now show that, in the case of a hydrogenlike ion of
atomic number Z, this alternative definition of I yields
the same Z scaling of I as given by Eq. (12b). For
a hydrogenlike ion, T' = ['(Z,w/wy, |F|?/FZ) depends on
the three dimensionless variables, Z, w/(e?/hay) = w/wy,
and |F|2a3/(e?/ao) = |F|?/F§, where ag = (h*/pe?). We
define the critical field F.. as the solution of

[(Z,w/wo, F2/F2) = hwa /2; (18)
the solution should be insensitive to w for w <« w,. The
Schrodinger equation is (in the length gauge)

(19)

width can be expressed as (F/Fp)VeIY(Z,w/wg), where
F|Fo = (|F|/Fo)?/(w/wo) is a dimensionless photon flux
(and where Np is the number of photons required to

ionize the atom); it follows from the scaling law that
I(Z, Z%w/wo) scales with Z as 1/Z4No=2,

IV. IONIZATION OF ATOMIC HYDROGEN

A hydrogen atom in a static electric field has an
exceptional symmetry, expressed by the fact that the
Schrédinger equation is separable in the parabolic co-
ordinates £ = r + z and n = r — z.* The static-field
problem reduces to the solution of the one-dimensional
Schrodinger equations

h? d?
"o jgz(g) + Vi(§)¥1(8) = %1/)1(5): (22a)

2 52
—%;—d j,jz(") + Va(n)2(n) = %/zz(n), (22b)

where £ and 7 are non-negative, and where V;(€) and
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Va(n) are effective one-dimensional potentials that re-
place the classical potential. We have*

Zie?2  R*(m?-1 F

ne=-Ze+ e @)
Zae?  hA*(m? -1 F

Va(n) = — 22; + (;r:mz )————68", (23b)

where Z; and Z, are separation constants that sum to
Z. The potentials V;(§) and V»(n) are of the same form
except for the sign of the term in eF. Recalling that e
is negative (and F is positive) V;(€) has a barrier, whose
maximum is located on the positive £-axis at the point
given by dV;(£)/d¢ = 0. The critical field is obtained by
setting V1 (€) = E/4 at the barrier maximum, for at this
field the electron can flow along the £ axis over the top
of the barrier. Restricting ourselves to the ground state
(m = 0), and using atomic units for the moment, the
barrier maximum occurs at the point where

F&€ =4Z,/€ + 2/€2. (24a)

Putting V;(§) = E/4, and eliminating F' using Eq. (24a),
gives

§=—(2/E)Z1 ++/ 2} - (3E/8)] (24b)

Now, through second order in an expansion in the per-
turbation (e F€/8), we have*

_(=2E)!/2 F  9F?
= 2 2(—2E) 8(-2E)5/?"

Z (24¢)

Therefore the separation constant Z; can be deter-
mined to fairly high accuracy, even for rather large field
strengths (F < 0.2 a.u.), provided we know FE, that is,
provided we know the dc Stark shift; the latter is rel-
atively easy to calculate.!® Inserting ¢ from Eq. (24b)
into Eq. (24a), and using Eq.(24c) for Z;, yields a tran-
scendental equation for F.., which we can solve numer-
ically. We obtain (for the ground state of hydrogen)
Fer = 0.15 a.u., which is more than twice as large as
the value (0.0625 a.u.) that would be obtained from Eq.
(6), the value based on the classical potential. The rea-
son for this anomalously large value of F.. is that the
motions along the € and 7 axes proceed independently,
while for atoms other than hydrogen the tunneling along
the z axis is coupled to the motion in the plane perpen-
dicular to the z axis. The critical intensity for H(1s) is
given by I cos?(¢/2) ~ 8 x 10'* W/cm?. At the critical
field, the dc Stark shift for H(1s) is about 1.4 eV; the
dc width is about 0.06 a.u., that is, about 0.8(Awa./27),
and so complete ionization of H(1s) by a dc field, at the
critical field strength, occurs in a time very close to the
atomic orbital period (closer than we have the right to
expect).

Following the lines of previous work,!” we have calcu-
lated the energy shift A and the ionization width I' for
H(1s) irradiated by circularly or linearly polarized light

of various wavelengths, over an intensity range somewhat
below the critical intensity. The results we report here
are for wavelengths between 355 and 1064 nm, and for in-
tensities up to 7 x 1014 W/cm?. We have also calculated
the dc shift, Aqc, and the dc width, 4., over a range of
field strengths.!®

Both the ac and dc shifts are approximately quadratic
in the field strength F' at values of F' well beyond where
perturbation theory is applicable.!® In Fig. 3 we ex-
hibit the departure from quadratic behavior by showing
A4c/F? and, for circular polarization, A,./F?, versus
I = (cF?/4m). (Recall that Aac = A + P and that P is
linear in F'2. Note also that, for the low frequencies of
interest here, P is much larger than A,.; for example, at
616 nm A, is only about 3% of P.) If w <« wa (and
if the light is circularly polarized) the difference between
Agc and A, at the same value of I, is small, and this
difference approaches zero at sufficiently high intensities.
This is apparent from Fig. 3 for the wavelength 616 nm;
for the wavelength 1064 nm we have not been able to
calculate A,. to sufficient accuracy at large intensities
to show that A,. approaches A4c.. An analysis of the
perturbative expansion of A,. may be instructive. In
Table I we give the coefficients of the first few terms of
the expansion of A, in powers of F sec({/2) for various
wavelengths and for three different polarizations.!® The
coefficient of the first term (quadratic in F) is indepen-
dent of polarization, while the coefficients of the higher
terms decrease, in absolute magnitude, as the ellipticity ¢
increases from 0 to m/2. The coefficients are negative for
all terms below the order F2Vo; at and above the order
F2No the coefficients are complex. Thus, at a given small
intensity the absolute magnitude of the ac Stark shift is
slightly larger for linear polarization than it is for circu-
lar polarization, the difference being entirely due to terms
in F'* or higher order. It is also clear from Table I that
the expansion coeflicients for A, converge to the expan-
sion coefficients for Ay, as the wavelength increases; this
was already demonstrated by Pan, Taylor, and Clark!®
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FIG. 3. Stark shifts, divided by the square of the field

strength F, vs intensity I = (cF?/4r), for a dc field and for a
circularly polarized field of wavelength 616 or 1064 nm. The
dashed lines are the shifts obtained by summing the first four
terms (the terms in F?, F*, F, and Fs) of the perturbation
series.
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TABLE 1. Coefficients (in a.u.) of the expansion of the ac Stark shift of H(1s) in powers, N, of
Fsec(¢/2) = V2 Firns (where Fyp; is the root-mean-square field strength) for fields of (a) 616 nm,
(b) 800 nm, (c) 1064 nm, (d) 10355 nm, and (e) “infinite” wavelengths (dc field). The entries (f)
give the shortest wavelength (in pm) for which the coefficients are within 1 % of the dc-field limit.
Results are given for linear, elliptic, and circular polarization, and for second, fourth, sixth, and
eighth orders of perturbation theory. Numbers in square brackets denote powers of 10.

Linear polarization (¢ = 0)
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Field N =2 N=4 N=6 N=38
(a) ~1.165 —2.618[1] —3.061[3] —1.064[6)
(b) —1.149 —2.382[1] —2.264(3] —5.032[5)
(c) ~1.139 —2.249[1] —1.903[3] —3.413[5)
(d) —1.127 —2.093[1] —1.546[3] —2.199[5]
(e) —1.127 —2.091[1] —1.543[3] —2.190[5]
(f) 1.1 2.9 4.8 6.9
Elliptic polarization (¢ = 7/3)
(a) ~1.165 —1.917[1] —1.512[3] —3.240[5]
(b) —1.149 —1.762[1] —1.176[3] —1.780[5)
(<) —1.139 —1.674[1] —1.015(3] —1.291[5]
(d) —1.127 ~1.569(1] —8.501[2] —8.909[4]
(e) —1.127 —1.568[1] —8.486[2] —8.875[4]
(f) 1.1 2.7 4.5 6.4
Circular polarization ({ = =/2)

(a) ~1.165 —1.683[1] —9.949[2] —1.294[5]
(b) —1.149 —1.556[1] —8.128[2] —8.557[4]
(o) ~1.139 —1.482[1] —7.193[2) —6.723[4]
(d) —1.127 —1.395[1] —6.181[2] —5.020[4]
() —1.127 —1.394[1] —6.172[2] —5.005[4]
() 1.1 2.7 4.1 5.7

for linear polarization. In Fig. 3 we compare the exact
values of AM/F2 with those obtained from the pertur-
bation expansion through the term in F3; evidently the
perturbation expansion (truncated at the F'® term) gives
an accurate estimate of A, up to nearly the intensity at
which the curvature of A,./F? changes from convex to
concave. At somewhat higher intensities Aac/F2 begins
to rise as F increases, and this is clearly incompatible
with the perturbation expansion, whose coeflicients are
negative. Note that the expansion through a fixed order
(below F?No remains accurate to higher F for lower w,
and yet the radius of convergence of the infinite power
series approaches zero as w does.

In Fig. 4 we show the total rate I'/h for ioniza-
tion of H(1ls) by light of wavelength 616 nm, for both
circular and linear polarization, versus intensity I =
(cF?/8m)sec?(¢/2). The upper horizontal scale is E(®) 4
A, where E(®©) = —0.49973 a.u. and A is approximately
the straight line —1.03P. The ratio w/wc, is about 0.2.
Note that we show the rate for ionization from the dia-
batic state, that is, the Floquet state whose atomic char-
acter is predominantly 1s. The peaks in the rate for ion-
ization by linearly polarized light are due to resonance en-
hancement that occurs as Rydberg levels shift in and out
of resonance with the field. Those Rydberg levels that
are brought into resonance by circularly polarized light
have very high angular momentum quantum numbers,
and resonance enhancement is weakened by the centrifu-

gal barrier that pushes the electron far away from the
region of the nucleus — the region where the electron
can absorb photons. Hence there are no prominent reso-
nance peaks in the rate for ionization by circularly polar-
ized light, and the resonance peaks that do exist cannot
be resolved within our basis set. At very low values of
I, in the perturbative regime, the minimum number of
photons Ny that the atom must absorb to ionize is 7. In
this regime T increases rapidly with increasing I, as I7;
in other words, the index of nonlinearity K, defined as
the derivative of In(T") with respect to In(f), is 7. How-
ever, as I increases further, K decreases, despite the fact
that Ny increases; this is true at all wavelengths, but the
decrease of K is more rapid at longer wavelengths — see
Fig.2 of Ref. 19 for a plot of the indices of nonlinearity
at various wavelengths. One reason!” that the slope of
In(T") decreases as I increases is that the electron charge
cloud is forced by the field to oscillate, and the ampli-
tude of oscillation increases as I does, so that the elec-
tron spends less time in the region of the nucleus. This
intensity regime is the tunneling regime, as we see below.
It may be useful to record at this point that the ratio of
the excursion amplitude o = |e F//uw?| of a free electron
oscillating in the field, to the atomic-orbital radius of the
initially bound electron, is of order (wa;/w)/7.

In Fig. 5 we show the logarithm of FT versus Fy/F for
ionization of H(1s) by circularly polarized light of several
different wavelengths. Here Fy = %(\/ﬁ/eh)ﬂE(o)lS/z,
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FIG. 4. Ionization width T, in a.u., vs intensity (lower

horizontal scale) or vs the real part of the quasienergy (upper
horizontal scale) for ground-state atomic hydrogen irradiated
by circularly (circ.) or linearly (lin.) polarized light of wave-
length 616 nm. (The short dashed lines span regions where
there are too many resonances for us to calculate, to suffi-
cient accuracy, the width for ionization by linearly polarized
light.) The thin vertical lines mark the multiphoton ioniza-
tion thresholds. At intensities between the (n — 1)th and
the nth thresholds, the minimum number of photons that
must be absorbed for ionization to occur is n. As a multipho-
ton ionization threshold is passed, the “dominant” eigenvalue
changes places with a nearby “shadow” eigenvalue, but this
interchange is not visible on the figure. The dashed horizon-
tal line marks the value that the width should reach for the
ionization time k/T to equal one cycle, 27 /w, of the field. See
Ref. 17 for a full description of the calculation.

that is % a.u. (for a nucleus of infinite mass); Fy is more
than a factor of 4 larger than F... We also show the
rate for ionization of H(1s) by a dc field of strength F
(equal to the strength of the instantaneous ac field). As
F increases (Fy/F decreases) the ac rates approach the
dc rate from above. The rates can be approximated by
the form

['/h~ (CFo/F)e~(PFo/F), (25)
where C' and D depend only weakly on the frequency w;
we estimate, from the 1064-nm data, C = 1.7 a.u. and
D =~ 0.85.

We interpret the approach of the ac rates towards
the dc rate, with increasing F, as the onset of tunnel-
ing. This is in qualitative accord with the tunneling the-
ory of Keldysh,” a theory that has been developed fur-
ther by many others, in particular Nikishov and Ritus?®
and Perelomov, Popov, and Terent’ev.2! We find, from
a visual fit to Eq. (25), that tunneling commences at
an intensity for which 2P ~ |E(®)|, when the Keldysh
parameter’ v is about 1. (This occurs at the following
intensities: 6.5 x 10! W/cm? at 1064 nm, 1.1 x 10
W/cm? at 800 nm, and 1.9 x 10'* W/cm? at 616 nm.)
We have chosen to plot our data to reveal the similarity to
the form (25). This form is suggested by the dc-tunneling
formula,?? which is similar but with D equal to 1, close

SHAKESHAFT, POTVLIEGE, DORR, AND COOKE 42

Intensity (10" w/em?)
460 20 10 06 04 03 02
mTT T ITTT T T 7 T I
.-8 - —
_12._ p—
- - 355nm —
& -20f
= -24[ 616nm  —
-28 B de 800nm|
=32+ 1064nm =
- | 1 | | ] | L | N
36 10 20 30 40 50
Fo/F
FIG. 5. Logarithm of the product of the width I" and field

strength F, both in a.u., vs Fo/F, for ionization of H(1s)
by either a dc field or a circularly polarized field of various
wavelengths (labeled in nm). Fo = 2 a.u. We evaluated the
parameters C and D of Eq. (25) from the y-axis intercept
and the slope of the 1064-nm curve extrapolated to Fo/F =
0. The dashed line (for 355 nm) is a smooth interpolation
through a region of intermediate resonances accumulating at
a multiphoton ionization threshold.

to our value of D, and with C equal to 6 a.u., more than
a factor of 3 larger than our value for C. However, at
high fields the dc-tunneling formula?? overestimates the
dc widths, by slightly more than a factor of 2 at ' = 0.07
a.u. for example. The dc tunneling formula represents
the dc-rate more accurately as F'// F., decreases, and is ex-
act in the asymptotic limit F/F¢. — 0, not F/Fe. — oo.
For an ac-field, tunneling does not occur until 7 is less
than roughly unity, and thus Eq. (25) is not an asymp-
totic form; rather, Eq. (25) is accurate only over a finite
range of F' for which F is sufficiently large that vy < 1
but sufficiently small that F/F.. <« 1. Therefore the pa-
rameters C' and D cannot be unambiguously determined
from a numerical study, and we should not regard the
discrepancy with the dc values too seriously. (We chose
to determine C' and D as described in the caption to Fig.
5.) We note that tunneling ionization of a model atom,
with a zero-range binding potential, has been discussed
extensively in the literature,?® and the convergence of the
ac rates toward the dc rate has been demonstrated in sev-
eral papers. For this zero-range model atom there 1s no
critical intensity for which the electron can flow over the
top of the barrier.

If tunneling ionization by a low-frequency field were no
different from tunneling ionization by a static field, the
parameters C and D in Eq. (25) would be independent
of the polarization of the (oscillating) field. We do not
expect the value of D to be strongly dependent on the
polarization (since DFy is presumably a characteristic of
the atom), though of course a small change in D is sig-
nificant since it occurs in an exponential. However, since
I'/h is the rate averaged over one cycle, we expect the
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preexponential factor to depend significantly on the po-
larization; in the case of circular polarization the electric
field has magnitude F' at all times, and the electron can
tunnel out at every moment of the cycle, while in the case
of linear polarization the electron is most likely to tunnel
out during the times where the magnitude of the electric
field is close to its extremal value F. Equation (25) can
be generalized?! to linear polarization by replacing F' by
F|cos(wt)| and averaging the resulting expression over
one cycle using the result

9 x/2

—/ dr [Fo/ F cos(t)])e™PlFo/ F cos(r)]

0

= (2Fo/7F)Ko(DFo/F). (26)

Noting that the modified Bessel function Ko(z) has
the asymptotic form (w/2z)/2e~% for large z, we see
that only the preexponential factor is changed in Eq.
(25) — this factor becomes C'(Fy/F)'/?, where C' =
(2/7D)/2C. Using our values of C and D gives C’ ~ 1.5
a.u. Confirmation of this law, for linear polarization, is
difficult due to the presence of numerous intermediate
resonances. However, in Fig. 6 we show the logarithm
of F1/2T versus Fy/F for ionization of H(1s) by linearly
polarized light at wavelengths 616 and 1064 nm. The
616-nm results are consistent with the law

T/h & C'\/(Fo/F)e~(PFolF) (27)

provided we choose C’ = 0.4 a.u. and D = 0.75 (though
D is uncertain to at least 0.03, which results in a much
larger uncertainty in C’). We also show, in Fig. 6, the
result obtained by averaging the dc width over one cycle
after this width is evaluated at the instantaneous field
F cos(wt) at each moment of the cycle. (This cycle-
averaged dc width is independent of the frequency w.)
We see that the ac width approaches the cycle-averaged

in WFT)

Fo/F

FIG. 6. Logarithm of the product of ' and \/F, in a.u.,
vs Fo/F, for ionization of H(1s) by either a dc field or a
linearly polarized field of wavelength 616 or 1064 nm. The dc
width has been cycle-averaged over the instantaneous field.
We evaluated the parameters C’ and D of Eq. (27) from the y-
axis intercept and the slope of the 616-nm curve extrapolated
to Fo/F = 0. See Ref. 17 for a full discussion of the ac rates
at intensities below the tunneling regime.
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dc width at sufficiently high field strengths. - We can
cycle-average the dc shift in the same way, and we find
that at sufficiently high field strengths the ac shift ap-
proaches the cycle-averaged dc shift. In fact, we can state
quite generally that for arbitrary polarization and for
w < wyy the ac shifts and ac widths approach the cycle-
averaged dc shifts and dc widths as the field strength
increases or as the frequency decreases.

We saw from Fig. 4 that the rate for ionization by
circularly polarized light is lower than that for linearly
polarized light at the same value of the intensity I; this
is not true, at least in the tunneling regime, when we
compare rates at the same value F of the maximum in-
stantaneous field [values of I differing by sec?(¢/2)]. In
the tunneling regime the rate for ionization by circularly
polarized light is slightly higher than that for ionization
by linearly polarized light at the same value F of the
maximum instantaneous field; this is because for circular
polarization the electron can tunnel out at all moments of
the cycle with equal probability. However, in the pertur-
bative regime, circularly polarized light is less efficient,
at long wavelengths (e.g., 1064 nm), than linearly polar-
ized light at the same value of F’; this is because fewer
channels and intermediate resonances are accessible.?*

We have not been able to carry out calculations of the
ac width close to and beyond the critical intensity. To do
so we would need a prohibitively large (or significantly
more flexible) basis set; numerical instabilities have pre-
vented us from going much beyond 3 x 10'*W/cm? at
long wavelengths.?® As we already mentioned, the Flo-
quet method becomes inadequate when I is of the order
of or exceeds hw, but, nevertheless, h/T still gives an
indication of the time required for ionization. We have
been able to calculate the dc width for H(1s) at intensi-
ties beyond I.., and we find that it continues to increase
monotonically, but without any dramatic increase, as I
passes I.,.

Of course, since ionization is complete in a time of or-
der of the atomic-orbital period at the critical intensity,
the saturation intensity for a realistic laser pulse cannot
be much greater than I... We have carried out calcula-
tions of the ground-state population of hydrogen atoms
as a function of time for atoms at the focus of a pulse
that has a Gaussian temporal profile. We can ask what
should the maximum intensity of a pulse of duration 100
fsec [full width at half maximum (FWHM)] be if at least
10% of the atoms (at the laser focus) are to experience
this maximum intensity (before undergoing ionization)?
The answer is, for circularly polarized light, 2.1 x 10%¢
W/cm? at 1064 nm or 1.8 x 10** W/cm? at 616 nm. We
can rephrase the question and ask what should the max-
imum pulse duration (FWHM) be if at least 10% of the
atoms are to experience a specified maximum intensity?
Taking the polarization to be circular again, and choos-
ing a maximum intensity for which ¥ = 1 (roughly the
intensity for the onset of tunneling), the answer is 1.5
nsec at 1064 nm or 80 fsec at 616 nm. If we specify the
maximum intensity as 3 x 10!* W/cm? — an intensity
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for which the 616-nm ac rate is only a factor of 1.9 larger
than the cycle-averaged dc-rate — the answer is only 8
fsec at 616 nm. Note that at an intensity of about 5x 104
W /cm? the ionization rate is about w/2x for wavelengths
in the range 616-1064 nm, in which case the atoms ionize
within roughly one cycle. We conclude that for pulses of
duration of a few hundred fsec or longer, the saturation
intensity for ionization of H(1s) is no more than roughly
2 x 10!* W/cm?, even when the spatial profile of the
pulse is taken into account. This saturation intensity is
below the critical intensity. On the other hand, since the
critical intensities for rare gases are much lower than for
hydrogen, the saturation intensities for rare gases can be
comparable to I,.

We note again!® that to obtain an accurate width T,
we do not always need to include as many harmonic com-
ponents |F,) as one would think based on the charac-
teristic number N, of photons that the electron ulti-
mately absorbs. As Gallagher! and Corkum, Burnett,
and Brunel? have pointed out, No, can be estimated
in the tunneling regime by calculating the drift veloc-
ity that a free electron has if it is released at the in-
stant o into the field of Eq. (1b). If v(¢) is the instan-
taneous velocity of the free electron at time t > to, we
have udv(t)/dt = e Re(Fe™*“!), and assuming the elec-
tron is released with zero instantaneous velocity, we have
v(t) = u(t) — u(tg), where

u(t) = (eF/pw)[sin(wt)z — tan({/2) cos(wt)x]. (28)
Hence the drift (cycle-averaged) velocity of the free elec-
tron is —u(tp), and the drift energy is $u|u(to)|?. For cir-
cular polarization (( = m/2) we have |u(to)| = |eF/pw]|,
independently of ¢;, and so the drift energy is approxi-
mately P.2¢ Taking into account that Ny photons must
be absorbed to produce a free electron with zero drift
velocity, we see that in the case of circular polarization
Nen = 2Ng when P > |E©)|, that is, when v <« 1.
However, many of these photons are absorbed after the
electron has tunneled out through the barrier, and do not
strongly affect the ionization rate I'/h; we find?® that it is
sufficient to take a maximum value of about 1.5Nj for the
photon index n in |F,) (this is true for circular or linear
polarization). Of course, a statement as to when photons
are absorbed is not gauge invariant;2? no experiment can
decide whether the photons were absorbed before or af-
ter the electron tunneled out. The notion of tunneling is
appropriate to the length gauge, where the electron-field
interaction is —ex-Re(Fe~*?); in this gauge one imagines
that most of the photons are absorbed after the electron
has tunneled out. This suggests that to calculate, in the
length gauge, an accurate ac rate for ionization by circu-
larly polarized light (in the tunneling regime) one should
not have to let the photon index n greatly exceed the
maximum orbital angular momentum quantum number
that must be included to calculate an accurate dc width.
Naturally, to calculate the photoelectron energy distri-
bution, we need to include very many harmonic compo-

SHAKESHAFT, POTVLIEGE, DORR, AND COOKE 42

nents, significantly more than N¢,. Incidentally, the pho-
toelectron energy distribution, for ionization at a fixed
intensity such that v < 1, has been calculated on the
basis of the Keldysh theory by Nikishov and Ritus?® and
by Perelomov, Popov, and Terent’ev.?! They showed that
for linear polarization the distribution peaks near thresh-
old, so that N, &~ Ny, while for circular polarization the
distribution is a Gaussian with a peak at an energy?%:23
close to P, and with a full width at half maximum of
2[NenIn(2)/(v/27)]1/? where Ng, ~ 2No(1 — 2v2/3).
Finally, we briefly consider the behavior of the ioniza-
tion rate with respect to intensity when the frequency
exceeds the atomic-orbital frequency wy. In Fig. 7 we
show total rates for ionization from the 1s, 2s, 4p, and
4f levels versus v, for a fixed frequency (> wat) and lin-
ear polarization. The frequency is 0.65 a.u. (70 nm) for
ionization from the 1s level, 0.17 a.u. (266 nm) from the
2s level, and 0.043 a.u. (1064 nm) from the 4p and 4f
levels. Note that, except for the 1s, 2s, 2p, and 3p levels,
the unperturbed states within a given Rydberg manifold
(specified by the principal quantum number) are, due
to the degeneracy in hydrogen, superpositions of atomic
states with the same parity but different orbital angular
momentum quantum number.?® Thus the odd-parity un-
perturbed states belonging to the Rydberg manifold with
principal quantum number 4 are superpositions of 4p and
4f states. The label 4p implies that the 4p state is the
dominant atomic state in that superposition; the label 4 f
has a similar meaning. (Of course, the perturbed states
are superpositions of atomic states of both even and odd
parity.) Looking at Fig. 7, we see that as the intensity
increases (v decreases) the rates each exhibit a peak at
about ¥ = 1. With the exception of the rate from the 4 f

Total Ionization RBte (a.u.)

FIG. 7. Total rate I'/h for ionization of H by “high”-
frequency linearly polarized light, from four different levels,
vs the Keldysh parameter 4. The rates {or ionization from the
1s and 4f levels have been multiplied by the factors indicated.
The frequency of the light is 0.65 a.u. for ionization from the
1s level, 0.17 a.u. from the 2s level, and 0.043 a.u. from the
4p and 4f levels. Note that the labels 4p and 4f are merely
indicative, since the angular momentum quantum number is
not a good quantum number for labeling unperturbed states,
except for the 1s, 2s, 2p, and 3p states (see text).
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level (a point we return to shortly) these rates drop mono-
tonically as the intensity increases beyond the value at
which the peak occurs.3® This monotonic decrease can be
understood as follows: when the intensity increases, the
strength of the coupling of the electron to the field also in-
creases. However, with increasing intensity, the elcctron
spends less time near the nucleus, where it can absorb
photons. As noted in the discussion of Fig. 4 above, and
depicted more clearly elsewhere,'® if w < wye, the index
of nonlinearity decreases with increasing intensity; nev-
ertheless, the ionization rate continues to increase since
ionization occurs through tunneling. On the other hand,
if w > wy; tunneling is no longer possible (recall the last
paragraph of Sec. II), and, rather than interpret v as the
ratio of the tunneling time to the cycle time, it is more
appropriate when w > wjy¢ to interpret 1/v as the ratio
of the characteristic “quiver” speed of a free electron os-
cillating in the field to the characteristic atomic-orbital
speed of the bound electron; thus 4 & 1 implies the elec-
tron is almost free and therefore cannot easily absorb
photons. The anomalous behavior of the rate from the
4f level — this rate exhibits a peak at ¥ ~ 1 but then
exhibits a minimum and subsequently increases sharply
as I increases further — is due to a three-photon inter-
mediate resonance with a state that has 2s character.
This resonance corresponds to an avoided crossing of the
real parts of the 4f quasienergy and another quasienergy
of 2s character3! and is responsible for the rise in the
4f rate for larger I. A fuller account of the behavior
of ionization at frequencies w > wy, will be given else-
where, but we end here by noting that a “stable” atom
still oscillates, and therefore provides a continuous source
of high-frequency radiation.
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V. CONCLUSION

There is a critical intensity, I.., above which atoms
undergo rapid ionization, in a time period of the order
of the atomic-orbital period (27 /w,), provided that the
frequency w is less than w,,. We have derived a sim-
ple expression for I, applicable to atoms other than
hydrogen. The critical intensity for atomic hydrogen is
significantly higher than for the rare gases; this is due to
the exceptional symmetry of a hydrogen atom in a static
field. We have performed Floquet calculations for ioniza-
tion of H(1s), and have shown that if w < w,; tunneling
ionization begins at roughly the intensity for which the
Keldysh parameter v is unity. The ac shift and ac width
approach the cycle-averaged dc shift and dc width, re-
spectively, as either the wavelength or intensity increases.
The saturation intensity for H(1s) turns out to be signif-
icantly below I, except for unusually short pulses, but
the saturation intensity for rare gases is comparable to
I... For w > w, there is no tunneling regime, and, in
the absence of a strong intermediate resonance, the rate
peaks at about y = 1.
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