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It is shown analytically that under certain experimental conditions the steady-state photon statis-
tics of a micromaser field are directly connected to the fluctuation in number of the atoms in transi-
tion from the upper to the lower maser level under the influence of the maser field. The analytical
results are compared to the results of a computer simulation of the maser process.

I. INTRODUCTION

In recent years, it has been demonstrated that maser
action can be achieved with, on average, less than a single
excited atom in a superconducting microwave cavity.?
This one-atom maser or micromaser is operated with
Rydberg atoms, i.e., atoms with a valence electron in a
highly excited orbit having extremely large dipole mo-
ments for transitions to neighboring levels. The micro-
maser fulfills, in a perfect way, the idealized conditions
treated by Jaynes and Cummings in the pioneer days of
masers and lasers:> one single atom interacting with a
single mode of the cavity field. Owing to the large atom-
field coupling for Rydberg atoms, the atoms can ex-
change photons with the field several times while they
travel through the cavity. Since the velocity of the atoms
can be preselected, e.g., by using a Fizeau-type velocity
selector,? the interaction time can be fixed, which leads to
conditions usually not achievable in standard masers: the
field produced in the cavity shows nonclassical proper-
ties, i.e., the number distribution of the photons in the
cavity can be sub-Poissonian.*> It has been shown that
even a number state can be generated using a cavity with
a high enough quality factor and with no thermal pho-
tons in the cavity to begin with.*” Both conditions can
be fulfilled when the superconducting cavity is operated
at very low temperatures, e.g., <0.5 K. In this case
more interesting features may show up, such as trapping
states of the cavity.®

It turns out that the measurement of the nonclassical
photon statistics in the cavity is not that easy. In order
to measure the field it has to be coupled to a measuring
device whereby losses are introduced leading to a de-
struction of the nonclassical properties. The best method
to investigate the field is to use the Rydberg atoms them-
selves. One way is to measure the statistics via the
dynamical behavior of the atoms in the radiation field by
studying the collapse and the revivals.>® However, it is
much better and more conclusive to probe the population
of the atoms in the upper and lower maser levels after
they have left the cavity. In this case, the interaction
time is kept constant.” This is an advantage since the
steady-state photon-number distribution changes with
the interaction time. The measurement of the atom num-
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ber fluctuations is relatively easy since electric fields can
be used to perform a selective ionization of the atoms.
The detection sensitivity is sufficient so that the atomic
statistics can be investigated.

This paper is organized as follows. In Sec. II, we will
analytically derive a connection between atom statistics
and field statistics. This formula allows us to evaluate
ongoing experiments with our micromaser. We assume
that the measurements are performed in a regime where
the counting interval for the atoms is larger or identical
to the cavity decay time. Furthermore, it is assumed that
the maser is operating under steady-state conditions. The
parameters that the calculations are based upon are iden-
tical to the ones used in our experiments.'® In Sec. III,
the analytical formula is tested by a numerical simulation
of the maser process. In addition, the dependence of the
atom statistics upon both the counting time interval and
the detection efficiency are studied. Section IV is a short
summary and conclusion.

II. ANALYTICAL CALCULATION

The probability of finding a single atom in the lower
maser level is given by>

P=3 p,sin’[Qr;, (n+1)'7], 1)
n=0

where p, describes the probability distribution for the
photons, ) the atom-field coupling constant, and ¢;,, the
interaction time of the atom with the cavity field. As
soon as the steady state is reached, the photon-number
distribution, on average, does not change any more be-
tween successive atoms. The photon-number distribution
is given by*?>
n Nsin%(Qt,, k'"?)

pn=C(Nex) H ’
k=1 k

(2)

where N, stands for the number of atoms passing
through the cavity in the decay time T,, of the radiation
field, and C(N,,) is a normalization constant depending
on N,,. In deriving Eq. (2) for the photon statistics, it is
assumed that the atoms entering the cavity obey Poisson
statistics. Furthermore, thermal photons are neglected in
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Eq. (2). This is justified for our present experiment
operated at a cavity temperature of 0.5 K and a frequen-
cy of 21.5 GHz, which leads to a mean number of
thermal photons in the cavity of about 0.15. Also, the
flux is small so that there is never more than a single
atom in the cavity.

In the following, we consider a measurement time in-
terval T identical to T,, and use N =N,,, dropping the
index for simplicity. For measurement intervals
T >T,,,, the connection between N and N,, is given by
N=NT_, /T, so that the limitation T=T_,, used in
this paper is not an essential restriction. The only restric-
tion for the time interval results from the fact that we re-
quire the steady state of the photon distribution. For a
fixed number of atoms N entering the cavity in the upper
maser level, the probability of finding m atoms in the
lower state after they passed through the cavity is then
given by a binomial distribution B,,(N)

N
B, (N)= | _ |P(N)"[1=P(N)]" ™" (3)

with a mean (m ) =NP(N) and a variance
(m?)—(m)*=NP(N)[1—P(N)] .

However, the number of atoms NN observed in the time in-
terval T will fluctuate due to the Poissonian statistics of
the atomic beam. This fact has to be taken into account.
We will do so in the following. In the case of the steady
state, the influence of the fluctuations of N on the proba-
bility P(N) therefore only enters via the atomic flux. In
order to calculate the variation of P, the number of atoms
N is considered a variable.

As mentioned already, the variation of N obeys Pois-
sonian statistics which will be introduced by the probabil-
ity distribution py. The binomial distribution B, (N) has
to be combined with py in order to obtain the probability
W, of finding m atoms in the lower state

W,=S pyB.(N). 4)
N=0

We now calculate the mean number of atoms in the
lower level {(m ) and the variance {(m?)—{m )? using
W .

m-*

(m)=3 mW,= 3 m 3 pyB,(N)
N=

m =0 m =0 0
= S pyNP(N) . 5)
N=0

As P(N) is slowly varying with N, we can expand P(N)
in the vicinity of { N ). We obtain

P(N)=P({N))+(N—(N))dP/dN+ - - . (6)
The lowest-order term gives
(m)=(N)P({N))+{(N)dP/dN , V)

where we have used {N2)—(N)?>=(N) for the atoms
entering the cavity. This is valid for a Poisson process.
The derivative dP /dN has to be calculated at the value

N=(N). It is evident from the result (7) that the mean
number of atoms in the lower state {m ) is changing be-
cause P depends on the flux of atoms N. In the same way
we obtain

(m?)=3 m'w,
m =0

= 3 py[NP(N)+(N?—N)P(N)]. (8)
N=0

Inserting the expansion of P(N) from Eq. (6) into expres-
sion (8), we get the result

(m?)=P({N){N)Y+P({(N)*N)?
+[{N)+4P({N)){N)?*)dP/dN
+[(N)}+4(N)?)(dP/dN)* . 9)

We now define the normalized variance of the atoms in
the lower state Q,. This definition is analogous to the
one introduced by Mandel for photon statistics:!!

_{m®)H—(m)*

Qa <m>

Inserting the results for {(m ) and (m?) from Egs. (7)
and (9), respectively, into definition (10) we obtain for
(N)>>1,

2P({N)){N)dP/dN+{N)X(dP/dN)*
P({N)) ’

This formula is a general result which will be used to cal-
culate the normalized variance of the atoms leaving the
cavity in the lower level. Higher-order terms have been
neglected. It is obvious that dP/dN =0 implies Q, =0,
which means that a constant fraction P of the atoms
leaves the cavity in the lower state; the atoms do not
influence each other, so that we have an ideal Poisson
process. If dP/dN+0 and is negative, this leads to a sit-
uation where an increasing number of atoms N crossing
the cavity gives rise to a decreasing probability of finding
atoms in the lower state and vice versa. This mechanism
counterbalances the flux of atoms in the lower state and
thus stabilizes the number of atoms leaving the cavity in
the lower state. The consequence is a sub-Poissonian dis-
tribution. We show below [see the discussion following
Egs. (19) and (20)] that, in this situation, the second term
in Eq. (11) for the normalized atomic variance is dom-
inated by the first term which is negative. Therefore, it
follows from Eq. (11) that Q, <0. Of course, for positive
dP /dN, we expect a super-Poissonian distribution with
Q, > 0. In this case, both terms in Eq. (11) are positive.
We want to emphasize that the reason for the sub-
Poissonian atomic statistics is the following: a changing
flux of atoms changes the Rabi frequency via the stored
photon number in the cavity. By adjusting the interac-
tion time, the phase of the Rabi nutation cycle can be
chosen such that the probability for the atoms leaving the
cavity in the upper maser level is increasing when the
flux, and therefore the photon number, is enlarged or vice
versa. We expect sub-Poissonian atomic statistics in the
case where dP /dN is negative, i.e., when the number of

1. (10)

Q,= (11)
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atoms in the lower state is decreasing with increasing flux
and photon number in the cavity.

In Sec. 111, we derive the connection between the atom-
ic variance Q, and the normalized variance Q, of the
photons in the cavity. Q is defined similarly to Q,, how-
ever, the number of atoms m has to be replaced by the
number of photons n. As can be seen from Eq. (11), we
need the derivative dP /dN for calculating Q,. Accord-
ing to Eq. (1), the probability P of finding an atom in the
lower level is determined by the photon-number distribu-
tion p,, which is given by Eq. (2). We obtain

dpn :n—<n)
dN _ (N) P

[Note that the normalization constant C(N) depends on
N.] Therefore, dP /dN is given by the formula

(12)

P _ 3

n—{_n)
AN 2

% p,sin?[ Qe (n +1)!72] . (13)

n=0
Using the micromaser photon statistics p, from (2), we

see that

dP _ & n—{(n) n+1
2, Ny PNy

(14)

or if we change the summation index from n +1 to n, we
get

dP 1 i
—= (n’*—n—n{n)p, (15)

dN (N)? ,Zl

1 0
= (n2—n—n{n))p, . (16)

v 2

This gives
dP _ (n)

Analogous to the derivation of Eq. (17), it is easy to show
that the mean photon number is given by

(n)=P({N)){N), (18)

as expected by energy conservation. Combining these
two equations, i.e., (17) and (18), it is straightforward to
verify that

2PUNIUNYSE —p((N )20, (19)
dN
and
dp |’
2 — 212
(N) N P((N))Q} . (20)

As can be seen, the two terms in Eq. (11) for the atomic
variance Q, can be calculated with the help of formulas
(19) and (20), respectively. For negative dP/dN, and
therefore negative 0> Q,> —1, i.e.,, [2Q/|> Q}, we have
thus shown that the first term in Eq. (11) determines the
sign of Q,. It follows that the negative value of dP/dN is
responsible for the sub-Poissonian statistics of the photon
field. This feature is special for the micromaser and not
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shared by usual lasers or masers.

Inserting the last two equations, (19) and (20), into Eq.
(11) for the atomic variance, we obtain the variance equa-
tion

Q,=P(NQ,(2+Q/), 30

which gives us the normalized variance of the atoms Q,
in terms of Q, of the field. It is independent of the
measuring time 7. In deriving formula (21), we have
neglected all terms proportional to 1/{N). This vari-
ance equation (21) is the central result of our calculation.
It is valid for times T longer than or equal to the decay
time of the maser field and a temperature low enough in
order to neglect the thermal photons. It shows that the
atomic statistics are closely related to the statistics of the
maser field. In particular, the sub-Poisson photon statis-
tics can be measured via the atomic statistics which are
then also sub-Poissonian. A maser field with reduced
photon-number fluctuations generates a stable flux of
atoms m the lower level.

Figure 1 shows @, as a function of the dimensionless
maser pump parameter 0=Qt, (N)!? for (N)
=N,,=20. The variance equation (21) was used for plot-
ting the solid line. The photon statistics were calculated
from the micromaser theory.*> In addition, a detection
efficiency of 0.1 typical for the experiment'® was taken
into account by multiplying the values derived from the
variance equation (21) by a factor of 0.1. This is justified
in the case of a random deletion. It should also be men-
tioned that 0.1 blackbody photons per cavity mode were
assumed in order to prevent trapping states® from show-

Qo |
07t

-0

FIG. 1. Comparison between the result of the variance equa-
tion (21) and the computer simulation. The normalized atomic
variance Q, defined in Eq. (10) is plotted as a function of the di-
mensionless maser pump parameter 8 for N,, =20 and n, =0.1.
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ing up in the figure. [The thermal photons are considered
for calculating Q, which is needed for the evaluation of
Q, using (21).] As is displayed, the atomic variance Q,
shows two maxima corresponding to increased photon-
number fluctuations in the micromaser cavity. They are
due to phase transitions where the mean photon number
increases abruptly as a function of 8. This feature is
unique for the micromaser with a well-defined atom-field
interaction time; the large fluctuations of the mean pho-
ton number known from micromaser theory result in
equivalent fluctuations of the number of atoms leaving
the cavity in the lower state. In the regions between the
maxima, the normalized variance of the photon statistics
O, and also of the atomic statistics Q, are negative corre-
sponding to sub-Poissonian fluctuations.

III. NUMERICAL SIMULATION

In order to test the validity of the assumptions made in
deriving the variance equation (21), a numerical simula-
tion of the maser process has been performed. This was
done following the procedure used by Meystre and
Wright!2 who were interested in the photon statistics of
the micromaser. We, in addition, extend the calculations
in order to obtain the statistics of the atoms leaving the
cavity.

In the simulation, the successive passages of atoms
through the maser cavity are explicitly taken into ac-
count. Atoms are injected into the cavity one at a time
and exposed to the cavity field with the photon statistics
p,(t). When they leave the resonator, they are found to
be either in the lower or the upper maser level. In the
previous simulations,'? it was assumed that the detection
efficiency was e=1. In contrast to that, we assume here a
more realistic value of €=0.1. The determination of the
photon number in the cavity depends on whether an
atom is detected or not. In the computer program, this
effect is taken into account by using a random number
generator for the interval [0,1]. If the number is larger
than 0.1, the atom is treated as not detected and the pho-
ton statistics change according to

Pt +ti0)=pn(t)cos’[ Qe (n +1)172]
+p, _(t)sin®(Qt,,.n'7?) . (22)

Otherwise, the atom is treated as detected and a new ran-
dom number serves to simulate the outcome of the mea-
surement. This is done by comparing the new random
number with the Jaynes-Cummings probability of finding
the atom in the lower maser level, which is given by Eq.
(1). If the number is larger than the Jaynes-Cummings
probability, then the atom is taken to be in the upper
state, if it smaller, the atom is assumed to be in the lower
state. After the interaction, the photon statistics in the
cavity depend upon the state of the atom and are given
either by

Polt +t0)=Np, _(D)sin®(Qt;, n'7"?) (23)
for atoms in the lower level or by

Pult + 1 ) =Np, ()cos?[ Qe (n +1)172] 24)
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for atoms in the upper level. Here, /| and W, are two
normalization constants. During the intervals between
successive atoms, the evolution of the cavity field is treat-
ed using the master equation of a damped harmonic oscil-
lator interacting with a thermal bath with a mean num-
ber of n,=0.1 blackbody photons. This corresponds to
the cavity temperature used in the experiments.” The
photon statistics change according to

dp,
Tc‘“—dt =(n,+1)[(n+1)p,,—np,]

+n,[np, ,—(n+1)p,]. (25)

The spacing of the atoms obeys Poissonian statistics. The
total sampling time interval is taken to be two cavity de-
cay times; this ensures steady-state conditions. From the
fluctuations of the number of atoms in the lower state,
the variance Q, of the atoms is finally determined.

Results of the simulation are given by the circles in
Fig. 1. For each data point, about 1000000 atoms at a
rate of N, =20 were used for the calculation correspond-
ing to 25000 sampling time intervals which were aver-
aged. In this way, the error of the numerical calculation
is kept on the order of 1%. The agreement between the
numerical simulation and the result obtained by using the
variance equation (21) is good, as can be seen in Fig. 1.
The small deviation near 6=28 can be traced back to the
existence of a trapping state,® which still remains present
even for 0.1 blackbody photons in the cavity. This effect
does not show up in the solid line since there, the trap-
ping states are washed out already at smaller blackbody
photon numbers. This phenomenon is due to the fact
that the ensemble average, which is the basis of the mi-
cromaser theory, differs from the result of the numerical
simulation; details of this difference will be worked out in
the following.

The physical mechanism responsible for the sub-
Poissonian atomic statistics is the backcoupling of the
cavity field on the atomic population in the lower level.
This leads to a reduction of the number fluctuations. The
time constant for this feedback mechanism is the decay
time of the cavity field T,,. Therefore, fluctuations on a
time scale short compared to T,, are not suppressed in
the maser. This is confirmed by Fig. 2, where the nor-
malized atomic variance Q, is plotted as a function of the
sampling time interval T for 6=5, N, =35, and n, =0.1.
Two different detection efficiencies of €=0.1 and 1.0 are
considered. Results of the simulation are represented by
crosses and circles, respectively. It is obvious from Fig. 2
that Q, does not depend on T for measurement time in-
tervals larger than the cavity decay time. This justifies
the assumption T =T, made above in the derivation of
the variance equation (21).

As can be seen from Fig. 2, the magnitude of the non-
classical character, i.e., Q, <0, is reduced in the simula-
tion with €=0.1 as compared to €=1.0. Under the ac-
tion of a random deletion, the measured atom statistics
move toward the Poisson distribution as the limiting
case. It has been shown under general conditions'® that
the normalized variance of a point process undergoing
random deletion is proportional to the deletion parameter
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FIG. 2. Normalized atomic variance Q, plotted as a function
of the sampling time interval T for N, =35, 6=5, and n, =0.1.
Time is given in units of T,,.

which is given by the detection efficiency in our simula-
tion. The results plotted in Fig. 2, however, show that
this proportionality is not true in the present situation.
Here, a detection efficiency below unity influences the
photon statistics in the cavity according to Eq. (22) if the
atom is not detected and according to Egs. (23) or (24) if
the atom is detected in the lower or upper level, respec-
tively. Therefore, depending on the outcome of a mea-
surement, the photon statistics change in a different
manner and the detection efficiency does not show up as a
Bernoulli random deletion process. It follows that the
normalized variance Q, is not proportional to the detec-
tion efficiency €. In particular (see Fig. 2), when € is in-
creased by a factor of 10, the magnitude of Q, increases
by a factor of only 6-7.

For a detection sensitivity of e=1.0, the measurement
process reduces the nonclassical effect Q,>0. This
reduction can be understood from the following discus-
sion: Starting from the micromaser photon statistics at
time ¢ as given in Eq. (2) with a mean photon number
(n(t)) and using Eq. (23), it is easy to show that the
detection of an atom in the lower maser level changes the
photon statistics according to

Pat Tt V=N p,(n /N, . (26)

From this, the mean number of photons after the interac-
tion can be calculated:

(n(t+1,0),=(n())+Q,+1. 27)

This equation leads to the interesting conclusion that
(n) only increases by one if the normalized variance Q 5
of the photon-number distribution vanishes. For nega-
tive (positive) Q, the mean photon number increases by
less (more) than one despite the fact that the atom made a
transition from the upper to the lower maser level there-
by emitting one photon. This phenomenon does not
violate energy conservation because {n(¢)) is known
only to within its standard deviation Q,+1. For
Qy=—1, all atoms leave the cavity in the excited state
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(P =0) and Eq. (27) becomes meaningless.

The damping of the maser field in the time interval ¢,
between successive atoms is taken into account by multi-
plying Eq. (27) for the mean photon number with the fac-
tor N, >>1

exp(—t, /T, )~exp(—1/N,)=~1—1/N, . (28

The mean photon number of the maser field when the
next atom enters the cavity has therefore changed ac-
cording to

(n(0)—(nt+t,,+1,)),=(n())+Q,+1—P . (29)

Equation (18) was used for the probability P of finding
the atom in the lower level. A similar calculation leads to
the result

oF
1—-P

if the first atom is detected in the upper state. A mea-
surement of the atom which is not state selective does not
change the mean number of maser photons. This steady-
state condition is used in Ref. 4 to derive the micromaser
photon statistics given by Eq. (2).

If an atom is detected in the lower level, Eq. (29) im-
plies that, for a nonclassical field with Q,<P—1<0, the
mean number of photons decreases from this atom to the
next. As discussed in Sec. II, a similar, but larger, effect
is caused by a decreasing atomic flux. The smaller inten-
sity of the field which causes a lower Rabi frequency
therefore increases the probability of finding the follow-
ing atom in the lower state as well. Hence, this
measurement-induced effect leads to a bunching of atoms
in the lower level and decreases the magnitude of the
nonclassical normalized variance Q, of atoms in the case
of a high-detection sensitivity. Under the same condi-
tion, i.e., Qf <P —1<0, it follows from Eq. (30) that the
mean photon number as seen by the second atom in-
creases if the first atom is measured in the upper state.
The enlarged Rabi frequency then leads to a similar
bunching of atoms in the upper state.

This bunching effect is not restricted to the condition
Oy <P —1, which can easily be realized in the micro-
maser but is present even for large photon-number fluc-
tuations with Q,>0. According to Eq. (29), a detection
of an atom in the lower level, in this case, implies an in-
crease in the mean number of photons with a correspond-
ingly enlarged Rabi frequency. As discussed in Sec. II,
for Q,>0 and therefore Q, >0, the higher intensity of
the field leads to a higher probability of finding the next
atom in the lower state as well.

For a small detection efficiency, this bunching
phenomenon disappears because Eq. (22) is predominant-
ly used and the fluctuations introduced by the measure-
ment process are averaged out. With increasing detec-
tion efficiency, the cavity field is disturbed by the mea-
surement process as expressed by Eqgs. (23) and (24) or
(29) and (30). State selective measurements of the atoms
decrease the width of the actual photon-number distribu-
tion but prevent the micromaser field from reaching a

(n(0)) > (nlt +1,,+1,))=(n(t))— —P (30
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unique steady state. The distribution given by Eq. (2) is
obtained when the photon statistics are averaged over
many atoms. It follows that the nonclassical character of
the normalized variance Q, of atoms in the lower level is
decreased in magnitude in the case of a high-detection
efficiency near unity: Q, depends less than linearly on
the detection efficiency. The measurement process gen-
erally increases the fluctuations of the mean photon num-
ber and the number of atoms detected: this is not unex-
pected since the micromaser is a quantum system. The
measurement process must therefore influence the result.

IV. CONCLUSIONS

To sum up, we have derived the connection between
the photon statistics in the micromaser cavity and the
atomic statistics of the atoms in the lower state after they
passed through the cavity. It is straightforward to deter-
mine the photon statistics from the variance equation (21)
under the special conditions we discussed above. This
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situation corresponds to the conditions of our present mi-
cromaser experiment. The quality factor of the micro-
maser cavity used is 3X10'°. At a frequency of 21.5
GHz, this corresponds to a decay time of the field of 200
ms. The atoms cross the cavity in about 100 us. There-
fore, it is possible to have several hundred atoms entering
the cavity within the decay time; nevertheless, the aver-
age time interval between the atoms is long enough so
that the single-atom condition is maintained. Experi-
ments to measure the photon statistics via the statistics of
the atoms as discussed above have been performed re-
cently and will be published elsewhere.!°
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