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We investigate the steady-state spontaneous emission spectrum of a three-level atom driven by
two coherent fields and the absorption spectrum of a weak probe passing through a collection of
such driven atoms. We find that the fluorescence spectrum is strongly affected by the decay rates of
all the levels involved in the atomic evolution and not just by the decay parameters of the specific
transition whose emission spectrum is being monitored. In particular, the spectral components can
acquire very different widths and peak heights relative to the case of the standard resonance fluores-

cence in which a two-level system is driven by a single near-resonant field. An external probe signal

passing through the gas of three-level atoms may be absorbed or amplified, as in the standard two-
level case, but under specific operating conditions, amplification (or absorption} occurs over the en-

tire range where the atomic response is appreciable. In this case the existence of amplification or
absorption is controlled solely by the population difference between two dressed states of the sys-

tem. We provide numerical results in support of our arguments for arbitrary values of the atomic
and field parameters and also develop an analytic description in the limit of strong driving fields

that leads to explicit line-shape and linewidth formulas.

I. INTRODUCTION

Spontaneous emission is probably one of the best
known fundamental processes resulting from the interac-
tion between radiation and matter. When an excited
atom decays into a vacuum, the emitted radiation has an
is@tropic distribution in space and its spectrum is a
Lorentzian function of frequency with a bandwidth pro-
portional to the Einstein spontaneous decay rate. ' We
have known for quite some time that the spectrum of
spontaneous emission can be altered in a fundamental
way by driving the atom with a sufficiently strong reso-
nant field. In fact, according to the theory, and as
confirmed by many accurate experiments, ' the in-
coherent part of the spectrum produced by a resonantly
driven atom develops sidebands which are about —,

' as
high as the central peak, are removed from the resonance
by an amount proportional to the Rabi frequency of the
driving field, and are wider than the central peak by a
factor 1.5. In addition, the linewidths of both the central
peak and the sidebands are governed by the Einstein
spontaneous decay rate in the absence of collision effects.

The growth of experimental sophistication has revealed
new and more exotic behaviors, such as one observes
when excited atoms decay within the enclosure of an elec-
tromagnetic resonator. " Experiments have shown that it
is possible to alter the density of electromagnetic modes
in the neighborhood of the resonant frequency and to
control the rate of spontaneous emission from an excited

atom; this rate can be enhanced if one of the resonances
of a high-Q cavity coincides with the chosen atomic tran-
sition, or reduced if the resonator cutoff wavelength is
smaller than the wavelength of the spontaneously emitted
photons. The change in decay lifetime can be understood
fairly readily by considering the accessible modes into
which excited atoms can radiate. If the modal density in
the vicinity of the frequency of interest is less than that of
empty space the atom's decay will be retarded, if it is
greater it will be accelerated.

Apparently, it is not necessary to tamper with the den-
sity of decay channels or to employ sophisticated resona-
tors if one wishes to modify the spontaneous emission
spectrum of an excited atom. In fact, as we propose in
this paper, it may be possible to observe spontaneous
emission in empty space with a linewidth which is
significantly different from the natural linewidth, where
by "natural" we mean the linewidth "calculated within
the framework of the standard Wigner-Weisskopf
theory. " With appropriate selection of atomic and exper-
imental parameters, the linewidth of a given spontaneous
transition may be varied almost continuously and, in par-
ticular, it may be made even narrower than the natural
linewidth.

In this paper we reconsider the response of a three-
leve1 atom driven by two optical fields with the aim of
calculating the spontaneous emission spectrum and the
absorption spectrum of a weak tunable probe. This gen-
eral setting has already been the focus of many investiga-
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tions on optical pumping, double resonance, and non-
linear spectroscopy, for example, ' in addition to both ex-
perimental and theoretical contributions of immediate
relevance to this work. ' ' Here we stress that the addi-
tion of a second driving field to the traditional arrange-
ment of resonance fluorescence not only causes qualita-
tive changes in the shape of the emission and absorption
spectra but it also modifies the linewidth in a way that de-
pends on the atomic parameters and the relative strength
of the fields. ' Of course the atomic parameters allow
only a limited selection of operating conditions in practi-
cal situations, but the driving field strengths should be
controllable over a sufficiently wide range to allow a
verification of most of our predictions.

The system of interest to this work is illustrated
schematically in Fig. 1. The arrows denote the two driv-
ing fields with carrier frequencies co, and co2, respectively,
which may be detuned from the exact resonances by the
offsets h~ and 62. The atomic transitions 1~3 and 1~2
are assumed to be optically allowed, while the transition
2~3 is forbidden on the basis of parity considerations.
The downward decay rates between levels i and j are
denoted with W; . This arrangement is usually known as
a V system. Two alternative configurations, the A and
the cascade (or =) systems, are illustrated in Figs. 2(a)
and 2(b). Here we focus almost exclusively on the radia-
tive and absorbing properties of the V system because it
appears to be the most favorable to emphasize line nar-
rowing features which we believe are the most interesting
and novel aspect of this work. A detailed comparison
with the A and:" models will be presented elsewhere.

The main result of this work is the derivation of exact
formulas for the emission spectra of the 3~1 and 2~1
transitions and for the absorption spectra of a tunable
weak probe in the neighborhood of these transitions. Our
results are valid for arbitrary strengths of the driving
fields and generalize the well-known resonance fluores-
cence spectra of a two-level system. For example, the
3~1 emission spectrum reacquires the standard form
predicted in Refs. 3—6 when field 2 is turned off and the
decay rate 8'3z is set equal to zero. They also comple-
ment and extend earlier studies by Cohen-Tannoudji and
Reynaud [see especially Ref. 15(c)] which were directed
mainly to the case of sufficiently large driving field
strengths.

One drawback of this calculation is that the formulas
describing the emission and absorption spectra cannot be
cast into a transparent and readily interpretable form.

FIG. 1. Schematic representation of the V model; co& and co2

are the carrier frequencies of the driving fields and 6, and 6&
the respective detuning parameters,

FIG. 2. (a) Schematic representation of the A model; (b)

schematic representation of the cascade or = model. The mean-

ing of the symbols is the same as in Fig. 1.

However, they are ideally suited for simple numerical cal-
culations, as we illustrate in Sec. IV. They also allow the
derivation of a simple procedure by which the high-

intensity limit can be extracted with little effort and very
good accuracy. Our limiting expressions for the emission

spectra agree, for the most part, with the results of Ref.
15(c) (properly applied to the case of a V system). We
also predict the appearance of five spectral components in
resonance, one centered at the atomic transition frequen-

cy and two symmetric pairs of sidebands spaced by +6
and +2G from the center, where G =(g, +g2)'~ can be
called the effective Rabi frequency, and g& and g2 are the
individual Rabi frequencies of the driving fields. The
central peak and the +26 sidebands have a Lorentzian
profile whose width and peak heights agree with those
quoted in Ref. 15(c). The +G sidebands, however, do not
have a Lorentzian shape and have a different linewidth,
the origin of which can be traced, perhaps, to the
different handling of the irreversible decay processes in
the two approaches. However, the actual origin of this
small discrepancy is not yet completely clear.

An important conclusion of the asymptotic calculation,
and one that is exhibited particularly well by the V mod-

el, is that under appropriate conditions the linewidth of
the spontaneous emission spectrum of the driven atom
can become considerably narrower than the value pre-
dicted by the Wigner-Weisskopf theory. This point will

be properly emphasized in the main text.
An additional useful spin-off is the derivation of expli-

cit formulas for the absorption spectra in the high-
intensity limit. Here the dressed state approach, that was
already shown to be so useful in Ref. 15, pays off most
convincingly. In this limit, in fact, we discover that, sub-
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ject to a condition requiring population inversion be-
tween two dressed states, the absorption spectrum be-
comes a gain spectrum over the entire frequency range
where the atomic response is appreciable. Of course the
appearance of a frequency domain where an external
probe is amplified instead of being absorbed is not new.
The novelty here is that the entire profile turns into a
gain profile, if the above inversion condition is satisfied.
Superficially this result is reminiscent of the so-called
"laser without inversion" but, as we indicate in Sec. V,
the existence of a gain profile in our case is accompanied
by the simultaneous population inversion of levels 2-1
and 3-1.

This paper is organized as follows. In Sec. II we as-
semble the theoretical tools for the calculation of the
emission and absorption spectra from the driven atom,
and in Sec. III we derive the specific expressions related
to these observable quantities. Section IV is dedicated to
a survey of the most significant spectral results. A deeper
look into the mechanism that is responsible for the
linewidth variation is provided in Sec. V; here we solve
the master equation for the driven atom in the limit of a
strong effective Rabi frequency with the help of appropri-
ate dressed atomic states, ' ' and we derive analytic ex-
pressions for the main spectral structures, their
linewidths, and peak heights. Section VI contains a sum-
mary, an overview of our results, and a discussion of fu-
ture developments.

II. DESCRIPTION OF THE MODEL
AND EQUATIONS OF MOTION

We are interested in the evolution of a three-level sys-
tem (Fig. 1) driven by two external fields whose carrier
frequencies co& and co2 are resonant or nearly resonant
with the atomic transitions 1~3 and 1~2, respectively.
Our aim is to calculate the spectrum of the radiation
emitted spontaneously by the atom and the frequency
dependence of the absorption coefficient of a weak probe
(absorption spectrum).

Following the procedure adopted in Ref. 23, our pro-
gram evolves along the following lines. First, we derive
the master equation for the three-level system in the
semiclassical approximation, i.e., under the assumption
that both driving fields can be described by c-number
functions. Next, we take advantage of the fact that the
scattered electromagnetic field in the far zone is propor-
tional to the atomic polarization operator to calculate the
field correlation function and the spectrum of the emitted
radiation. The absorption spectrum of a weak probe, ac-
cording to the standard linear-response theory is propor-
tional to the unequal time commutator of field opera-
tors. For the same reason mentioned before, also this
quantity can be expressed and calculated in terms of
atomic operators. The emission and absorption spectra
require knowledge of expectation values of products of
operators calculated at different times; we handle these
quantities with the help of the quantum regression
theorem.

The Hamiltonian of the three-level system interacting
with two classical fields is given by

(2.2)

where

tilt f tk)t
HI =figi(a&aie '+aia&e '

)

ih2r y
—ih2t

+irig, (a,a, e +a iaie )
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(2.3)
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The prime denotes the interaction representation and co3]
and co2& are atomic transition frequencies. The matrix
elements of p' according to Eq. (2.2) satisfy linear coupled
equations of motion containing explicit time-dependent
factors of the complex exponential type. These can be re-
moved with the transformation

R;; =p,'; (i =1,2, 3),
ih~t

R 12 p12e

i b, ] t
R i3 =p&3e

(2.5)

i(hl —S,2)t
R23 =p23e

whose effect is to produce autonomous equations for the
matrix elements R;; we would like to stress that the ab-
sence of explicit time dependence in the equations of
motion plays an important role for the implementation of
our procedure. Next we consider the irreversible part of
the atomic dynamics. This is described by the master
equation for the arbitrary multilevel system

=+[a, a~p'a, a;( A,;„+A *,, )

(2.6)
I0 0 p AJ J pQJQ .

~,,~]
where A;; are complex rate constants related to the pop-
ulation transition rates 8';, the polarization decay rates
y,", and the frequency shifts AQ; by

$Vtj 3jitj + c4j iij (2.7a)

y,"=+Re( A, kk, + A kk ) = —,
' g( W;k + W k ), (2.7b)

b, Q, = —QIm(A „„,+ A,"„k, ) .
k

(2.7c)

3

g e;~; &, +&gi(e ' a3a, +e ' a, a&)i=1
16)2t t co2t+&gq(e azai+e 'a, a~), (2. 1)

where e; (i = 1,2,3) are the energies of the three stationary
states of the atom, g, and g2 are the Rabi frequencies of
the driving fields, and a, ,a; (i =1,2,3) are fermion opera-
tors that describe the creation of an electron in level i or
its removal.

Consider first the reversible part of the Liouville equa-
tion in the interaction representation. This has the form
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In the following we shall ignore both level shifts and pure
phase relaxation effects due to elastic collisions (i.e., we

assume A;;;; =0). Note, in addition, that

%co
fJRed;; =Red;; exp kT

(2.8)

where co; is the transition frequency between levels i and

j and T is the absolute temperature. From Eq. (2.8) it fol-
lows that the rates of excitation from a lower to a higher
level due to collisional effects can be safely ignored as
long as the energy separation between the levels is much
larger than kT. Because one may encounter situations
where this condition is not fulfilled, for completeness we
continue to include the rate coefficients 8'," with i &j, al-
though in our numerical simulations we shall set them
equal to zero.

The full master equation is

(2.9)

In terms of the variables R;1 Eq. (2.9) takes the explicit
form

t
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where the eight components of the vector g are defined
by

(2.12)

t/i, =R,2, 1)'r2=R3, , $3=R2, , $4=R22,

23 46= 31 47= 32 fs = (2.13)

R32 =R 23 .
In arriving at Eqs. (2.10) we have introduced the dimen-
sionless time ~= W3, t and the scaled Rabi frequencies
p1 g 1 / W3 „and p2 =g 2 / W» . The remaining rate con-
stants are scaled to 8'» and labeled with a tilde.

For the purpose of the following development it is con-
venient to represent the set of eight linearly independent
equations for the matrix elements R, in the compact
form

0 0

ill
I

I

CV

ill
+

I

0 0 0

I 0 O

I

0
I

0 '~ 0 0
I

and L is the (8 X 8) matrix
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The vector I is an inhomogeneaus term with components P(r) =(M)2(a )a2+a &a) )+(M»(a )a3+a 3a) ) (3.3)

I, = ip~, I2 =ip„ I3
= i —p2, I4 = W)~,

(2.15}

Iq =0, I6 = —iP(, I~=0, I8=8')3 .

1f(z) =M(z)f(~o)+ —M(z)I (2.16)

Because, as already mentioned, our calculation of the
quantities of interest involves the quantum regression
theorem, we will need explicit expressions for the vari-
ables P; (i =1,2, . . ., 8) in terms of their initial values.
This is done conveniently in Laplace space. Thus, if vo

denotes an arbitrary initial time, the Laplace transform of
Eq. (2.12) yields

where p; are the moduli of the induced transition dipole
moments and where we have assumed p23=0. The posi-
tive and negative parts of the polarization operator are
given by

p( —
)( t )

—[p(+ )( t )
]'r

(3.4a)

(3.4b)

Our calculation of Eq. (3.2a) involves a straightfoward
but laborious application of the quantum regression
theorem. This theorem "' states that if M, Q, and N are
members of a complete set of system operators [S„]and
if the one-time averages can be expressed in the form

or in component form (M(r) & =+Op(7, 7 )(S~(T ) &, 't &1 (3.5)

tP;(z)=QM J(z)f~(~0)+ —g M; (z)I
J J

where

M=(z L)—
Note that in steady state [see Eq. (2.12)] we have

p(0() )= L'I—
or, explicitly, in component form

1(;( ~ )= —g (L ');,I, .
J

(2.17)

(2.18)

(2. 19)

(2.20)

where O„(r,~') are c-number functions of time, then
two-time expectation values take the form

(Q(r')M(r}N('} &

=g O„(r,r')(Q(~')S„(r')N(~') &, ~'&r . (3.6)

In particular, Q or N can be identified with the identity
operator. In the remainder of this subsection we outline
the main steps of this calculation.

The starting point is the one-time average

(P' '(~) ) &
=Tr[p(~) )(((t)2a 2a(+((t) 3a 3a) )] (3 7)

III. CALCULATION OF THE SPECTRA

In this section we derive the steady-state spectrum of
resonance fluorescence and the absorption spectrum of a
weak probe. This calculation is made possible by the link
between the scattered field and the atomic polarization
operator which in the far zone takes the form

0E'+ (r, t)=Eo+'(r, t) — nX(nXd)P'+' t ——
c p' c

(3.1)

where E'+' is the positive part of the total field operator,
Eo+' is the corresponding solution of the homogeneous
wave equation, and n and d are unit vectors in the direc-
tion of observation and along the atomic dipole moment,
respectively. Away from the forward direction, the field
and the atomic polarization operators are directly pro-
portional to each other. Hence, we only need to limit our
considerations to the atomic correlation function

which can be written in terms of P)(r) ),$2(r) ) as follows:

(r) }& P'12 e el(+) }+V)3e 1 2(~l )

Z] =Z l CO]~ Z2 =Z LC02 (3.10)

With the help of Eq. (2.17), Eq. (3.9) can be cast into the
required form

(P ' '(z) &
=g [((t)zM)i(z~ }+p(3Mzj(z) )]Pi(~o)

J

At this point the essential step is to express each of the
matrix elements P, (r) ) that appear in Eq. (3.8} in terms of
their "initial" values at ~=v.o. While this could be done
beginning with the formal integration of Eq. (2.12), here
we operate in the space of the Laplace transform. Thus,
Eq. (3.8) yields

P'1201( 2z)+813 P2(zl } (3.9)

where

r("(~,, ~,}=& p(-)(~, }p(+)(~,) & . (3.2)
JM]2 Pi3+g M„(zz)+ M2, (z, } I
Z2 Z ]

The Fourier transform of Eq. (3.2} is proportional to the
emission spectrum and, as explained below, is also linked
to the absorption spectrum of a weak probe.

A. The spectrum of resonance fluorescence

(3.11)

Next we must express ))j (ro) and I, in the form of expec-
tation values of system operators at ~=~o. This can be
done directly from the definition of f (~o) as illustrated
by the following example:

The total polarization operator of the three-level atom
is given by 1()(;)=e ""t»(.,)=. "'&~2&&ll&,, (3.12)
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In addition, the inhomogeneous term I can also be writ-
ten as

& I ), &P'+'( ) )

IJ.=I~Tr[p(r0)] =I, ( I ), (3.13)
I N27O l Si To

P'12 P3( r0) +913 46( r0) (3.15)

where I is the identity operator. According to the re-
gression theorem, the correlation function
&P ' '(z)P'+'(r }) can be obtained from the above ex-

X( )pression for &P ' '(z)) by replacing every expectation
value of the type & li )&j l ), with & li )&j lP'+'(~0)), .
Consider, for example, the expectation value & l2) & 1

l ), ;
0

in this case we have

The polarization correlation function contains three
types of oscillating exponentials,

exp(i Qr0), exp(i Qr, ), exp[i Q(r, r—0)], (3.16)

where 0 is an optical frequency. Because we are interest-
ed in the steady-state emission spectrum we take the dou-
ble limit

70~ 'P) ~ (I) (3.17)

P1A'4( ro) +P13e

In a similar way we have

P12P22( r0) +P13P32( r0)

1 2 Oy( (3.14)

with 7, 7'0 being finite. The only surviving terms are
those whose oscillating exponentials involve the time
difference 7] 70. A detailed analysis of the full correla-
tion function leads to the following result:

&P ' '(z)P'+'(Do )) =1M12 M11(z2)$4(~ )+M12(z2}1(3(~ )+g M1)(z2)I 1(t3( ~)
J Z2

r

1M13 21(z1 )1(7( ~ )+M22(z1 )Qs( oo )+g M2 (z1 )I $6( oo )
2 1

Z]
(3.18)

Equation (3.18) shows that the spectrum of resonance
fluorescence is composed of two separate structures with
center frequencies located at ~2 and co&, respectively, and
magnitudes proportional to the dipole moments of the
two atomic transitions. Each contribution to the total
spectrum has the generic form

f(z) =—+g (z),
Z

(3.19)

where A is a constant and g (z) is an analytic function of
z for Rez ~0. The singularity refLects the existence of a
coherent Rayleigh peak whose origin can be traced to the
elastic scattering of the driving fields, while g(z) de-
scribes the incoherent part of the spectrum of the emitted

I

radiation. If we denote the full correlation function with

(3.20)

lim z2f''"(z) .
1

Z2 z2~0

Finally, the required emission spectrum is given by

S(co)=Ref' ';„",,„(z)l.

where

(3.21)

(3.22)

the incoherent part can be calculated according to the
simple algorithm

f' ';„",,„(z)= f' ' "(z)— lim z, f' "'(z)1

Z) z) ~0

f';„„„(z)=tu, 2 M„(z2)$4( oo )+M12(z2)g, ( m )+QN, )(z2)IJQ3( oo )

J

+P13 M21(Z1 )$7( M ) ™22(Z1)1/g( M )+g NP~(Z1 )I $6( 00 )

J
(3.23)

and

N; (z)=(L '(z L) ');, . — (3.24)

The results of Eqs. (3.22) and (3.23) can be converted into
numerical form by standard matrix manipulation tech-
niques. They suffer, however, from a drawback because
the complicated structure of the matrix elements M~(z)
and N,J(z) makes them uninterpretable in simple physical
grounds. This problem will be overcome in part in Sec. V

where we show how to obtain a simpler expression for the
spectra in the limit of large effective Rabi frequency.
Typical predictions based on the numerical evaluation of
Eq. (3.23) will be shown in Sec. IV.

B. The absorption spectrum of a weak probe

We now turn our attention to a related problem: the
three-level system is driven by the external fields at fre-
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quencies ~, and co2 and is probed by a tunable weak beam
whose attenuation (or amplification) is measured in
transmission. According to the linear-response theory
the exponential attenuation coeScient at a given frequen-
cy co is given by

A(co) =const X 7[ & [P' '(r, ),P'+'(r0)] }I,

where 9' denotes the Fourier transform operator. The
square brackets indicate the unequal time commutator
and the quantum ensemble average & } must be carried
out under steady-state conditions, i.e., in the limit (3.17).

The absorption spectrum is composed of two parts:
the first, &P' '(r, )P'+'(r0)), is identical to the one cal-
culated in Sec. III A; the second, &P'+'(r0)P' '(r, ) },can
be derived following the same procedure with minor
modifications. The starting point in Laplace space is the
single-time average

y P 12M ij (Z2 ) +P13M2j (z 1 ) ]1 j( ro )

J

and

P12[1 4(r0) 48(ro)] (3.28)

I~ =IjTr[p( r0) ]

Ij [P12e 13 (r0 )+813 e 46(ro)] (3.29)

P&2 JM r3+g Mij(z2)+ M2j(z, } I
J

~ Z2 Z]

(3.27)
Again, we must express g.(r0) and I in terms of expecta-
tion values of system operators and then replace every ex-
pectation value of the type & ~i ) &j ~ ), and & 1), with
&P'+'( r0)~i }& j~ ), and &P'+'(t0)), , respectively, where
P'+'( r0) is given by Eq. (3.4b). Thus, for example, we
have

'P, (r ) =e ' '& ~2}& 1
~ ),

81201(Z2 ) +P 0132( lz)

whose explicit form is

(3.26)

Similar expressions hold for the remaining expectation
values. At this point, as in the case of the emission spec-
trum, we must sort out the terms that survive the steady-
state limit with the result

&P'+'(oo }P ' '(z)) = I4i2 Mii(z2)[1 f4( oo ) ills( oo )]+M~4(z2)$3(oo )+M»(z2)$6(oo )+g Mij(Z2)IJP3( oo )

J 2

1
+913 M22(zl }[ 44( ) 48( }l™25(i )43( }+M28( i )46( ) +g M2j ( i ) j P6(

~ Z]

(3.30)

Finally, the complete expression of the absorption spectrum (in Laplace space) is given by

&[P' '(z), P'+'(r, )])=&P' '(z)P'+'(7;)& —&P" (r )P' '(r, ))

j2i2[Mi i(Z2 )A)4™( i2)Z(('25 ™i)(Z2 )( 1 —
Q4 $8) M)4(z2 )(('3 Mi7(Z2 )$6]

+j 13[M21(zl )Q7 ™22(zl)Q8 ™22(zi )( 1 —
1 4 48 ™25(Zl )Q3 ™28(z1 ) P6] (3.31)

and

A( i)=oRe&[P' '(z), P'+'(7- )]}, (3.32)

The absorption spectrum, just as the spectrum of reso-
nance fluorescence, is composed of two separate struc-
tures centered around the transition frequencies of the
atom. The numerical analysis of the results of this sub-
section is also assembled in Sec. IV.

IV. DISCUSSION OF THE EMISSION
AND ABSORPTION SPECTRA

This section contains a graphical survey of some
specific predictions that emerge from the formulas de-
rived in Sec. III. In our numerical work the time is mea-

sured in units of W3, (i.e., r= W» t ), the scaled Rabi fre-
quencies are defined as P, =g, /W3„ for i=1,2, the di-
mensionless rates W; are given by the ratios W, /W»
for all values of i and j, and b, =b, , /W» for i =1,2. Fi-
nally the collisional excitations rates from lower to higher
levels are set equal to zero.

We begin with the analysis of the emission spectra.
There can be striking differences between the fluorescence
produced by an atom driven by one and by two resonant
fields. Curve (a) in Fig. 3 illustrates the typical in-
coherent part of the spectrum produced by the 3~1
spontaneous decay of the V system when the second driv-
ing field is turned off' (p2=0) and the first is moderately
large (pi = 1). As expected, this spectrum is composed of
a single peak centered at co=co3I with a full width at half
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maximum of the order of unity in the chosen units. The
sidebands are beginning to show up but are not yet
resolved at the selected field strength. A precise analysis
would show small quantitative differences between this
spectrum and that of a simple two-level system driven by
the same field because of the additional relaxation path-
way from level 3 that is built into our model, but the re-
sults are substantially similar.

If the second field is turned on and, in particular, if P2
is sufficiently larger than P„ the shape of the emission
spectrum undergoes major modifications, as shown by
curve (b) of Fig. 3. By inspection we recognize the fol-
lowing.

(1) The spectrum develops sidebands whose frequency
spacing from the central peak is given approximately by
+2(Pf+P22)'~ (this empirical observation is supported by
the calculations of Sec. V of this paper.

(2) The integrated area under the spectrum of curve
(b), i.e., the total fluorescence, is smaller than the corre-
sponding area under the spectrum of curve (a).

(3) The linewidth of each spectral component of curve
(b) is much smaller than predicted by the standard theory
of resonance Auorescence.

It is not so obvious how to account for these features
on the basis of the calculations developed in Sec. II and
III (at least not by direct inspection of the formulas); in
Sec. V we show that a more convenient representation of
the density operator in terms of dressed atomic states'
paves the way for the analytic derivation of explicit ex-
pressions for the shape of the emission spectra, their peak
heights and widths, and explains the origin of the features
noted in Fig. 3. Here we anticipate that, in resonance,
the allowed transitions among these dressed atomic states
can generate up to five spectral components; two side-
bands are spaced at a distance +2(Pf+Pz)' from the
central peak and two are half as far away from the center.
Detailed calculations show that the inner sidebands are
usually small for moderate values of P&, and in fact they
are virtually unobservable in the case shown in Fig. 3.

The strong reduction of the integrated area under the
spectrum of curve (b) of Fig. 3 is a consequence of a
phenomenon called "coherent population trapping"
which has already been studied both experimentally and
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p (co)

0. 1

0.0
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theoretically. ' ' ' ' In Ref. 16, for example, Gray,
Whitley, and Stroud ofFered a clear experimental demon-
stration of this effect in a A system, and Orriols' predict-
ed similar but less pronounced features for a V system, as
well. An illustration of this effect is given in Figs.
4(a) —4(d) where we plot the populations of levels 3 and 2
for a V and a A system using 62=0 and variable 5,.
When h&=62, the excited state populations, hence the
total fluorescence, reach a minimum for both models,
which is significantly more pronounced in the case of Fig.
4(c) than in Fig. 4(a). A detailed analysis of this effect
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0. 1 0. 1
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FIG. 3. Curve (a), Power spectrum of the spontaneous radia-
tion emitted by the 3~1 transition for 8'2, =0.1, %32 0.5,
6, =0, 52=0, P, = 1, and Pz=O; apart from small quantitative
differences this spectrum is very similar to the standard Mollow
spectrum; curve {b) same as curve (a) except that P2=4.

FIG. 4. Dependence of the steady-state populations of level 3
(a) and level 2 (b) upon the detuning parameter 5& for the V
model; the parameters are Wz, =0.1, W, 2 =0, b, =0, P, = 1, and
P2=4. The chosen value of W, z minimizes the fluorescence
from level 3 when 5& =0. (c) and (d) refer to the populations of
levels 3 and 2, respectively, for the A model; here 8'» =0,
W32 0.5, hz =0, P, = 1, and Pz =4. The chosen value of Wz,
minimizes the fluorescence from level 3 when 5, =0.
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can be found in Ref. 17. The immediate consequence of
population trapping on the spectra is the appearance of
dark lines as one sweeps the detuning parameter 6,, as
shown in Figs. 5(a)—5(c). These are rather well in evi-
dence in the sidebands produced by the 3~1 transition
[Fig. 5(a)], but show up unmistakably in Fig. S(c) which
illustrates a spectral scan for the 3~1 transition of the A
model to emphasize the difference with the V system.

The origin of the line narrowing phenomenon is also
well explained by the dressed atom picture but an under-
standing of this effect requires a careful analysis of the
entire master equation in the dressed state representation,
and for this we must refer the reader to the detailed dis-
cussion of Sec. V. This phenomenon originates from the
fact that the spontaneous decay rate of each atomic tran-
sition in the presence of the driving fields becomes a
linear superposition of all decay rates 8;" connecting the

(a)

-10

31
i0

levels of interest, with weighting factors that depend on
the relative magnitudes of the Rabi frequencies. For this
reason, and in anticipation of the analytic results of Sec.
V, it is interesting to consider the behavior of the spectral
features as we vary the key parameters of the theory.

Figure 6(a) illustrates the role of the decay rate Wz& in
affecting the linewidth of the 3~1 spectrum when Pz/P,
is sufficiently large; Fig. 6(b) shows the appearance of an
additional pair of sidebands separated from the central
peak by an amount +(P, +Pz)' . Upon increasing W3z
these sidebands grow; their magnitude is also sensitive to
the size of P, and is usually quite small for moderate
values of this Rabi frequency. Of course, in general, the
decay rates O';J are not adjustable parameters. It should
be much easier instead to vary the relative strength of the
driving field amplitudes as shown in the simulation of
Fig. 7. This three-dimensional plot combines all the
effects discussed previously: the narrowing of the central
line, the appearance of the inner sidebands, and the popu-
lation trapping effect (see, in particular, the lowering of
the central peak and the emergence and disappearance of
the inner sidebands).

A more detailed view of the dependence of the peak
heights and linewidths on the Rabi frequency of the
second field is shown in Figs. 8 and 9. Here we have
selected a fixed and fairly large value of P, (P, =3). The
isolated points are the results of the exact numerical cal-
culations, while the solid lines follow from the asymptotic
approximation of Sec. V. The agreement is generally
quite satisfactory over the range where the effective Rabi
frequency is suSciently large. An exception is provided

(a)

.0

10 15

10 g

FIG. 5. (a) Emission spectra of the 3~1 transition and (b) of
the 2~1 transition as functions of Al for the V model; (c) emis-
sion spectra of the 3~1 transition also as functions of 5& for
the A model; the parameters of these simulations are 8'» =0.1,
W3z =0.5, hz=0, P, =1, and Pz=3.

15 0

FIG. 6. (a) Emission spectra of the 3~1 transition as func-
tions of the relaxation rates 8'» and (b) as functions of 8'», the
parameters of these simulations are 5& =0, 42=0, and

W3$ 0. 5, P, = 1 and P, =4, for (a), and Wz, =0.1, P, =4 and

P, =4, for (b}. Each spectrum in (a) has been normalized to uni-

ty to put in better evidence the line narrowing effect.
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0
0

I

6 p2 8

FIG. 7. Emission spectra of the 3~ 1 transition as functions
of P&', the parameters are W&, =0.1, W32 =0.5, E,=0, b2 =0,
and P, =4.

by the linewidth data for the inner sidebands which con-
verge more slowly to the corresponding asymptotic
values (in part this is due also to systematic errors intro-
duced by the smallness of these spectral components and
the consequent importance of the wings of the other
peaks) .

The absorption spectrum of a weak probe offers addi-
tional surprises. Here we focus on a situation where a
weak tunable beam, with a carrier frequency close to ei-
ther ~» or co2 „propagates through the system of driven
atoms. We consider first the wel 1-known case where only
one driving field is present (P, = 1,P2 =0 ). Figure 10
shows the absorption spectrum of the 3~ 1 resonance;
this as the standard shape predicted by Mol low, apart
from smal 1 quantitative differences resulting from the ex-
tra decay pathways included in this model . We note the
expected appearance of frequency intervals where the
probe can be amplified instead of being absorbed. Fig-
ures 1 1 and 12 show the absorption spectra of the 1~2
and 1~3 transitions when both fields are present for
different values of the second driving field amplitude.
The absorption spectra of both transitions have a fairly
complex structure with alternating regions of absorption
and gain depending on the strength of the second field

0.3

FIG. 9. Dependence of the linewidths of the spectral com-
ponents of the 3~ 1 spectrum upon the Rabi frequency P&.

Curves (a)-(c) represent the widths of the central component, of
the +G sidebands, and of the +2G sidebands, respectively . The
parameters of this simulation are W2, =0.1, W» =0.5, P, =3.
The isolated points have been calculated using the formulas of
Sec. III, the solid lines are plots of the asymptotic results of Sec.
V .

and the relaxation rates 8'2
&

and 8'» . It is interesting to
note, for example, that the gain region for small values of
P2 and 8'z, =0.1 [Fig. 1 1(a)] collapses into an absorbing
one for larger relaxation rates [Fig. 12(a)].

A more interesting situation emerges as we vary the
strength of Pt by keeping the ratio P2 lP, constant and
smaller than unity. We anticipate here that, according to
the asymptotic calculations developed in Sec. V, the weak
probe should experience gain over the entire frequency
range of the transition that is being probed. Here we
show that this behavior is accessible even with relatively
smal 1 Rabi frequencies. The transition from absorption
to gain over the entire frequency range of the 1~2 tran-
sition is illustrated in Figs. 1 3(a) and 1 3(b). This response
is very different from that of the traditional two-level sys-
tern where gain regions, if they exist, are always accom-
panied by absorption domains. Thus, in the case of Fig.
1 3(b), the three-level atoms acquire many of the proper-
ties of an ordinary active medium This interesting effect
is best explained with the help of the dressed atom model
and the asymptotic calculations carried out in Sec. V to
which we refer the reader for a more complete discussion.

0 .2
CP

0

0.05

A (to)

0 .0

0.0
0 -0.05

FIG. 8. Dependence of the peak heights of the spectral corn-
ponents of the 3~ I spectrum upon the Rabi frequency P, .
Curves (a ), ( b ), and (c) represent the peaks of the central com-
ponent, of the SG sidebands, and of the +2G sidebands, respec-
tivel y. The parameters of this simulation are W» =0.1,
W32 0.5, P, =3. The isolated points have been calculated us-

ing the formulas of Sec. III, the solid lines are plots of the
asymptotic results of Sec. V .

-0. 1
- 15 0.0 15

3 1

W3 l

FIG. 10. Absorption spectrum of a weak probe around the
f03 1 resonance . The parameters of this simulation are W» = 1,
W32 0 5, 5, =0, hz=0, p, = 1, and $2=0.
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FIG. 11. Absor ti
co r, c

p ion spectra of a weak probe around ( ) th
esonance, and (b) the co resonanc f d'ff

a e

3 ] ce or i erent values of
P2. The parameters are W2i =0.1, W3 =0.5 b =0 E =0,2=0, and

I ~

FIG. 13. Absorption spectrum of a weak probe around the

co2| resonance «r ~pi =0 1, ~32=0» &1=0 ~z=0 Pi= and

(a) P, =3 and (b) P2=1.

V. ANALYTIC CALCULATION OF THE SPECTRA
IN THE HIGH EFFECTIVE FIELD LIMIT

4) —CO
21

-15

0

FIG. 12. Same as Fig. 11 except that here 0' =1.0.21

The procedure outlined in Secs. II and III offers a con-
venient numerical access to numerous interesting proper-
ties of the three-level system, but it suffers from a major
drawback: the results cannot be visualized in any simple
way because the operating physical mechanisms are hid-
den by the algebraic complexity of the final expressions.
In a way, this is the same problem one would face in
describing the coherence properties of the electromagnet-
ic field using the energy representation. It is possible to

o so, of course, but there are more natural representa-
tions for this purpose. The diSculty, in our case, is that
the energy representation hides the strong correlations
that are induced among the three atomic levels by the
coherent driving fields.

In this sect&on we show that a convenient set of dressed

descescription of the atomic dynamics and that, in the limit
of a strong effective Rabi frequency, this allows the calcu-
ation of the required correlation functions and the spec-

tra in closed analytic form. The immediate payoff of this
procedure is that explicit expressions for the line shapes,
inewidths, and peak heights become available, so that

one can trace the origin of the behaviors illustrated by
the numerical work of Sec. IV almost at a glance.

The only problem is that this method is useful only as
an asymptotic approximation, so that the numerical cal-
culations of the preceding section are rea11y unavoidable
for arbitrary values of the parameters. Hence, the pro-



42 SPONTANEOUS EMISSION AND ABSORPTION PROPERTIES. . . 1641

cedure outlined in Secs. II and III and the one described
below are complementary to one another. We should
also add that the dressed atomic states formalism appears
to be quite promising for a number of different applica-
tions; as shown in Appendix A, for example, it can be ex-
tended easily to include situations where the driving fields
are quantized and it should be useful to study a broader
class of problems that can be handled in the semiclassical
approximation.

The underlying notion is common to every situation
where an important part of the interaction Hamiltonian
can be diagonalized exactly. Here, as we show, the in-
teraction Hamiltonian (2.3) can be diagonalized easily,
while the irreversible mechanism leading to the atomic
decay and dephasing can be handled approximately in a
sense that will be made more precise in our discussion.
In order to minimize the algebraic labor we limit our
considerations to the case of a resonant interaction
(E, =F2=0) and we study only the emission spectrum of
the 3~1 transition. For the 2~1 emission spectrum
and for the absorption spectrum we only quote the
relevant results.

Thus, consider the interaction Hamiltonian (2.3) with
b, =62=0. Consider the dressed atomic states'

= ——[H&,p']+Ap' . (5.5)

The reversible part of Eq. (5.5} in the dressed state repre-
sentation takes a very simple form owing to the fact that
the states (5.1) are exact eigenstates of H', . Thus we have

~'

I
Pst

Psr

prr
rev

Pss

Prr

—2i Gpss

—iGp,',

&Gprf (5.6)

Again, we have the trace condition

(5.7)

analytic progress. In fact, in our case we show that,
while G must be large for this approximation to hold, no
restrictions are posed on the individual magnitudes of the
two Rabi frequencies g, and g2.

We consider again the master equation in the interac-
tion picture

lr & =(cos8)l2& —(sin8)l3 &, (5.1a) and the Hermitian symmetry

ls &
= [(sin8)l2&+(cos8)l3&+ l 1 &],

1

2
(5.1b) prs =(psr ) & ptr (prt ) & pts =(pst ) (5.8)

with

[(sin8) l2 &+(cos8) l3 &
—

l
1 &],

1

v'2

gztan8=

These states are eigenstates of H], i.e.,

H', lr&=0,

H', ls & =KG ls &,

Hj it) = RGit &—,

(5.1c)

(5.2)

(5.3a)

(5.3b)

(5.3c)

It is interesting to observe that of the eight independent
components p„'„ofthe density operator (we use Greek in-

dices to denote the matrix elements in the dressed state
representation, and Latin indices for the standard energy
representation) two are associated with the frequency
+iG, two with iG, two—with zero frequency, and one
each with +2iG. These groupings re6ect the various con-
tributions of the density operator to the five spectral com-
ponents. For this reason we have chosen to order the
matrix elements as shown in Eq. (5.6} beginning with the
+2G sideband of the spectrum.

The penalty one pays for using this representation is
that the irreversible part of the master equation becomes
very complicated. In fact, the original irreversible part of
the master equation is

and

G(g2+g2)1 /2 (5.4)
I

P J
—Z. AVWPPq

Qt irrev p, q

(5.9)

represents the effective applied Rabi frequency. Because
of the diagonal nature of H', in this representation, the
new matrix L, which is responsible for the atomic dynam-
ics, contains the effective Rabi frequency along the main
diagonal and is zero elsewhere. The irreversible decay
process breaks this symmetry. Ho~ever, if the effective
Rabi frequency is sufficiently large, it is possible to intro-
duce an accurate approximation that allows considerable

p„'.=g & pli &p';) & jlv& (5.10)

it is easy to obtain

where A;- are the various decay rates that appear ex-

plicitly in Eq. (2.10). From the transformation equation
between the two pictures

a
Bt Irrev .t~ J~p~q
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4s P(» 46 Prs 6 Ptr& 4s Prs &

p'„=1—p,', —p' =1—6—6 (5.12b)

where the transformation matrix elements (@~i ) can be
read immediately from Eq. (5.1). The explicit construc-
tion of Eq. (5.11) for each matrix element of p' is an enor-
mous chore which is ideally suited for symbolic logic pro-
grams (this is, in fact, what we have done in our work).
The resulting list of damping rates I„,is too long to be
included in this paper even when allowance is made for
various symmetry relations.

We now focus on the derivation of an expression for
the fluorescence spectrum in the limit in which 6 is much
larger than all the relaxation rates. Following a pro-
cedure that accounts for the approach to steady state and
for the response of the system around steady state with
an accuracy of order 1/G, we introduce the usual vector

f with components

I I I0i=p, 42=p„k=p, 44=p-
(5.12a)

This vector is a solution of the linear equation

f—=Lf+Ia
at

(5.13)

and, in steady state, it takes the form

f(00)= L—'I . (5.14)

Normally we would solve Eq. (5.14) by numerical tech-
niques. Because, however, we are interested in an ap-
proximate asymptotic solution, we note that in steady
state the off-diagonal elements of p' are of the order of
1/6, while the diagonal elements are of the order of unity
[see Eqs. (5.6) and (5.11)]. In this limit the dominant ma-
trix elements are

f4( ~ ) =p&( ~ ):—g„=— rss-
sst t + ssss ssrr

~32 2
~+ ~3~ 2

~+ ~2] 2

W32( p
cos 8+ sin 8)+ W3& sin 8+ Wz& cos 8

(5.15)

Note that if 8'32=0 we have

(5.16)

(Lp)] = I „„—2iG,
I „„—iG

(5.22a)

We now define the deviation from steady state

5$=p(t )
—f( ~ ),

which satisfies the equation

—5$(t) =L5$(t) .a
at

(5.17)

(5.18)

Of course Eq. (5.18) is just as complicated to solve as the
original equation (5.13). In the asymptotic limit of in-
terest, however, we can replace the matrix L in the fluc-
tuation equation (5.18) with a block-diagonal approxima-
tion Lp (see below) which is accurate up to corrections of
order 1/G. This step allows the analytic calculation of
the spectrum.

In order to understand the nature of this approxima-
tion we summarize the essential steps in Appendix B.
The result of this procedure is a fluctuation equation of
the form

«p)2= (5.22b)

r„„—r„,r
(Lp)3== r„„—r„,r

I „,„,+iG
(Lp)4= r trrs

(Lp)5= I „„+2iG .

r„„—r„rr
r„„—r„rr

r,„,„+iG

(5.22c)

(5.22d)

(5.22e)

srsr rtrt rsrs rtrtr V2 ~

I =I =rsrrt rtsr — rstr — trrs 7 3 (5.23)

In view of the symmetry relations among the decay rates
it is convenient to let

of(r)=L 5$(t)—a
0

or, in terms of the original vector g [see Eq. (5.17)]

gP(t)

=Lpga(t)+

I„,—a

(5.19)

(s.20)

r„„—r„rr =r„„—r„„„=y4,
sstt rssrr ttss r ttrr V 5

The only nonzero elements of the vector I„(to order
1/G) are

I 4=I 5=I „„„=8 322sin t9+ 8'3f 2sin 6'

where + 8'2, —'cos 0 . (5.24)I„= Lpf( ~) . — (5.21)

The diagonal blocks of L p, denoted by (Lp), are given ex-
plicitly by

At this point the procedure for the calculation of the
spectrum evolves along the lines described in Sec. III.
The solution of Eq. (5.20) in Laplace space is
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f(z)=M (z)f(to)+ —M (z)I„, (5.25) (P' '(t& ) ) =Tr[p'(t~ )a 3a&]exp(ico3]t J ) . (5.28)

where

M'(z) =(z —I,,)-' . (5.26)

I '+'=a'a I '- '=a'a—a,a3, —
Q3Q)

As usual, we need the single-time average

(5.27)

For simplicity we consider only the emission process for
the 3~1 transition so that

In terms of dressed states we have

ata, ~r) =0,

a 3a, ~s ) =
—,'(cos8)( ~s ) + ~t ) ) — —(sin8) ~r ),1

2

(5.29a)

(5.29b)

a3a, ~t ) = —
—,'(cosH)(~s)+ ~t ) )+ —(sinH}~r ), (5.29c)

1

2

so that, in Laplace space, it follows that

(P ' '(z) ) =
—,'(cosH)[g&(z& )+f&(z& )

—
g&(z~ ) —fr5(z~ )]— —(sin8)[g&(z& ) $7(z—f )]v'2

where

(5.30)

z) —z l c03) (5.31)

and the components of f are defined according to Eqs. (5.12). After replacing g, (z, ) by the appropriate expressions
[see Eq. (5.25)] in terms of P, (to) we only need to cast the various P, (to) in the form of expectation values and to carry
out the standard replacements required by the regression theorem. Thus, for example, we have

g, (to) ~Tr[p(to) ~t ) (s ~a,a3]=Tr[p'(to) ~t ) (s ~a, a3]

=exp( icu3, to)—(s ~a,a3p'(to) t )

1=exp( i co3, to )
—

—,
'

( cos8)(p,', +p«) — (sinH)p'„,
o'Q

(5.32)

where the overbars indicate that the operators are in the interaction picture. Similar expressions hold for the remaining
components of g(to) Note tha. t in the stationary limit of the oF-diagonal elements of p„' vanish and the only nonzero
elements are

(5.33)

as given by Eq. (5.15). In this way, Eq. (5.32) becomes

f, (to~ ~ ) =exp( ico3, to) —,'(c—os8)gs( ~ )+O(1/G) (5.34)

and the other matrix elements can be handled in a similar way. The result of these manipulations is the correlation
function

(P ' '(z)P'+'( ~ ) ) =
—,'(cos 8)g„(M» +M44 —M&4+M»+Mss)+ —,'(sin 8)(1—2$„)(M~z+M77) . (5.35)

At this point we need to calculate the explicit expressions for the matrix elements M; .. This task is made easy by the
fact that the first and last blocks of the M matrix are trivial, while the remaining three blocks have the generic form

a b 1 a

b a inverse a —b
—b a

After a few simple calculations Eq. (5.35) becomes

(5.36)

1
(P '-'(z)P'+'( ) ) =-,'(cos'8)g . + + + 2.G

z) —y2+iG z) —
y2

—iG
+ —,'(sin 8)(1—2g ) 2 2

+ . z z
(z, y~+iG )' ——y', (z, y, iG ) ——y 3— (5.37)
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and the emission spectrum is given by

S(p])=Re(P ' '(-z)P'+'( ) ) l, =,,„ (5.38)

y, = —
W32 —,'{cos 8)(1+cos 8)—W» —,'cos 8

—
W2& —,'sin 8,

y2= —
W32 —,

' [1+(sin28)(1+ 2 cos 8)]
—W» —,'(1+sin 8)—W2, —,'(1+cos 8),

y3 W32 p
sin'8 cos 8

y4= —W32( —,'cos28+ —,'cos 8+ —,'sin 8}

(5.39a}

(5.39b)

(5.39c)

For convenience we list the set of constants that are need-
ed to discuss this result

follows.
(1) In general, the emission spectrum of the 3 —+ I tran-

sition is composed of five contributions. One is centered
at the transition frequency co3& and has a Lorentzian
shape, two sidebands are removed by an amount +G
from the central peak, and two additional Lorentzian
sidebands are located +2G away from the central peak.
The outermost sidebands are the ones that also appear in
the Mollow spectrum of a strongly driven two-level atom.
The inner sidebands are instead a feature of the three-
level system, although they disappear if the rate of decay
of the 3~2 transition approaches zero because their
weighting factor is proportional to W32.

(2} The peak heights of the central component and of
the outer sidebands are given by

—W3, —,'(1+sin 8)—W2, —,'(1+cos28), (5.39d)

ys= W32 —,'sin 8( —,'cos 8—sin 8)+ W»( —,'cos 8—
—,'sin 8)

P(0)= —,'(cos 8) 2

V5 34
(5.40a)

+ W21( —,'sin 8—
—,'cos 8) . (5.39e) P( +26 ) = —,

' (cos 8) 1

ly] I

(5.40b)

The main features of the spectrum whose analytic rep-
resentation is given by Eq. (5.38) can be summarized as respectively, and their ratio is

P(0)
P(+26)

W32 —,'(cos 8)(1+cos 8)+ W3, —,'cos28+ W2] —,'sin28

W32 p
cos 8+ W3] p

cos 8+ W2] T]sin28
(5.41)

In the limit W32~0 this ratio becomes equal to 3, as in
the case of the standard Mollow spectrum.

(3) The full widths at half height of the central com-
ponent and of the outer sidebands are given by

hco(0)=2(y5 y4) W32cos 8+W3]cos 8+W2]s]ll 8

(5.42a)

hp](+26)=2ly]l = W32 —,'(cos 8)(1+cos 8)

+ W» —,'cos 8+ W2, —,'sin28, (5.42b)

respectively. Their ratio, in the limit W32~0 also ap-
proaches the value of the Mollow spectrum. Equations

I

(5.42) confirm the numerical findings with regard to the
line narrowing (or broadening) phenomenon. As g2 be-
comes progressively larger than g„ the linewidths are
dominated by the relaxation rate Wz&. Hence if

W3 &
eventually the spectrum becomes narrower,

or vice versa in the opposite limit. Thus this curious
phenomenon is the result of a mixing effect produced by
two driving fields which assign to the spontaneous decay
rate of the 3~1 transition spontaneous contributions
pertaining to the other atomic decay processes.

(4) The spectral shape of the inner sidebands is not
Lorentzian. Inclusive of the weighting factor, this is
given by the more complicated expression

W32 —,'cos 8 r2 r3+(~—~3]+6}'

W32( —,'cos 8+sin 8)+ W3]sin 8+ W2, cos 8 [y2 —
y3

—(p] —p]»+6) ) +4y2(co —co»+6)
{5.43}

and its full width at half maximum takes the form

gp]( +26 ) = 2 [ [4y4+ (y2 y2)2)1/2 2r2j 1/2 (5.44)

]p] . 2 y5 r4}
S21 =

—,'(sin 8)f„
(rs r4}'+(~ ~2])'

(5.45)

Note that, as already mentioned, the weight of the inner
sidebands is controlled by 8'3z and that these spectral
components disappear in the limit W32 ~0.

For the 2~1 spectrum one can easily derive the corre-
sponding results. Again we find a five-peak spectrum in
resonance. The central peak has the shape

with a peak value

S2,'(max) = —,'(sin 8)g„ 2

V5 X4

and fu11 width at half maximum

&~(0)=2(y,—y4) .

(5.46a)

(5.46b)
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The outer sidebands are removed from the center of the
spectrum by +2G. They have a Lorentzian shape

ly, I

S~21 '(co) = —,'(sin 8)f„,(5.47)
y1+ ( co —co21+26 )

S'z—, '(max} =
—,'(sin 8)

ly11
'

and full width at half maximum

bco(26}=2ly,

(5.48a)

(5.48b)

a peak height
The inner sidebands do not have a Lorentzian shape.

Their spectrum is given instead by

Irzl[y2 r3+(~ —~21+6)']
Sz

+—

, '(co) =—,'(cos 8)(1—2g„)"
[yz r—3 (~— ~21+6 }']'+4r2( ~21+6 }'

The peak height is

S12
+—

, '(max)= —,'(cos 8)(1—2g„) z

lyzl

y2
—r3

(5.49)

(s.soa)

and the full width at half maximum is

g~(6) 2[ [4y4+(y2 y2)2]1/2 2y2] 1/2 (5.50b)

Similar calculations can be developed to describe the asymptotic behavior of the absorption spectrum. In this case a
surprising fact emerges. Consider, for example, the results of this calculation for the absorption lines of the 1~3 and
1~2 transitions which are given, respectively, by

sin 8 lyz+r31 Irz —r 31
331(~)= [P'„,(~)—P'„(~)]

z z+4 "' (~ ~31 6)'+—(rz+r3)' (~ ~» 6)'—+(rz r3}'—

Ir, +r, l

(~ ~»+6)'+(rz+r3)'
Ir r I—

(~ ~»+6 }'+(rz r3)'— (5.51a)

&»(~)= [p'„( ~ ) —p'„( ~ )][ ),4
(5.51b)

W32(cos 8—sin 8) ~ W» sin 8+ Wz1 cos 8 (5.52a)

or

g2
'2

8'32 —8 2)

1+&32
(5.52b)

the atoms amplify the probe radiation, while if it is nega-
tive they absorb it. This result is unlike the correspond-
ing amplification process of a weak probe predicted by
Mollow because the response of this system, under condi-

where p'„„( ao ) and p', , ( oo ) are the steady-state populations
of the dressed states r and t and the curly brackets of Eq,
(5.51b) stand for the same expression within the large
parentheses Eq. (5.51a) after replacing co» with coz, . We
see, by inspection, the following.

(i) The only spectral features, to order I/O, correspond
to the +G sidebands; the others are of higher order and,
in the large G limit, become negligible.

(ii) The expressions in the large parentheses of Eq.
(5.51) are positive definite, so that the sign of the absorp-
tion spectrum is determined for all values of co by the
steady-state population diff'erence p,', ( ~ ) —p,', ( ~ ). In
particular, if this quantity is positive, i.e., if

tion (5.52), is of the same type over the entire frequency
range.

The implications of this result are especially clear in
the limit in which tanO=g2/g, ~0. In fact, in this limit
Eq. (5.52b) implies W3z Wz, and this is precisely the sit-
uation that favors the accumulation of population in level
2 under steady-state conditions and produces gain at the
2~1 transition. There is more, however, because the ex-
istence of a steady-state population inversion between the
dressed states r and t implies simultaneous inversion be-
tween the atomic levels 2-1 and 3-1, as one can easily ver-
ify by converting p'„„(~ )

—p'„( ~ ) into the corresponding
combination of matrix elements in the original represen-
tation. Nevertheless, the origin of the amplification is not
just a trivial consequence of amplified spontaneous emis-
sion in the presence of population inversion because the
maximum gain does not occur at exactly the transition
frequency co21 (or co») but at coz, +6 (or co»+6). An ex-
ample of this behavior is shown in Fig. 14 where we com-
pare the exact numerical solutions (dots) with the graphi-
cal display of Eq. (5.51a) (solid line).

VI. CONCLUSIONS

This study completes and extends a number of earlier
investigations' ' on the response of three-level atoms
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W3i

FIG. 14. A fit between the exact absorption spectrum of a
weak probe around the co&& resonance (open circles) and the
asymptotic approximation of Sec. V (solid curve) for 8'» =0.1,
W32 0.5, 6, , =0, b,2=0, p, =4, and pz=1.

to external driving fields. It has been known for some
time that multilevel atoms can display a much broader
range of effects than their two-level counterparts as a re-
sult of the coherence induced among the states by the ra-
diation, and the interference effects that can produce
unexpected and sometimes counterintuitive behaviors
(e.g. , coherent population trapping). In this work we
have focused mainly on the properties of spontaneous
emission from a V-model atom and on the shape of the
absorption spectrum of a weak probe passing through the
collection of driven atoms.

The most interesting consequence of the presence of
two applied fields is the structure acquired by the spon-
taneous emission spectra, and especially the influence of
the spontaneous decay rates in setting the strength of the
emitted intensity and the width of each of the spectral
components. In particular, spectral features that may be
unresolved for a certain selection of operating parameters
[see, for example, Fig. 6(a)] may become readily observ-
able with a judicious selection of driving field strength.
From these results one may be tempted to speculate
about the possibility of resolving closely spaced energy
levels. Although we have not done detailed calculations
to verify this point, it may be interesting to inquire how
the predictions of this work may change if one or more of
the atomic levels are replaced by pairs of nearly degen-
erate sublevels. Transient beat effects are known to occur
in situations of this type. Here one is interested in the
possible existence of recognizable steady-state features
that would lead to improved detection of close-spaced
atomic lines.

Another unexpected and intriguing phenomenon has to
do with the absorption spectrum of a weak probe. We
have known for some time that two-level atoms can de-
velop frequency domains in their response to a probe
where gain instead of absorption can be observed. This
effect, of course, is not the consequence of a state of in-
version between the levels of the driven atom and should
be interpreted instead as a parametric energy transfer
from the pump to the probe, mediated by the atomic sus-
ceptibility. In our case a new feature develops: a probe
beam can be amplified over practically the entire frequen-
cy range of the absorption feature if the dressed atomic

levels are driven into a state of inversion. This condition
[Eq. (5.52)] can be satisfied rather easily, as shown at the
end of Sec. V. The implications of this effect will require
additional studies; the most obvious question, of course,
concerns the influence of an optical cavity with the abili-

ty to resonate at the frequency for which the gain in the
atomic response is highest.

One area that was not mentioned in this paper but for
which we have some preliminary data has to do with the
intensity correlation properties of the fluorescence radia-
tion. This is a subject that has already received consider-
able recognition in connection with the photon anti-
bunching effect displayed by driven two-level systems and
in more recent times within the context of nonclassical
fields. In our case we have seen evidence of interesting
behaviors with three-level atoms as well. In addition to
antibunching, appropriate selections of parameters ap-
pear to favor the emergence of anomalously large fiuctua-
tions. As we know, narrow-band thermal light can pro-
duce excess fiuctuations for short delays (the Hanbury-
Brown and Twiss effect) which exceed the long delay lim-
it by a factor of 2; in our case we have recorded excess
factors of 8 and more in some numerical simulations.
Again, these are not transient phenomena, but instead
they persist after steady state has been achieved. We plan
to analyze this phenomenon in greater detail and to re-
view also the alternative A and:- configurations. Our
findings, if suSciently interesting, will be the subject of
future publications.

Note added in proof. After completion of this
manuscript we have been informed by Y. Zhu, D. J. Gau-
thier, and T. W. Mossberg that they have succeeded in
demonstrating the existence of line narrowing with an ex-
periment involving a beam of barium atoms driven by
two independent coherent sources in a V-type
configuration.
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APPENDIX A: THE DRESSED STATES
OF THE QUANTUM MODEL

The construction of the dressed states of the quantum
counterpart of the Hamiltonian (2.1) has already been de-
scribed in earlier publications (see for example, Refs. 15,
19, and 27). Here, for completeness, we outline this
derivation. The full quantum model consists of a three-
level atom coupled to a pair of electromagnetic modes,
with a total Hamiltonian given by
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3

H —g c.;0, a, +fico]b]b]+Aco2b2b2
1=2

+]rg(K]030]b]+K]0]03b, )

+]rl(«30 ia] by+ Ki a,a, b 2 ) (Al)

H =Ho+H)
where

Ho=%co](03a3+b, b, )+%co&(0 20+ibibi)

(A2)

(A3)

where E, denotes the energy of the ith atomic level (the
ground-state energy is chosen equal to zero), a; and a;
are creation and destruction operators for the electrons,
b,~ and b, the corresponding operators for the field
modes, and K, (i=1,2) are complex coupling constants.
We show that the spectrum of eigenstates of this Hamil-
tonian can be arranged on a two-dimensional lattice of
triplets for every value of the field quantum numbers
n, )0 and n 2 )0. The boundaries of this space, for
n, & 0 and n2 =0 and for n, =0 and n2 & 0 are comprised
of doublets and the ground state (for n]=ni=o) is a
singlet.

It is convenient to write the Hamiltonian in the form

[HO, H]]=0. (A5)
In the subspace with n, & 0 and n 2 & 0 and fixed values of
n, and n 2 we diagonalize H, using the set of eigenstates
of Ho

ll) ln], nz), I2&ln], ni —1&,

as a basis. The matrix representation of the interaction
Hamiltonian is

K2 n2 K) n)

H, =]r «2+ni b, i 0 (A6)

«]Qn] 0 b]
and the eigenvalues are the solutions of the cubic equa-
tion

A,
—1, A'(b, ]+bi)+A]]i (6]bi—IK, I n, —l«il n, )

+A3b, ]I«ili in+Pi hiIK]l n, =o. (A7)

For simplicity we limit our considerations to the resonant
case in which 5, and A2 are both equal to zero. If we
denote the required eigenstates of H& in the n, , n2 sub-

space with Ir, n„n, ), Is, n„nz), and It, n„n2), respec-
tively, a simple calculation yields the eigenvalues

and

H'] ]rid]0303+ i]5r,l3030+3(]]Ki]300b]]+K]0]03b])

+A(«ianna]bi+«30]aiba) . (A4)
The symbols 5, and 62 denote the frequency detunings

603] ct)] and co&,
—

cu2, respectively. Note that

~r n, n ~ ~s n, n ~6~ ~t n n

where
G'= IK] I'n]+ l«il'ni

and the normalized eigenvectors

(A8)

(A9)

Ir, n„ni) =(cos8)e 'I2) In„ni —1)—(sin8)e 'I3) In] —I,nz), (Aloa)

ls, n„ni) = —[Il)ln], ni)+(si 8n)e 'I2) In], ni —1)+(cos8)e 'I3) In] —l, nz)],
2

(Alob)

lt*n] n2&= - [ —ll&ln] ni&+(»n8)e "12&ln] ni —I&+(cos8)e "I3&ln] —1 ni&]
2

(Aloe)

where cp, and y2 are the phases of the complex coupling
constants K, and K2.

In the subspace with n, )0 and n2 =0 we diagonalize
H& using the basis set

I

and obtain the eigenvalues

„„=%I«,I+n„A, ,„=—]] l«, l+n, ,

and the eigenvectors

(A13)

ll)ln„o), I3)ln, —l,o),
and we find the eigenvalues

x, „,=WIK]
I Qn], x, „„=]rl«,l Qn],

and the corresponding eigenvectors

(Al 1)

Is, o, n2) = —(I1)Io, n2)+e 'I2) lo, ni —1)), (A14a)
2

It, o, n2) =
&

—(ll &lo, ni&+e '12&lo, ni —1& . (A14b)v'2
Finally, the ground state of H] is the singlet

ls, n], 0) = (I1)In„o)+e "I3)In, —l, o) ),v'2
Iground) =

I
1 ) Io, o) .

APPENDIX 8: DKRIVATIGN GF EQ. (5.19)

(A15)

(A12a)

lt, n], 0&= ~- (
—l»ln], 0&+e "I3&ln] —1,0&) .

v'2

(A12b)
In the subspace with n, =0 and nz & 0 we diagonalize H

&

using the basis set

I
1 &lo, n, &, I2) Io, n —1&,

The essential step leading to the explicit formulas de-
rived in Sec. V is the replacement of the matrix L that ap-
pears in Eq. (5.18) with the block-diagonal matrix Lo of
Eq. (5.19). In order to understand the nature of this ap-
proximation consider the explicit form of the equations
for 5p„' . Here we only focus on the first three of the
eight independent equations because this will be sufficient
for our purposes. We have
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—5p,',
———2tG5p,', +r„„,5p'„, +r„„,5p'„, + I „,„5p,'„+I„„5p,', +r„,„5p',„+I„„5p'„

+(I"„„—I „„„)5p,', +(I „„—I „„„)5p„, (8 la)

—5p,', = —l65p,', +?,„„5p'„,+I,„„5p„',+I,„„5p,'r+ I,„„5p,', +?,„„5p,„+I „„5p,',dt

+(I,„„—I „„„)5p,', +(I,„„—I',„„,)5p'„, (8 lb)

dt
5—p'„, = tG—5p'„, + r„,„,5p + r„,„,5p'„, + r„„„5p,'„+I.„„,5p,', + r„„„5p',„+r„„5p'„

+(r„„,-r„,„„)5p,', +(r„„,—I „,„„)5p,', . (Blc)

If we let

—e 2i G—&R 5p' =e ' 'R

—5p,', =(I „„2iG—)5p,', , (84a)

5pss =Rsvp 5p'tt =Ra

5p' =e' 'R„„5p' =e' 'R 5p' =e ' 'R„,
we obtain

(82)
—5p,'„=( I,„„iG—)5p,'„+I,„„,5p'„, ,dt

d )—5p'„, = I „„„5p,'„+(I „,„, iG)5p—'„, .

(84b)

(84c)

dRst
I ststRst+dt

dR„
~srrt Rrt + ~srsr Rsr +~

dt

(83a)

(83b)

Hence, by neglecting the rapidly oscillating components,
the new matrix Lo can be obtained from the original ma-
trix L after ignoring the elements outside the block-
diagonal structure composed of the five submatrices as
shown schematically below

dRrt
~rtrtRrt +~rtsrRsr +~

dt
(83c)

(1 x 1)
(2X2)

where o denotes rapidly oscillating terms.
In view of the assumed large value of 6, it is reasonable

to drop the oscillating contributions so that, in terms of
the original variables, we have

Lo= (2X2)
(2X2)

(1 x 1)
(8&)
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