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%'e employ supersymmetry arguments to calculate the exact eigenvalue spectra of a general mul-

timode, multiphoton Hamiltonian for a two-level atom. First, supercharges are built from both the
atom and the photon fields. The exact diagonalization of the Hamiltonian is achieved by utilizing
spinorial behavior of these supercharges.

I. INTRODUCTION

Quantum theory of radiation and the interaction of ra-

diation with matter show many unusual nonclassical phe-
nomena. The one-photon Jaynes-Cummings model'
(JCM) has long been a standard model for treating many

of such phenomena, and the popularity of this simplified

model stems partly from the fact that it can be solved ex-

actly. Among the most prominent of these quantum

effects is the squeezing of the electromagnetic field, or
more generally quantities satisfying su(n) and su(1, 1) Lie
algebras. Squeezing is an example of an inherently

multiphoton effect, and deeper squeezing has been pre-
dicted in models with multiphoton extension of the
JCM. Other multiphoton processes, such as the two-

photon version of super radiation, have also been

discovered. In view of the role the JCM has played in

one-photon processes, it should be valuable to investigate

exactly solvable models for various multiphoton process-
es.

The technique of dressing has been successfully em-

ployed to obtain exact eigenvalue spectra for the JCM
and certain models describing two-photon processes in a
two-level atom (TLA). Usually one speaks of an atom

dressed by an electromagnetic field. However, it is useful

to treat the atom (or more precisely, the electron) and the
photons on an equal dynamical footing as elementary ex-

citations of the corresponding fields. Then, both the
atom and the photons are (further) dressed by the interac-
tion. The excitation spectrum of the interacting many-

body system can be obtained from the poles of the per-

tinent Green's function in the frequency domain. Alter-
natively, one may perform a direct canonical transforma-
tion from the original system to a system of weakly in-
teracting (or, hopefully, independent) fictitious particles.
This approach has the advantage of being more intuitive-
ly appealing. However, unlike the quantum-field theoric
methods, where the calculations are performed systemati-
cally with diagrams, it is often difficult to find appropri-
ate transformations. Thus, to date there seems to be no
general procedure leading to exact canonical dressing for
models describing higher-order nonlinear optical process-
es. Furthermore, the atom-photon system is an interact-
ing boson-fermion system. Consequently, usual canonical
transformations involving particles with the same spin

statistics cannot be applied.
The purpose of this paper is to extend systematically

the exact dressing of the one- and the two-photon Hamil-
tonians to a model Hamiltonian describing multimode,
multiphoton processes in a TLA. As discussed above, the
TLA-photon system is considered here as a system of in-
teracting bose- and fermi-type excitations. Therefore, it
is natural to employ supersymmetry arguments to treat
such a system. In fact, several authors ' have dis-
cussed various supersymmetry aspects of the JCM. Later
in this paper it wi11 be shown that superalgebra can be ex-
tended to the multiphoton problem and thereby the
transformation from the original interacting system to
that of completely decoupled elementary excitations can
be performed systematically. The basic idea is to con-
struct pseudo-spin- —,

' operators from the atomic and the
electromagnetic field modes, and take advantage of the
rotational properties of angular momentum. In Sec. II
the Hamiltonian for a two-level system is given in terms
of particle creation and annihilation operators. Section
III discusses the free-field JCM in terms of supersym-
metry quantum mechanics. Then the supersymmetry ar-
gument is extended to the exact eigenvalue problem of
the JCM and the general multimode, multiphoton pro-
cesses in a TLA.

II. ELECTRON AND PHOTON FIELDS
AND THE T%0-LEVEL SYSTEM

A. Canonical quantization

Let b, (b, ) and c, (c ) be creation (annihilation) opera-
tors for the photon mode i (i = 1, . . . , k) and the electron
in the atomic state ~j) (j =1,2), respectively. For a
given time they satisfy the canonical quantization rules

[b;, b; ]=5,.;, [b;,b;]=[b, , b, ]=0,
[c,', c)~) =5,',-, [c',c,-I = [c,t, c, ] =0,
[b„c,]=[b;,c, ]=[b, , c, ]=[b, , c,"]=0

Next we introduce the transition operator' f and its
Hermitian conjugate f defined by

f —C jc2, f =C2c1
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and impose the normalization condition

2

g c, c, =l,
j= 1

(3)

I f f ')I = I If f I
= If ' f ] =o

[b;,f]=[b„f ]=[b;,f]=[b;,f ]=O.

It follows that f (f ) can be regarded as fermion opera-
tors, and can be realized by 2 X 2 matrices

0 1f'=
o o (5)

0 0
1 0

because the cases in which both levels are either empty or
filled are not of interest here. Then using Eqs. (1)—(3),
one can verify the commutation and anticommutation
rules

Ilb; n- —n, Pl,

1

nf/ —&=

1

nfl+&= o

0 0
0 1

=0

0 1

0 0=' 0

III. EXACT EIGENVALUE SPECTRA
OF m-PHOTON HAMILTONIAN

Thus we have the correspondence
~

—)~~nf =0) and
),+ )~~nf = I), and all subsequent discussions will be
confined to the two-dimensional space spanned by either
the basis set t ~n „.. . , n„;+ ) ] or the boson-fermion
number states I ~ nb „.. . , nbI, ', nf ) I.

B. The two-level system A. Model Hamiltonians

The Hamiltonian for a two-level system with free elec-
tron and photon fields, after a Fourier transform, may be
written as

k 2

H =+cob;b;+g sec (6)

In the above, co; and c are energies of the ith mode of the
electromagnetic field and the atomic state

~j ), respective-
ly. The zero-point vibrations do not give rise to any
physical significance, and hence are ignored. The zero of
the atomic energy is chosen such that el+a.&=0, with a
difference coo—= c2 el &0. Then c.l= —

—,'coo and c.z= —,'coo,

and the atomic states may be represented by

1 0
12&—=

()
=I+&, (7)

V =—~ g b, "...+A" g b,
"'.t. ,

i=1 i=1
(IO)

where g, =(+) or (
—), b;+:b, and —b;:b;, g—";

& v;~g;~
=m (v; is a positive integer), and A is the c-number cou-
pling parameter. After some algebra the Hamiltonian
reduces to

k

H =a)of f + g co; b; b;,

The Hamiltonian considered here for multimode, mul-
tiphoton (m) processes is the sum of H given by Eq. (6)
and the interaction between the atom and photons of the
form

Thus the product basis for the two-level system is

/n, , . . . , n„;+)=/n, ) /n„) /N+&.

The number operator for the fermion operator f is

V= —WPb 'f+W'gb; ''f'—

1 0
nf=f f =

and for photons

(Sa)
where —,'coo has been included in V for convenience.

The Hamiltonian for the JCM is obtained with
m =k =vs=+ I, and A. real,

nb =n, =b, b, , (Sb) H =coof f +cob b, V= (f b+b f)—
2 2

(12)

where the subscript b is inserted to emphasize spin-
statistics. These number operators satisfy the eigenvalue
equations

Likewise, three special cases for two-photon processes
(m =2) are

~o
(a) k =1, v=2, g=+, H, =coof f +cob b+ (b f +b—f)—

(b) k =2, v, =l, g, =+, Hb=coof f+gco, b; b;+ (b, b2f +b,b2f) ——

(c) k =2, v, =1, g, = —, f2=+, H, =cocf f ++co;b;"b;+ (b,b2f +b, b~j—')—
I
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while Eq. (11) reduces to the Hamiltonian of Sukumar
and Buck' when k = 1, v=rn, and g=+.

B. JCM and supersymmetry or

(n„,nf~N~nb, nf) =(n+1,0~N~n+1, 0)

=(n, 1(N)n, 1 ) =n +1, (19)

Q =f'b Q=b f (13)

Obviously, the effect of Q and Q is to transform a boson
into a fermion, and vice versa. Thus the state ~nb, nf )
transforms under Q and Q as

Q~nb, nf ) ~ ~nb+ l, nf —1),
Q lnt„nf &

~ lnb —l, nf+1) .

Consequently, the basis set for the JCM
[ ~

n + 1; —), ~ n; + ) I transforms under Q and Q as

Q~n, +) ~ ~n+I, —),
Q'~n+ I, —

&
~ ~n, + & .

The statistics-changing (and hence odd) generators of
symmetry Q and Q are generators of supersymmetry.

A supersymmetry Hamiltonian is given by the an-
ticommutator between supersymmetry generators Q and

~as

Hss=IQ' Q}~
and it satisfies the commutation rule

[Q»ss] = [O', Hss] =o

(14)

(15)

Equations (14) and (15) constitute supersymmetry alge-
bra. The Hamiltonian for the supersymmetry generator
Q (Q ) given by Eq. (13) is then

Hss ~[f bb f
=co(b b+f f), (16)

Before we explore the eigenvalue problem of the gen-
eral Hamiltonian given by Eq. (11), it is instructive to
consider the simplest model, Eq. (12). The transition
operators and number operators defined by Eqs. (2) and
(8), respectively, are symmetry generators in the sense of
Haag et al. ' They are of even symmetry, in that they
connect particles with the same spin-statistics. In addi-
tion, Eq. (12) contains symmetry generators Q and Q
containing an equal number of bosonic and fermionic de-
grees of freedom (one for each),

N =n&+nf =n +1 . (20)

q=(n+1) '
Q, q =(n+1) ' Qt,

are quantized according to Fermi-Dirac statistics,

q'~=1, [q,q]=Iq', q'I=0.

(21)

(22)

Therefore, in the space spanned by the basis set

[ ~n, + ), ~n +1,—) I, q and q may be considered as the
raising and the lowering operators 1+ = I, kil2 of a
pseudo-spin- —.18

2'
The supercharges given by Eq. (13) are in the simplest

form. They carry only the interaction between a boson
and a fermion. However, more general supercharges can
be defined by allowing interactions among bosons. These
supercharges may be written as'

Q =B'f Q'=Bf ' (23)

where B (B ) is an arbitrary function of boson operators.
Here we are concerned with the boson-boson interaction
of the form

k k

B'=II b ' ' B=Hb (24)

Then the corresponding supercharges are given by

C. The construction of pseudo-spin-2 operators

The invariance of Q is guaranteed by Eq. (15) and Q is
called the supercharge. It is well known that in a two-
dimensional isotropic oscillator the an~ular momentum
operator defined by L = i (b—,b2 blab—, ) serves as a
charge. ' By analogy, one may wish to relate the super-
charge with angular momentum. For the isotropic two-
dimensional harmonic oscillator the angular momentum
is given in terms of two bosonic modes. However, the su-
percharge connects a bosonic mode with a fermionic
mode, and changes the total spin of a state by —,'. There-
fore, the supercharge must be spinorial. Indeed, the nor-
malized operators q and q as defined by

which is identical to the free-field JCM Hamiltonian at
resonance.

In the above supersymmetry quantum-mechanical
model there are two kinds of excitations: fermionic and
bosonic excitations. The total excitation number opera-
tor' is the sum of each excitation number operator:

Q = II b ' 'f Q'= II b

and they satisfy

[Q QI=[Q Q'! =o.

(25)

(26)

N= nt +nfb b+f f .

From Eq. (16) we have

(17) Let us now define a new Herrnitian operator N as

N=[QQ l.
Hss =Neo (18)

so N commutes with Hss and the eigenvalue of this con-
served quantity is

Appendix A gives an explicit expression of N as a func-
tion of Inb;) and nf. Since H is a function of these
number operators, [N, H ]=0. V can also be expressed
in terms of the supercharges as
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V =
—,'(AQ +A~Q )— (28)

Because [Q,N]=[Q,N]=0, the commutation between
Vand N reads as

regarded as the Hamiltonian for noninteracting elementa-
ry excitations (f f=13+—,

' =0 or 1, in number) with the
excitation spectrum given by co, . The eigenstates of HI
are

[ V, N ]= —,
' [AQ +A' Q —coo, N] =0 . (29)

Hence, N commutes with H and is a conserved quantity.
In fact, Eq. (17) is a special case of Eq. (27), with Q and

Q given by Eq. (13). Similar to Eq. (21) one may define
normalized operators q and q as

q
—N

—1/2Q q
t —N 1/2Q t (30)

~m+ ) =R (8)~n„. . . , nk, +')

= cos8~n, , . . . , nk, + )

+(A/'IAI)»n8lnI, . . . , nk

~m ) =R (8)~n', , . . . , n/'„— ')

= cos8 n', , . . . , nk,
' —)

(38)

l, = (2I A
I ) '(A" q t+ Aq),

l2=(2ilAI) '(A'q' Aq), i =—&—1 (31)

The derivation of 13 and commutation relations with I,
and l2 are given in Appendix B.

D. The eigenvalue spectrum of the m-photon Hamiltonian

where N is the eigenvalue of N. They also satisfy Eq. (22)
and pseudo-spin- —,

' operators may be defined as

[b b, b "~]=verb "~ . (39)

Using (B7) and Eq. (39) with the notation following Eq.
(10), one can readily show that

—(A*/~ A
~
)sin8~ n „.. . , nk, + ),

where n; and n are related by n; =n —v;g, . The deriva-
tion of Eq. (38) is given in Appendix C.

Next we show commutation relations between Ho and

l~ (j =1,2, 3) given by Eq. (31). It is trivial to show that

[13,HO]=0, so we concentrate on other commutations.
For a given mode (suppressing the index for simplicity)
we have

In the interaction picture defined by the transforma-
tion

k

b,+b, +v, g,f+f, g b;
' 'f+ =0 . (40)

U =exp( iHot)—

with

Hence it follows that32

[Ho, l, ]=0 (j =1,2, 3), (41)
k

Ho= g to;(b; b;+v, g f f),

the m-photon Hamiltonian reduces to

(33) and consequently

[HO, R (8)]=0 . (42)

H, = [f,f]+ (A'qt+Aq)

=~~i, +
I
A ~&N l, ——. (34)

R (8)=exp( —2i812), (35)

where tan28 = ( b co )
'

~
A

~
&N, and the eigenvalue equa-

tion becomes

Hl~m ) =— co, l3 ——~m ) = me@, ——~m ),0 0

m =+—' (36)

with co, =(hen + ~A N) ' and the transformed quanti-
ty defined by A—:8 AR. Note that if we rewrite HI as

Hl = to,f f+Eo, (37)

with the ground-state energy Eo = —
—,'(0+m, ), it may be

In the above, b,m (=coo—0) denotes detuning, with
0=+; v;g;co, . From the rotational properties of angular
momentum, it immediately follows that Eq. (34) is diago-
nal in a frame defined by the transformation

k

E = g n, 'co, +mco, ——. (43)

For the JCM, k =1, (v=+1, n'=n +1, and 0=co.
Thus

EJCM=(n + —,
' )co+—,'co, , (44)

which is identical to the result in the literature, and the
solution of the eigenvalue problem for the two-photon
Hamiltonians H„Hb, and H, obtained by the dressed-
atom technique and the single-mode, m-photon Hamil-
tonian ' can also be readily recovered.

IV. CONCLUSIONS

In a graded vector space, both bosons and fermions are
treated on an equal footing. In this paper the electrons

Therefore, Ho is invariant under the transformation
R (8). For the JCM, Ho is equal to Hss and Eq. (42) fol-
lows directly from the fact that a supersymmetric Hamil-
tonian is invariant under a supergauge transformation.
In any event, the eigenstates ~m+ ) (m+ =+—,') of HI
must also be the eigenstates of Ho, and the eigenvalue of
the total Hamiltonian H is
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and photons were regarded as excitations in such a space,
and there resulted a unified view for arbitrary multimode,
m-photon processes (m =1,2, . . . ) of the type 8 f and

Bf as generalized supercharges. From this point of view

a systematic method for the exact diagonalization of such
arbitrary m-photon Hamiltonians was developed. The
procedure is as follows: firstly, construct pseudo-spin- —,

'

operators from the spinorial behavior of the super-
charges. Secondly, express the Hamiltonian in terms of
these pseudo-spin- —,

' operators, and then transform the

coupled Hamiltonian into that of noninteracting elemen-
tary excitations utilizing the algebra of angular momen-
tum. The results for some simple cases treated in the
literature are readily recovered.

The supersymmetry arguments were possible due to
the existence of the fermion operators f and f satisfying
Eq. (4). Given as in Eq. (5), they are defining representa-
tions of the group SU(2). For M-level atoms (M )2) the
transition operators f„„=c„c„for the entire atomic man-
ifold satisfy su(M) Lie algebra (with the understanding
that the trace vanishes). Thus the Lie superalgebra we

employed can no longer be exploited. Nonetheless, be-
cause of the group chain structure SU(M)DSU(M
—1) DSU(2), if we focus on the two states la) and

lP) connected by transitions, there exist (M XM) repre-
sentations for f &

that satisfy SU(2) algebra. For each of
such subspaces the supersymmetry arguments are still
tenable.

The realization of the SU(2) algebra in Sec. III in terms
of boson-fermion modes parallels that of the quasi-spin
formalism ' in nuclear physics with two fermions [Eqs.
(2) —(5)] and that of Schwinger with two bosons. It has
been shown by Buzano et al. " that the JCM Hamiltoni-
an can be written as H =a "X„,where X„are the genera-
tors of the superunitary group U(1/I). They achieved the
diagonalization of H by a superspace rotation with an ex-
ponential adjoint representation along with an odd grada-
tion of A. Without the grading the rotation is closely re-
lated to the rotation through some angle
R, (P)=exp( —2iglt). For the multiphoton Hamiltoni-

an, however, the supergroup structure is not manifest.
Still, the interaction representation Hamiltonian [Eq.
(34)] is an element of what we may call the pseudo-spin
group SU (2), which underlies the method of diagonali-
zation in this paper. Finally, if one imposes certain re-
strictions, the Hamiltonian for one-photon processes in a
multilevel atom can be solved exactly by use of the resol-
vent operator method. Multiphoton extension of this
latter approach and squeezing for the multimode, multi-
photon Hamiltonian treated in this paper are currently
under investigation.
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APPENDIX A

Let us first suppose that the electromagnetic field has
only one mode. From the identity

b"'b'=b b(b b —1) - . (b b —v+1),
b "b t =(bib + 1)(b b +2) (b b +v),

the function g (n& ) defined by

g(nI, )=b ~b "~, g=(+) or (
—

)

(Al}

(A2)

can be expressed in terms of nt, as

(A3)

k

II II nb;+
1 —g;(2j —1}

2
(A4)

The Hermitian operator N defined by Eq. (27) is then

k

N( I n&; I,nI ) = g g nz;+
1 —g;(2j —1)

(1—nI )

+II II nb, + 1+(;(2j—1)

2

(A5)

APPENDIX B

In the same vein as the discussion following Eq. (22)
one may define the raising and the lowering operators of
a pseudo-spin- —,

' as

I+ =(&*/l&l)qt ~ =(A/IAI)q .

The third component may then be obtained from

(B1)

I3=—,'[1+,1 ]= (BB f f BBff ), — (B2)

where 8 (8 ) are given by Eq. (24). From the idempoten-
cy (f f) =f f, the following identities result:

f f =2(f f ,'}f'f ff'= ——2(f'f ,'}ff'— ——

Therefore, (B2}becomes

13= (BB f f+8 B—ff }(ff —
—,') .

1
(B4)

The quantity in the first parenthesis is none but N. It
does not commute with b (b ), 8 (8 ), or f (ft). Howev-
er, these individual operators never appear in the Hamil-
tonians in Sec. III, and all the terms in the Hamiltonians
commute with N. Therefore, N/X may be regarded as
an identity operator. (Incidentally, N is a Casimir opera-
tor in the JCM, which according to Schur's lemma is a
multiple of the unit operator. ) Thus (B4) reduces to

(B5)

Commutation rules with l, and lz are easily verified:

Therefore, for k difT'erent modes in the electromagnetic
field we have

k

g([n„))=P b,
' 'b,
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[lz, 13]=(2ilAl1/N ) '[A*Bf A—B f,f f —
—,']

=i (2l A 1/N ) '( A*Bf + AB f) =il, ,

[I, , 13]=(2l Alv'N) '[A*Bf +ABtf, ftf ,'—]-
= —(2lA '(/N ) '(A*Bf AB—f)= i—l, .

In the above

[f'f f ]=+f

with the notation following Eq. (10) is used.

APPENDIX C

(B6)

I
ln), . . . , nk', + &=q n), . . . , nk', —&=o,

qln &, . . . , nt, ', + &
= In I, . . . , nk; —&;

q'l 'i. ~
—&=l i ~ +&

(Cl)

n, =n, ' —v, g, ,

as can be obtained, for example, from
k

q'ln(, , nt; —&=N '"g b,
"' 'f In, '& 0&

(C2)

k

n v;—g; &ll&

The relation between the photon occupation numbers n;
and n,

' is

Suppose the supercharges given by either Eq. (25) or
Eq. (30) connect the states ltn, ), +& and ltn, '], —&.

Then the following equations must hold:

=ln„. . . , n„;+& .

The states I ln„. . . , n„;1&, n', , . . . , n„';0&] are also
eigenstates of N:

1+(;(2j—1)
n, +

2

1 —
g, (2j —1)

n, '+
2

, nk, 1 & =N+ ln), . . . , nt„ I &,

In I, , nk;0&=N In', , . . . , n—„';0& .

(C4)

In view of Eq. (18) the two states are superpartner states, and thus must be degenerate. Indeed, if we substitute (C2)
into (C4), we have N+ =N

In obtaining the state
l
m &, it is convenient to rewrite Eq. (35) as

R (9)= II. cos9 —Al '(A*q —Aq)sin9 .

Then from (C 1) it follows that

R (9)ln „.. . , nt„+ &
=

l n, , . . . , nk, + &cos9+(A/lAl )q n „.. . , nk, + &sin9

ln, , . . . , nt„+ &cos9+(A/lAl)ln', , . . . , nt'„—&sin9,

R (9)ln', , . . . , nk; —&= n', , . . . , nk, —&cos9—(A'/lA )q ln', , . . . , nt',. ; —&sin9

In I, . . . , nk ,
—&cos9'—(A'/lA )ln&, . . . , nt, , + &sin9 .

(C5)

(C6)

'E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
A similar model describing the interaction of nucleons with a

meson Beld is known as the Lie model. See A. I. Baz, Ya. B.
Zel'dovich, and A. M. Perelomov, Scattering, Reactions and
Disintegrations in Non Relativistic Quantum -Mechanics (Nau-
ka, Moscow, 1966).

V. Buzek, Phys. Rev. A 39, 3196 (1989);39, 5432 (1989).
4P. K. Aravind, J. Opt. Soc. Am. B 5, 1545 (1988), and refer-

ences therein.
5J. Katriel, M. Rasetti, and A. I. Solomon, Phys. Rev. D 35,

2601(1987)~

C. C. Gerry and P. J. Moyer, Phys. Rev. A 38, 5665 (1988); A.

S. Shumovsky, F. Le Kien, and E. I. Aliskenderov, Phys.
Lett. A 124, 351 (1987); W. Vogel and D.-G. Welsch, Phys.
Rev. A 40, 7113 (1989).

7N. A. Enaki, Zh. Eksp. Teor. Fiz. 94 135 (1988) [Sov. Phys. —
JETP 67, 2033 (1988)].

sG. Compagno and F. Persico, in Coherence and Quantum Op-
tics V, edited by L. Mandel and E. Wolf (Plenum, New York,
1984), pp. 1117-1123.

9C. J. Lee, Phys. Lett. A 145, 177 (1990).
oR. W. Haymaker and A. R. P. Rau, Am. J. Phys. 54, 928

(1986).
''C. Buzano, M. G. Rasetti, and M. L. Rastello, Phys. Rev.



42 PSEUDO-SPIN-
~ TECHNIQUE FOR MULTIPHOTON. . . 1607

Lett. 62, 137 (1989).
V. A. Andreev and P. B.Lerner, Phys. Lett. A 134, 507 (1989).

(3J. H. Eberly, in Foundations of Radiation Theory and Quan
turn Electrodynamics, edited by A. O. Barut (Plenum, New
York, 1980), pp. 23-35.

' C. V. Sukumar and B.Buck, Phys. Lett. A 83, 211 (1981).
R. Haag, J. T. Kopuszanski, and M. Sohnius, Nucl. Phys. B
88, 257 (1975).

' L. Allen and J. H. Eberly, Optical Resonance and Two-Leuel
Atoms (Dover, New York, 1987).

'7A. Messiah, Quantum Mechanics (North-Holland, Amster-
darn, 1961),Vol. I.

' The same set of pseudo-spin-
~

operators can also be obtained

by a different method; see C. J. Lee, Chem. Phys. Lett. 155,
399 (1989).

9L. E. Gendenshtein and I. V. Krive, Usp. Fiz. Nauk. 146, 553
(1985) [Sov. Phys. —Usp. 28, 645 (1985)].

zo~. H. Louisell, Quantum Statistical properties of Radiation
(Wiley, New York, 19'3)).
A. K. Kerman, Ann. Phys. (N.Y.) 12, 300 (1961).

zzJ. Schwinger, in Quantum Theory of Angular Momentum,
edited by L. C. Biedenharn and H. Van Dam (Academic, New
York, 1965), pp. 229—279.

z3L. Davidovich and H. M. Nussenzveig, in Foundations of Ra-
diation Theory and Quantum Electrodynamics, edited by A.
O. Barut (Plenum, New York, 1980), pp. 83-108.


