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We calculate the response of hydrogen to the presence of both a strong dc electric field (necessary

to isolate a nearly one-dimensional motion) and a strong radiation field of higher frequency than the

binding energy of the system, a regime that has not previously been examined by theory or experi-
ment. We determine the classical ionization threshold, the quantum-delocalization threshold, and

the threshold of n mixing due to chaotic effects. The analysis indicates that the dc field can have a
dramatic effect on the quantum localization of classically chaotic diffusion, changing the delocaliza-

tion threshold by more than an order of magnitude. Moreover, this system provides a large spectral
region in which quantum-mechanical localization inhibits classical chaotic diffusion. This theory is

well suited to experimental testing.

The nourishing of the study of nonintegrable classical
systems has stimulated interest in the equivalent quantum
systems, especially because quantum mechanics was
developed and tested from analogies with and observa-
tions of systems which classically are integrable. ' A great
deal of theoretical effort has been expended in an attempt
to understand the quantum dynamics of systems which
are classically chaotic. ' The debate concerning the
relevance of classical chaos to quantum systems has im-

portant implications to the foundations of quantum
mechanics and its relation to classical mechanics. '

It has been recognized for quite some time now that
because all closed, bounded quantum systems are quasi-
periodic in time (can be fully described by a sum of
discrete harmonic frequencies), they cannot exhibit true
chaos (positive Lyapunov exponents). ' This result has
been extended to bounded systems with periodic Hamil-
tonians. However, experiments and numerical simula-
tions on such systems have shown some results that agree
with predictions from classical chaos theory, suggesting
a quantum mimicking of classical chaos.

One of the quantum systems that received considerable
interest in this regard is the highly excited one-
dimensional hydrogen atom in the presence of intense
low-frequency radiation (microwaves). The problem was
studied extensively classically, quantum mechanically,
and by experiment. ' ' The intensity threshold for in-

ducing chaos in the classical system was found to give the
quantum-mechanical ionization threshold for radiation
frequencies lower than the natural atomic frequency.
However, the two thresholds were found to diverge from
each other for radiation frequencies larger than the atom-
ic frequency. In this regime, the classical threshold con-
tinues to drop at very high frequencies, while the quan-
tum threshold rises with frequency.

The divergence of the quantum and classical results in
the new frequency region was predicted by the theory of
dynamical localization of chaos in quantum systems, ' ' '

which was developed in conjunction with numerical ex-
periments and predicts that the evolution of a quantum
system will mimic its classically chaotic counterpart as

long as its quasiperiodic frequency components are not
resolved. This theory was applied to both the quantum
Chirikov map (or "standard map") and the one-
dimensional hydrogen atom in an external ac field, for
driving frequencies within a factor of 3 of the natural fre-
quency of the system. This effect, often described as a
dynamical version of Anderson localization in solids, lim-
its the chaotic diffusion of the energy of the system for
cases in which the external field has passed the chaos
threshold but not a new and higher threshold, the delo-
calization threshold. The atom-external-field system is
said to be delocalized if it ionizes before its quasiperiodic
frequency components are resolved. A number of very
successful experiments have been performed measuring
ionization thresholds and excitation rates for highly ex-
cited hydrogen in microwave fields, giving agreement
with the delocalization theory. " ' ' However, these ex-
periments only probed the edge of the regime of disagree-
ment between classical and quantum-mechanical predic-
tions, and were not able to conclude on the basis of exper-
iment alone that the quantum localization of the classi-
cally chaotic diffusion actually occurs. '

We analyze here the implications of such effects on a
system, a highly excited hydrogen atom in combined dc
and ac electric fields (the ac field produced by a CO2
laser) that is amenable to measurement and calculation of
the localization effects. First, we have included the effect
of a strong dc field on the delocalization and chaos
threshold in general. This is important, because the dc
field allows the separation of a nearly one-dimensional
motion, amenable to theoretical treatment, from other
motions present in the system. The effect of a strong dc
field is drastic, and gives rise to changes of more than an
order of magnitude in some of the chaos and delocaliza-
tion thresholds. Because the dc field is a parameter under
external control, this allows one to perform a larger class
of experiments.

Second, we apply the localization theory to a new re-
gime of very high frequency, where the frequency of the
ac field is greater than the frequency associated with the
binding energy of the system. In this case, the additional
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frequency components (sidebands) induced by the ac field
fall very far outside the width in energy (or frequency) of
the region of phase space involved in the motion. The
theory has been previously applied to cases in which the
sidebands fall within the region of phase space involved
in the motion (low to medium frequency).

We also introduce a criterion, based on the localization
theory, for the appearance of large changes in the spec-
tral structure caused by the ac field, although we are not
able to predict the details of the line positions or
strengths. This result may help to understand under
what circumstances an intense spectroscopy laser might
be expected to change the spectrum it is measuring.

Let us begin by introducing the hypothesis of quantum
localization of classical chaos. ' The quasiperiodic quan-
tum system follows the chaotic classical diffusive behav-
ior until a time t~ long enough that the frequency
differences between the periodic frequency components of
its motion are resolved. We mean "follows" the classical
behavior in the sense that the quantum levels denoted by
a range An(t) of principal quantum number n, and only
those levels, take an important part in the motion of the
system, where hn(t), is now interpreted as a range of
classical action n (Ref. 17) and denotes a region of classi
cal phase space the classical motion is limited to at time t
We take advantage of the correspondence between classi-
cal action (in atomic units' ) and principal quantum num-
ber, known before Schrodinger's equation, ' and, since we
will have no need here to distinguish between them,
denote them both by the same symbol n. After t~, the
diffusive motion stops and the quantum system is local-
ized to whatever region of phase space (En' ) the classical
chaotic system diffused to before the localization time
i 4, 2
g e

To apply this principle, one must decide on a criterion
for the resolution of the frequency differences. Direct nu-
merical integration of Schrodinger's equation in several
systems ' has shown the following criterion to be
relevant. The frequency difference that must be resolved
is the local average of the nearest-neighbor spacings of
the frequencies. Then, two chosen frequencies co, and cob

are considered resolved when the phase difference
P=(to, —

cob )t is greater than 2n. . It makes sense to take
only those frequency components related to the region of
phase space into which the system diffuses classically be-
fore t~, because only those frequency components are ex-
cited by the motion. Since the frequency components one
uses to calculate the extent of localization are dependent
on the extent of localization, one needs to do a self-
consistent calculation to find tz. Sometimes this self-
consistent equation has no solution. Then the system
does not localize. In those cases, the quantum system fol-
lows the classical diffusive behavior forever, or at least as
long as anyone has been able to measure, in either experi-
ments or numerical simulations. This phenomenon,
called "delocalization, " appears to be responsible for the

agreement between predictions of chaos thresholds and
measurement of microwave ionization thresholds of high-
ly excited states of hydrogen.

To apply the localization hypothesis as stated above,
one needs to know what frequencies are present in the

motion, so we would like to briefly discuss the frequency
spectrum of a bounded system with a Hamiltonian H(t)
periodic in time with period T=2m. /O. The Hamiltonian
of the experiment described here is, in the dipole approxi-
rnation, in atomic units,

H(t)= + —+Fd,x+F„xcosset .

Although this system is not bounded, the following
analysis has agreed with experiment and numerical simu-
lation in the low to medium frequency, Fd, =0 case. The
reason for this agreement is not yet clear; perhaps only
bound states are involved in the motion below the thresh-
old of ionization, and so only a bounded motion is impor-
tant to calculations of this threshold. In any case, we will
assume the relevance of the bounded analysis to the
current system.

Because the Hamiltonian is time dependent, energy is
not conserved and there are not even any energy eigen-
states. However, we can deduce certain qualities of the
frequency spectrum which are useful in motivating the
localization theory. The solutions 4'(x, t) can be writ-
ten ' as

4(x, t)=pc, e ' %,(x, t),
J

with quasienergies co, , and quasienergy eigenstates

(3)

forming a complete orthonomal set at all times. For a
constant Hamiltonian (that is, as the ac field goes to
zero), the quasienergies are just the true energies and the
quasienergy eigenstates just the energy eigenstates. Ex-
pand each periodic quasienergy eigenstate in a Fourier
series

%,(x, t) =g a,„(x)e
k

and Eq. (2) becomes

4(x, t) =g g c a,„(x)exp[ i(to, +k0—)t] .
j k

(4)

Equation (4) is saying that the frequency spectrum of the
evolution of the system consists of the sum of the fre-
quency dependencies of its component quasienergy eigen-
states. The frequency components of a single quasienergy
eigenstate are just its central quasienergy co, plus side-
bands spaced by the externally imposed frequency Q.
The values of the quasienergies are difficult to solve for,
but the nature of the sidebands can be clarified by a sim-
ple example of sidebands in a two-level atomic hydrogen
system.

' Once prepared in a quasienergy eigenstate, the
system will stay in it forever.

We now brieAy present the physical argument leading
to the equation describing the localization. In order to
find the quantum-mechanical limitation on cia-apically
chaotic diffusion, we need to use a quantum-mechanical
quantity closely related to the classical diffusion.
Since, for simplicity, the classical diffusion calculation
starts (see below) with the distribution function f (n, t)
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An(t~ ) =(II/2ir)t~ . (5)

The localization "length" b, n~ is defined as b,n(ts).
Equation (5) was applied to the hydrogen atom in a mi-
crowave field with no external dc field. This led to a pre-
diction that localization would only occur when the mi-
crowave frequency exceeded the natural frequency of the
initial atomic state, in agreement with experiment and
numerical simulation.

Given the already demonstrated importance of high-
frequency external fields, we now extend this theory to
the very high external frequency (high-0) regime, where
the spacing of the sidebands associated with one quasien-
ergy eigenstate is much larger (a factor on the order of
100 for the physical system discussed here) than the aver-
age spacing of the quasienergies, which is the same as
the spacing of the original energy eigenstates labeled by
n. If this is the case, and only a small range An& of states
are excited, the spacing of the frequency components has
an unusual quality not seen in the low or medium fre-
quency cases. It is a small An~ set of closely spaced lev-

els, followed by a very large gap to another set of closely
spaced sidebands, followed by another large gap and set
of closely spaced sidebands, etc. It is possible that, in this
case, the correct frequency difference to use in the locali-

=5(n n—o), concentrated at an initial (zero ac field) ac-

tion (all values of the classical angle variable 0 are includ-

ed equally), it makes sense to use the frequency com-
ponents of the system prepared in the (zero ac field) ener-

gy eigenstate denoted by no to apply the localization con-
dition limiting classical diffusion from an initial state.
This is true whether the actual initial state excited in the
experiment is the energy eigenstate denoted by no, as it
has been in ionization threshold experiments, or some
quasienergy eigenstate. It can be shown, assuming a
correspondence between occupation of a region of the
classical phase space and occupation of the quantum en-

ergy eigenstates of that same region of n, that the energy
eigenstate no can be expressed as an expansion of approx-
imately hn~ quasienergy states, where An~ gives the

width of the region of phase space to which the classical
diffusion is localized. '

Given the number of quasienergy eigenstates involved
in the initial state no, we can motivate the self-consistent
equation for localization. Equation (4), because it associ-
ates a set of frequencies with each quasienergy eigenstate,
can give a set of frequencies associated with a set of
quasienergy eigenstates. If only one quasienergy eigen-
state is involved (En' (1), then the density of discrete
frequencies is simply 1/0, one level in each space of
width 0 given by the sidebands associated with that sin-
gle quasienergy eigenstate. If hn~ quasienergy levels are
involved in the motion, as described above, the sidebands
of all of these levels must be included, and then the densi-
ty of discrete frequencies becomes An~/Q. Then the
average nearest-neighbor spacing of discrete frequencies
involved in the motion is 0/bns. The localization hy-
pothesis is that the average nearest-neighbor spacing be
resolved by a 2m criterion at the localization time ta, or
(0/b nz )ts =2m. This gives the self-consistent equation

zation criterion is the frequency difference between the
original levels, excluding the sidebands, which is smaller
than the 0/hnii used above, making localization more
difficult and increasing the localization time t~. This hy-
pothesis leads to the self-consistent equation

b,n(t'ai ) =n„b„(ts ) n—o, (6)

where n„b„(t) is the function relating the orbital time of
the classical system to the classical action.

Considering a conceivable limitation of Eq. (6) leads to
a third possibility which combines Eqs. (5) and (6). Con-
sider the situation with hn~ &1. Then the frequency
components are just the sidebands of one quasienergy lev-

el, and it seems inappropriate to use the spacings of other
levels not involved in the motion, which led to Eq. (6).
For En' & 1, the frequency components are always
resolved at t =2m /0, and so one might expect the
diffusion to stop right then and never reach the region de-
scribed by Eq. (6) where other closely spaced levels are in-
volved in the motion. This equation, t&=2m. /0, is just
Eq. (5) but with An~ =1. This reasoning leads to the fol-
lowing proposal. Perhaps we should first compute dna'
from Eq. (5). If it is less than one, the system localizes
before any other n levels have a chance to be involved in
the motion. If it is greater than one, then we should ap-
ply Eq. (6) to get the true b, ns and t~

The above analysis involves the criterion hnz & 1,
which may also be important for other reasons. It is the
condition for more than one quasienergy eigenstate to be
involved in the expansion of one energy eigenstate, which
is the same as the condition for more than one energy
eigenstate to be involved in the expansion of one quasien-
ergy eigenstate. This means that it is simply a condition
for mixing of the original levels. As such, it may very
well be the condition for large effects due to chaos to ap-
pear in the spectrum of the system.

We now discuss the procedure for solving Eqs. (5) and
(6). We need to know the function b,n(t), which requires
some classical chaos theory. Of course, hn (t), the region
of chaotic diffusion, will be zero if there is no chaos and
no diffusion. Therefore, one must first calculate the
threshold of global classical chaos, including the effect of
a strong dc field. This threshold is the threshold of over-
lap of the nonlinear resonances. Recently, these effects
were calculated by a number of methods. ' ' The chaos
thresholds for the case of an ac field of frequency
2. 82X 10' Hz (CO2 laser) and dc fields of —2, 0, and 10
kV/cm are given in Fig. 1, along with other data. The
exact procedure used here, with detailed explanations of
the theory and results, can be found in a previous publica-
tion. ' The chaos thresholds in the region we are in-
terested in here (n =15 to 25) are much lower than the
intensity regime we will be interested in, and so, in the
following, we will assume that the system is already
above the threshold of global chaos. One should keep in
mind, however, that the following analysis is only valid
above the threshold of classical chaos as given in Fig. 1.

The irregular motion of the electron above the thresh-
old of classical chaos leads to a diffusion in the size of the
region of phase space within which it travels. This classi-
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FIG. 1. Thresholds of classical chaos, in laser intensity I, are
plotted as a function of the initial principal quantum number, or
classical action, n, for a one-dimensional hydrogen atom in a
combined dc and CO& laser Geld. Some thresholds of quantum-

mechanical delocalization, calculated from Eq. (5), are present-

ed for comparison. From lower left to upper right: Fd,. = —2

kV/cm, 0, 10 kV/cm chaos thresholds, Fd, = —2 kV/cm (cir-
cles), 0, 10 kV/cm (squares) delocalization thresholds.

FIG. 3. Delocalization and n-mixing thresholds Id (open cir-
cles) and Id„& (solid circles) for the Fd, = —2 kV/cm case, for
principal quantum numbers between 15 and 25.

due to chaos, a procedure that gives agreement with nu-
merical simulations in the case Fd, =0. The result is

cal chaotic diffusion can be described by the Fokker-
Planck equation

f (n, t—)=8 8 D(n) i3 f (n, t),
Bt

'
Bn 2 Bn

where f (n, t) is the probability distribution of the system
over some variable or variables representing the phase
space. In this case, f(n, t) is a probability distribution
over the classical action (averaging over the classical an-
gle co), which is approximately equal to the principal
quantum number n, so we label it n. The diffusion pa-
rameter D(n) can be derived from the quasilinear
theory under the assumption that correlations decay

g 22-

D(n)=mF„V m IQ,
where m is the index of the Fourier component of the os-
cillatory motion of the system most nearly resonant with
the external frequency 0, and V is a parameter
representing the strength of the driving force at that
Fourier component. The parameters m ( n ) and V ( n )

were computed using a numerical integration procedure
for the cases with nonzero dc field; this procedure was de-
scribed in detail previously. ' For simplicity, the initial
probability distribution is taken as f (n, t =0)=5(n n~). —
The system will be chaotic only above a certain n =c,
giving the boundary condition (df Idn ), =0.

The quantity required from this analysis is bn(t),
which is some approximate measure of the width of the
distribution f (n, t) In the .case of zero dc field, it was
possible to solve the Fokker-Planck equation in closed
form, and then the rms deviation was given in terms of an
expansion, and used for An. In the present case, an
analytical formula for D (n) is not available, only numeri-
cal values, and a different procedure is indicated. We use
a heuristic method to define and compute b, n(t) which
gives the same parameter dependence and similar (small-
er by a factor of 0.8) absolute value of the delocalization
threshold as the method described above for the case of

g 20--
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FIG. 2. A plot of the curves An(t) as calculated from Eq.
(10) and An =(0/2m)t, to solve the self-consistent equation (5).
The localization time and length, ta and An~, are given by the
intersection of the two curves. The y coordinate is labeled by
n =no+An. Here no=18, Fd, = —2 kV/cm, and the laser in-

tensity is 1.4X10 W/cm .
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FIG. 4. Thresholds Id (open squares), I«(open diamonds),
and Id„l (solid squares) for the Fd, = 10 kV/cm case.
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FIG. 5. Thresholds Id (open triangles) and Id„& (solid trian-
gles) for the Fd, =0 case.

FIG. 7. Thresholds Id})f (open squares), I&ohf (open diamonds),
and Id„&hf (solid squares) for the Fd, = 10 kV/cm case.

dhn =
—,'[D(no+An(t))/t]'~ (10)

which was solved by a numerical technique which in-
volved taking the exact solution for constant D in small

zero dc field, and is amenable to numerical solution,
which allows an extension of the theory to the case of
nonzero dc field. This approach can be motivated by a
particular definition of An (t) and making some approxi-
mations to the Fokker-Planck equation. Since the width
of f (n, t) is bounded below no by the chaos threshold c,
we use the width above no, with some additional factors
for simplicity, to define bn(t), given by

bn =(n'~~/2) f (n no)f (n, t)dn—, (9)
n0

the mean difference between n above no and no, or the
average of n above no minus no, times the fraction of n

above no, with a factor of m'~ /2 to simplify the result.
For large An the fraction of n above no is nearly one, be-
cause the diffusion is bounded from below but not from
above, and this definition of hn simply reduces to the
average of (n no), w—ith an extra factor of n' /2 We.
then multiplied both sides of the equation by ( n no ) an—d
integrated from no to infinity, approximating the D(n)
on the right-hand side by an average diffusion constant
D(no+An(t)) (making it a function of time rather than
space), and the f (n, t) on the right by f (n, t) for the prob-
lem with a constant D equal to this average D. This gives

intervals within which D was approximately constant, al-
lowing the use of D(n) from a table rather than an
analytical formula, but still overcoming the divergence at
t =0.

The self-consistent equation (5) was then solved by
plotting the function bn(t) from Eq. (10) on the same
graph as the straight line b n =(Q/2n)t Th.e c.oordinates
of the crossing point give the localization time t~ and
length An~. Such a plot is given in Fig. 2. One can see
that b n (t) initially follows the behavior expected for con-
stant D(n), namely hn(t)=(Dt)'~, and so is always ini-
tially higher than the straight line b, n =(0/2m)t, then
curves over to meet it at the localization time t~. Then,
at larger times, it no longer follows the constant D (n) be-
havior, and in fact even curves upward. At lower ac field
strength (F„),D(n) is smaller [see Eq. (8)], the curve is
lower, and ts is shorter. At higher F„,D(n) is larger,
the curve is higher, and tz is longer.

If the ac field strength F„ is high enough, then the
curve of Fig. 2 curves up before it meets the straight line,
there is no t~, and therefore no localization. The atom
ionizes, and delocalization has occurred. So one varies
F„,and the value Fd for which the two curves first stop
meeting is defined as the delocalization threshold. The
value of Fd is expected to be the threshold in ac field
strength of ionization due to chaos.

Solving Eq. (6) involves exactly the same procedure, ex-
cept that the function An(t) is compared with the func-
tion [n,„b„(t)—no], instead of the straight line
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FIG. 6. Delocalization and n-mixing thresholds Idhf (open
circles) and Id„»f (solid circles) for the Fd, = —2 kV/cm case.

FIG. 8. Thresholds Idh f (open triangles) and Id„»f (solid trian-
gles) for the Fd, =0 case.
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FIG. 9. Comparison of ionization rates I, I hf, I », external
angular frequency 0, characteristic atomic angular frequency co,

and thresholds Id„& and Id„&hf for the Fd, = —2 kV/cm case,
with no=18.

FIG. 11. Comparison of ionization rates I, I hf, I », external
angular frequency 0, characteristic atomic angular frequency co,

and thresholds Id„& and Id„»f for the Fd, =0 case, with no = 18.

bn =(0/2m)t. This gives rise to another delocalization
threshold Fdhf corresponding to the high-frequency hy-

pothesis that led to Eq. (6). Comparison of Fd and Fdhf
with experiment may allow one to determine which inter-
pretation of the localization idea is correct in the high-
frequency case, which would further illuminate the phys-
ics underlying the localization effect. Likewise, one can
solve for Fd„j, the threshold of hnz =1, n mixing, using
the same method with either of the Eqs. (5) and (6), giv-

ing F«, and F«,hf, respectively. One simply reads out
the y coordinate dna' of the point at which the appropri-
ate curves cross, and adjusts F„to make it equal to one.
Under this condition, F„=F«f(gf).

We define another threshold of ionization which may
be useful in interpreting experiments, in addition to the
delocalization threshold. Define the sign of the dc field
so that positive dc fields are clamping fields, giving a
one-dimensional potential well, while negative dc fields
are unclamping fields, giving a potential barrier. ' Then
for positive dc fields, the one-dimensional atom can never
ionize, because it has an infinite potential well. However,
for the real three-dimensional hydrogen atom, there is
another threshold of ionization FEp [or Fgpht using Eq.
(6)], which is reached when bns reaches the energy of the
zero-field ionization threshold (E=O, which occurs at

15
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FIG. 10. Comparison of ionization rates I, I „f, I », external
angular frequency 0, characteristic atomic angular frequency co,

and thresholds Id„l and Id„»f for the Fd, =10 kV/cm case, with
no= 18.

n =22 for 10 kV/cm), where a physical atom, approxi-
mating a one-dimensional atom, will ionize quickly due
to its motion in the additional dimension which has been
ignored in the one-dimensional approximation.

Figures 3—5 give numerical results for the relevant
thresholds for the hydrogen atom in dc fields of —2, 10,
and 0 kV/cm, calculated from Eq. (5), and using an ac
frequency of 2. 82 X 10' Hz, equivalent to the 10.6 pm ra-
diation from a CO2 laser. The value of the thresholds is
given in terms of the intensity I of the CO2 laser radia-
tion, with I=F2, /2@pc, instead of ac field strength F„,
so we have Id, I«„and IEO, corresponding to Fd, F«, ,
and Fzo, respectively. One sees that the thresholds are
similar, and that they decrease with n, the —2 kV/cm
thresholds decreasing sharply as they get closer to n =24,
the ionization threshold. Figures 6—8 give the same
thresholds calculated from Eq. (6). One can see that
these thresholds exhibit a similar behavior but are lower
by about an order of magnitude, making the principles
leading to Eqs. (5) and (6) clearly distinguishable by ex-
periment. The range of intensities needed to study these
efFects, about 10 —10 W/cm, is easily available. The
delocalization threshold for the +10 kV/cm case is a for-
mal threshold, included for the sake of comparison, but
the "chaos to E =0" threshold is expected to be more
relevant to experimental situations.

In an experiment, ionization by chaos will have to
compete with ionization by single-photon absorption in
the very-high-frequency case we are studying. However,
single-photon absorption will not be as strong as one
might expect, because the single photon is not nearly res-
onant with the ionization threshold but rather reaches
deep into the continuum. We present some brief compar-
isons of the rate of chaotic ionization as compared with
one-photon ionization, which may be useful in the design
of experiments.

Photoionization cross sections were not available for
hydrogen in an external dc field, or for one-dimensional
hydrogen. To get an idea of the order of magnitude of
single-photon ionization, we used the maximum (over all
values of the orbital quantum number I) cross section for
a given n in the three-dimensional zero dc field case to
estimate the one-photon ionization rate I, .

We will use the inverse of the ionization time for a typ-
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ical atom as a rough estimate of the ionization rate for
purposes of comparison with the one-photon process.
We do not mean to imply that the chaotic ionization
takes place at a constant rate, with the number of atoms
ionized proportional to the duration of the laser pulse, as
in the (unsaturated) single-photon ionization. For short
times, there may be no chaotic ionization at all, for exam-
ple. The "rates" we give for chaotic ionization are, un-
like the single-photon ionization rate, rates only in the
sense that, after a time equal to the inverse of the rate,
but not for very long before that time, one expects most
of the atoms to be ionized.

Because of a scaling relationship between D and t in

Eq. (10), the rate of chaotic ionization is proportional to
the diffusion parameter D which is proportional to the in-

tensity [see Eq. (8)]. Notice that the chaotic ionization
time, the timescale relevant to experiments in the delocal-
ization regime, decreases with increasing intensity, which
is opposite to the behavior of the localization time, the
time scale relevant to experiments in the localization re-

gime, which increases with increasing intensity, as dis-
cussed above.

Below the delocalization threshold, there is no ioniza-
tion due to chaos, and the predicted chaotic ionization
rate drops directly to zero. Above delocalization, the
rate depends only on the chaotic ionization time, which is
a purely classical quantity, and so the only difference be-
tween the rate I, calculated using the original interpreta-
tion of the localization idea, and the rate I hf, calculated
using the high-frequency interpretation, is the position of
the delocalization threshold.

Due to the physical differences, the chaotic ionization
rates are estimated by different criteria in the three dc
field cases. For negative, or unclamping, dc fields the op-
position of the external dc electric field and the internal
electric field from the proton creates a potential barrier,
and a classical ionization threshold at finite n (n =24.07,
for example, when the dc field is —2 kV/cm). The ion-
ization rate is just the inverse of the time it takes the
diffusion (see Fig. 2) to reach the top of the potential bar-
rier. In the other two cases, the one-dimensional atom
does not ionize at finite n, and other estimates of the ion-
ization time must be used. For positive (clamping) dc
fields, the inverse of the time for the diffusion to reach the
first state above E=O, where a physical atom, only ap-
proximating a one-dimensional atom, will ionize quickly
due to its motion in the additional dimension, ' is used
as an estimate of the chaos ionization rate. For zero dc
field, an estimate already exists which proved successful
in the low-to-medium frequency regime, I

~ h f j

=D(no)/no. Physically, one might think of this as the
inverse of the time it would take the diffusion to go as far
as the initial quantum number (i.e., hn =no), if the
diffusion parameter did not change. Then, the actual in-
crease of the diffusion parameter approximately makes up
the remaining distance to ionization.

Figures 9—11 give rates and thresholds for the —2, 10,
and 0 kV/cm cases respectively, with initial quantum
number no=18. For high enough intensities so that the
delocalization border has been crossed and ionization by
chaos occurs, the chaotic rates are considerably higher

than the one-photon rate, showing that these effects
should be observable experimentally without being at all
obscured by the unavoidable presence of one-photon ion-
ization. This is a surprising result, because in previous
analyses of the hydrogen atom in an external ac field, it
has been assumed that one-photon ionization would
dominate whenever the external frequency was high
enough that the single photon had enough energy to ion-
ize. There are two new circumstances in the current
problem which contribute to the surprising relative
strength of chaotic ionization with respect to one-photon
ionization. First, the one-photon ionization is weakened

by the fact that the external frequency is so high that a
single photon reaches deep into the continuum, as com-
pared to the binding energy of the initial state. This lack
of near resonance with the ionization threshold
suppresses the one-photon ionization. Second, the chaot-
ic ionization rates are strongly enhanced by the addition
of a dc field, as can be seen by a comparison of Figs. 9
and 10 with Fig. 11. This is because the dc field produces
quick ionization once the diffusion has reached a certain
degree, rather than requiring the diffusion to excite all
the way to n = ~ to ionize. The strong enhancement of
the chaotic ionization rates gives an example of the dras-
tic effect of the dc field in this problem.

It is important to show that the intensity at which
chaos spectral effects are predicted to appear is not so
high that the lifetime of the atom with respect to one-
photon ionization is short enough to change the original
spectrum of the atom into a featureless continuum which
will not be able to exhibit spectral changes. If the life-
time of the atom is short compared to its characteristic
frequency co, then the width of its states in energy will be
larger than their separation, and individual states will not
be distinguishable as such any more. Figures 9—11 show
that the proposed threshold of spectral effects (or "chaos
n mixing") is always much lower than the intensity at
which the one-photon ionization becomes faster than the
characteristic atomic frequency co, and therefore the
spectrum will not be all washed out at the point at which
these spectral effects are expected to occur. This is true
whether the original interpretation of delocalization or
the high-frequency interpretation is used.

The longest chaotic ionization time, from the inverse of
the rates given in Figs. 9—11, is on the order of 20 ps.
This is about 500 periods of the oscillatory field. For
laser pulses shorter than this, one might not be able to
tell if the chaotic diffusion stops because of the finite time
of the pulse or the localization effect, and so pulses longer
than 20 ps are desirable for experimental tests of the lo-
calization effect. Laser pulses longer than this (the usual
case) are effectively infinite as far as localization is con-
cerned, for almost all the atoms are either ionized (at
higher intensities) or localized (at lower intensities) by the
end of the pulse, which allows a clear test of the localiza-
tion hypothesis. This is, of course, not a difficulty in the
case of CO& laser pulses. However, microwave experi-
ments have much longer ionization and localization
times, and short pulse length has been a difficulty in test-
ing the localization theory by means of microwave exper-
iments. There are two advantages to using the very-
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high-frequency regime considered here as opposed to the
microwave regime to ensure the pulse duration is long
enough to test localization theory. First, the cycle time
of the external field is much shorter in the very-high-
frequency case, which immediately gives a faster time
scale to the process. The second advantage is more sub-

tle, but very important. In the very-high-frequency case,
there is a very large gap between the classical chaos
threshold and the threshold of delocalization, as shown in

Fig. 1. In contrast, when the external and atomic fre-
quencies are of the same order of magnitude, as they are
in current microwave experiments, delocalization occurs
only slightly above the classical chaos threshold. Natu-
rally, the ionization due to chaos will be much faster at
the delocalization threshold if it is many orders of magni-
tude higher than the classical chaos threshold than if it is
barely greater than the classical chaos threshold. But the
large difference between the classical chaos and delocali-
zation thresholds in the very-high-frequency case is also
useful for a more basic reason. This gap between the
classical chaos and delocalization thresholds is, in other
words, a large region of localized chaos. Since we are in-

terested in studying the quantum localization of classical
chaos, a large region where this occurs is desirable. An
example: If one measures the final-state distributions of
the atoms after exposure to a strong ac field pulse, as in
the microwave experiments, ' one can study the localiza-
tion length at intensities below the delocalization thresh-
old. Here the relevant time scale is the localization time

t~, and as long as the pulse duration is longer than t~,
one can be sure the effect is really localization as opposed
to just a finite pulse length effect. Since t~ is typically
shorter than the chaotic ionization time, this is a less
stringent condition, and the pulses can be shorter in this

type of experiment. In the recent microwave experiment,
the experimental pulse time, which was 7.5 ns, was not
significantly longer than even the localization time tz.
In this situation, the classical and quantum distribution
lengths (An ) are comparable, and it was not possible to
conclude on the basis of experiment alone that the locali-
zation actual occurs. ' Here is a further advantage of the
very-high-frequency regime, for a final-state distribution
type of experiment: Recall that tz decreases as the ac
field strength (or intensity) decreases. In the very-high-
frequency regime, with its very large region of localized
chaos, if the pulse duration is not significantly longer
than t~, we can simply turn down the intensity and
reduce t~. The large region of localized chaos ensures
that we can do this without leaving the region of classical
chaos. In contrast, if we want to do this in the regime
where atomic and external frequencies are of the same or-

der of magnitude, the region of localized chaos is so small
that any reduction in the intensity means the system is no
longer chaotic and so there is no localization anyway.
This is the diSculty that was experienced in the attempt
to verify localization theory using microwave experi-
ments.

Even though the chaotic ionization rates are higher
than the one-photon rates, it may not be enough experi-
mentally, if the one-photon ionization is already saturat-
ed by the time the chaos appears, and so no more ions
can be created by chaos effects. There are two ways
around this problem. First, one could, instead of measur-
ing the number of ions produced by a laser pulse, mea-
sure the spectral structure of the atom in the presence of
the ac field in the vicinity of n = 18, and use the width of
the lines observed to obtain the ionization rates. This
would also allow one to test the proposed threshold for
the appearance of spectral structure, and would avoid the
effects of turning on and off the pulse, which were not in-
cluded in these calculations. Second, if one wants to
measure the rate by counting the number of ions and
wants to include the finite pulse effects, one could use
short pulses. Figures 9—11 indicate that pulses shorter
than 20-1000 ps, depending on which lines on which
figure are followed, would be necessary to investigate this
effect by measuring the number of ions without saturat-
ing the one-photon ionization.

In conclusion, we have applied the localization theory
to the case of a hydrogen atom in an external dc field,
which is important for comparison of experiment with
one-dimensional calculations. The dc field has a drastic
effect on the delocalization threshold, sometimes more
than an order of magnitude. We have presented an ex-
tension of the localization theory to the high-frequency
regime, taking into account the changes in the nature of
the frequency spectrum which accompany the high-
frequency case, and compared the resulting delocaliza-
tion thresholds with those computed from a straightfor-
ward extrapolation of the delocalization equations which
have been successful in low-to-medium frequency cases.
We have introduced a threshold criterion for the appear-
ance of large spectral effects due to localized chaos, and
computed its value. These calculations show that an in-
teresting, experimentally accessible regime is achievable
for the investigation of the relevance of classical chaos to
quantum systems with very-high-frequency driving
forces. These predictions can be tested, and experimental
confirmation of one of the extensions to the delocaliza-
tion theory presented here would be an impressive
demonstration of the breadth of applicability of that
theory.
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