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A semiadiabatic treatment of the matter-field coupling is presented that accounts for the non-

linear variations affecting the widths and positions of laser-induced resonances in photodissociation
as a function of the electromagnetic-field intensity. The procedure developed here goes beyond the
widely used decoupled electronic-plus-field adiabatic treatment by retaining two "semiadiabatic"
potentials that result from partial diagonalization of several blocks in the Floquet Hamiltonian. All

closed channels lead to a unique multiphoton-dressed adiabatic closed channel that crosses a unique

dressed adiabatic open channel. The remaining nondiagonal interaction is treated diabatically
within a two-coupled-channel frame. The relative merits of diabatic approximations and of the
semiadiabatic scheme are discussed within a large range of laser intensities and wavelengths on the
example of H2+(1so.g, v =0, J=1~2po„) photodissociation. Uniformally accurate results are
reached for the semiadiabatic approach. This is very promising for studying field-induced non-

linearities for very intense lasers operating at rather short wavelengths where many electronic states
including rotational structures may play a role.

I. INTRODUCTION

The theory of photodissociation has evolved along two
parallel routes; one that is appropriate for the weak-field
situation and the other one for the strong-field case. In
each route the emphasis is put on different features of the
process. The weak-field approach concentrates on com-
plications that are inherent in the molecular dynamics:
increasing number of internal degrees of freedom (i.e.,
electronic, vibrational, rotational, torsional, etc.), in-

terferences between difFerent arrangement channels re-
sulting from the symmetry of the system, and three-body
fragmentations involving continuum-continuum interac-
tions. In the strong-field case interest is focused on the
description of the additional field-induced degrees of free-
dom rather than the dynamics of the bare molecular sys-
tem (which is generally assumed to be a simple diatomic
molecule).

In weak-field theories the photon mediates the prepara-
tion of the initial state. The absorption is usually de-
scribed by applying the Fermi golden rule to a bound-to-
continuum transition. Similarly, in the time-dependent
approach the decay process is described in the framework
of the first-order perturbation theory.

The strong-field case requires nonperturbative ap-
proaches that describe simultaneously the absorption and
dissociation processes. Time-dependent as well as time-
independent treatments may be performed. The present
work rests on a time-independent description of the pro-
cess, derived from a fully quantal treatment of the
molecule-plus-field system, or equivalently from a semi-
classical approach in which the periodic time dependence
of the electromagnetic field, treated as a classical oscilla-

tor, is eliminated via the Floquet theory. The nuclear dy-
namics takes places on "dressed" potential surfaces'
which are eigenvalues of the electron-plus-field Hamil-
tonian and are very appropriate for discussing field-
induced resonances. As in usual scattering calculations,
one has to solve a (in principle infinite) set of second-
order coupled equations in nuclear coordinates. We have
recently shown how such a system truncated to the
minimal number of equations for reaching convergence
(close-coupling method), accounts for the gradual
changes in the resonance width and shift when the light
intensity increases.

The selection of a suitable basis set to reduce the num-
ber of close-coupled equations is of primary importance.
Two important types of basis-set expansions are com-
monly used. If the basis set is the same for all values of
the dissociative coordinate it is referred to as diabatic
The resulting Hamiltonian in this representation is nondi-
agonal and the ability of this basis to reach a given accu-
racy with a few channels relies on the smallness of the
(field-intensity-dependent) couplings.

For strongly coupled systems, the situation is properly
handled through the use of adiabatic basis functions that
diagonalize the field-dependent Hamiltonian. The
electronic-plus-field curves reflecting nuclear dynamics
are just coupled by nonadiabatic terms that become less
and less efficient as the field intensity increases and the
curve crossings are more and more avoided.

From the numerical point of view, many algorithms
are available as far as the diabatic representation is used
(amplitude density, de Vogelaere, Numerov, Fox-
Goodwin, etc.). On the other hand, apart from Smith's
diabatic transformation and a reduced adiabatic-diabatic
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treatment, only a limited number of algorithms have
been developed for direct integration of the coupled equa-
tions in the adiabatic frame.

Approximate treatments at several levels of sophistica-
tion have, however, been applied to photodissociation
problems. In the context of strong radiative fields, a
decoupling approximation has been used as a guide for
the interpretation of optical nonlinearities. More gen-

erally, the multistate curve crossings occurring in
dressed-state representations have been handled using a
uniform semiclassical theory. '

In this paper we extend our previous work on the adia-
batic decoupling approximation to a broader range of
field intensities and wavelengths. Instead of one
electronic-plus-field adiabatic state, two "semiadiabatic"
states are retained which result from the partial diagonal-
ization of several blocks in the Floquet Hamiltonian. The
remaining nondiagonal interaction is treated diabatically
within a two-coupled-channel frame. The theory is de-
scribed in Sec. II. The results concerning the photodisso-
ciation of H2 (lsog, V=0, J=1~2po„) are presented
in Sec. III. The merits of diabatic and adiabatic basis sets
and that of the decoupling scheme are discussed as a
function of laser intensity and wavelength.

II. THEORY

A. Time-independent radiative close-coupling equations

Let us briefly recall the main steps of the tirne-
independent description of the field-induced resonances
which mediate the photodissociation process. The total
Hamiltonian for the molecule-plus-radiation field is tak-
en, within the Born-Oppenheimer approximation, as the
sum of the three terms,

H(r, R ) =Hao(r, R )+H„,d+ V;„,(r, R ),
namely, HBO approximate molecular Harniltonian, H„d
the free-radiation-field Hamiltonian, and V;„, the matter-
field interaction term. r and R stand for electronic and
nuclear coordinates, respectively. By doing so we have
omitted the intramolecular dynamical couplings between
Born-Oppenheimer electronic states which are indepen-
dent of the field strength and thus irrelevant for our dis-
cussion. We also assume that only two electronic states
are involved in the process: a bound initial electronic
state g and an electronically excited dissociative state d,
and neglect any change in the rotation quantum number
resulting from the interaction with the field.

In the dressed-molecule picture the total wave function
is expanded on electronic-plus-field channel functions
describing cascades of absorption-emission processes,

'k(r, R )= g [g (r, R )y „(R)+gd(r, R )yd „(R)]~n ) .

(2)

~ Pg ) ~
n ) and

~ fd ) ~
n ) are exact eigenstates of H ~z

+H„d corresponding to the ground and excited electron-
ic states with n quanta (photons) in the field. The R
dependent unknown mixing coefficients y's (the vibra-

tional wave functions in the diabatic potentials) can be
obtained as solutions of a system of second-order
differentia equations. As it has been previously
shown '" the resulting set of close-coupled equations
within the dipole approximation for the radiative interac-
tion is

[TR + Vd „(R) Ejy—d „(R)

+ Vdg(R)[ys „,(R)+y „+)(R)]=0,
where TR is the nuclear kinetic energy operator and
V „(R)(a=g or d ) the electron-plus-field potential ener-

gy, i.e., the BO potential surface shifted by the photon
energy,

V „(R) = V~(R )+n Ace .

The off-diagonal coupling terms V~d represent the dipolar
radiative interaction which connects electronic-field po-
tential curves differing by one photon only
(V „& = Vgd5„+, ). This coupling can be expressed
using either the electronic field (EF) or the radiation field
(RF) gauge, leading to the length or uelocity forms, re-
spectively, for the dipolar interaction. The length form is

Vd(R )=tu, d(R) 4 (4)

where 8 is the electronic-field vector (assumed to be con-
stant over the interaction region) and p d the electronic
transition moment,

p d(R)=(g (r, R)~er~gd(r, R)), ,

resulting from integration over the electronic coordi-
nates, with /gad~ the electronic wave functions of the two

states involved. On the other hand, the RF gauge in-

volves the dipolar interaction A.p, with A the vector po-
tential (also considered as constant in space) and p the
electronic momentum operator. The resulting velocity
form of the dipolar interaction is

Vsd(R ) =
mc

It can be related to the length from [Eqs. (4) and (5)] us-

ing the commutator relation for the Born-Oppenheimer
electronic Hamiltonian HBo,

together with the relation 3 =c/coN between the ampli-
tudes of the vector potential and field. One thus gets

Vg(R) —Vd(R)

Although both gauges lead obviously to the same results
in an exact calculation, we show below (Sec. III) that one
form or the other may be much more convenient for a

[~/+ V, +](R ) +]X

+ Vsd(R )[yd „(R)+yd „+2(R)]=0,
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specific type of calculation and for a given molecule.
Let us note here that when V & is restricted to couple

the channels ~g, n+1) and ~d, n ) only in Eq. (3) (i.e.,
neglecting the couplings between ~g, n) and ~d, n+1))
the infinite set of equations (3) is partly decoupled into
sets of 2 X2 "Floquet blocks, " each describing a single-
photon absorption-emission process. The resulting
"rotated-wave approximation" already goes beyond the
usual lowest-order perturbative treatment (Fermi golden
rule) and yields accurate results at intermediate field

strengths.
The solution of Eqs. (3) subjected to Siegert-type

boundary conditions' (regularity at the origin and outgo-
ing wave behavior at infinite separation) leads to complex
quasivibrational energies or field-induced Feshbach reso-
nances whose imaginary parts are directly related to pho-
todissociation rates. Accurate calculations may require a
large number of coupled Floquet blocks depending on the
field strength and the wavelength. Algorithms based
upon the Fox-Goodwin propagator associated with the
analytic continuation of the Hamiltonian by the complex
rotation of the coordinate' are then prohibitively time
consuming. %e describe now alternatives to the exact
solution of these coupled equations, based on the adiabat-
ic representation.

B. Adiabatic representation and approximations

[U(R ) —W(R )I]C(R ) =0, (8)

Wl, (R ) being the adiabatic potentials and Cl, (R ) the
weighting factors of the BO wave functions g (r, R ) lead-

ing to adiabatic electronic-plus-field wave functions

g (r, R ). The total wave function expanded on this
field-dependent adiabatic basis involves R-dependent un-

known coefficients y'1, (R ) which are the adiabatic ana-

logs of the nuclear wave functions y(R ) of Eqs. (3). They
are now solutions of adiabatically coupled equations '

2 2

I +2+(R ) +p(R )
2p jR JR

+W(R ) —ZI q"(R )=0, (9)

where W is the diagona1 potential matrix, p is a sym-
metric potential correction given by

(10)

The adiabatic description incorporates the radiative
couplings in the eigenvalues of the electronic-plus-field
Hamiltonian. The vibrational motion adjusts itself con-
tinuously (adiabatically) to the perturbation induced by
the field and for large radiative intensities, the number of
such electronic-plus-field channels required to lead to
convergence is expected to be smaller than in the diabatic
representation.

The diagonalization of the potential matrix U(R } [Eqs.
(4) and (6)] results into field-dependent eigenvalues and
eigen vectors,

and v an antisymmetric matrix with elements

d
rz&(R)=(g tr, R) P~ (r, R)

dR

Finally, the Hellman-Feynman relation' gives an alter-
native expression for ~I,I in terms of the first derivative of
V( r, R ) (molecular and molecule-plus-field couplings)
with respect to R,

(r, R) ~ y~ (r R)

r«(R )=
Wp(R )

—WI(R )
(12)

When comparing Eqs. (3) and (9) one observes the follow-

ing.
(i} Radiative potential couplings leading to a prohibi-

tively large number of channels in the intense field regime
do not appear in the adiabatic treatment.

(ii) Adiabatic interchannel interactions (nonadiabatic
radial couplings) are large near the avoided crossing
points where the adiabatic potentials are close to each
other. Note that these couplings may be considered as
negligible between different Floquet blocks as compared
to their values within the block under consideration, re-

sulting from the fact that the laser-frequency-dependent
denominator may be very large from one block to the
other.

(iii) The coupling terms contain an additional kinetic
operator d idR.

It is precisely this operator which is responsible for the
computational complications arising when the integra-
tion of the coupled equations in the adiabatic representa-
tion is attempted. A generalized version of Numerov's
method to handle photodissociation problems in the adia-
batic frame has only recently been proposed and its ap-
plication to intense laser-field dissociation is now in pro-
gress. Smith's transformation has often been referred to
as a possible way to drip out the kinetic couplings and

applied to electronic transitions taking place during a
chemical reaction and to vibrational inelastic scatter-
ing. ' More recently the formalism has been generalized
to the study of the photodissociation of a polyatomic
molecule (CH3NOz) showing complicated peak and dip
patterns. The procedure involves three steps: transfor-
mation from a diabatic to an adiabatic basis set, trunca-
tion of the adiabatic basis, and back transformation to a
reduced-diabatic basis set.

A different "semiadiabatic" approach is adopted in this
paper. The method is summarized in Fig. 1. Three Flo-
quet blocks in the diabatic dressed-molecule picture are
symbolized in Fig. 1(a) together with their corresponding
field-amplitude-dependent potential couplings. They are
separated by twice the photon frequency. The first step
consists of diagonalizing all the "upper" Floquet blocks
(involving more than n+1 photons) together with the
ground state dressed with (n + 1) photons Vs „+&. This is

done using Eq. (8) and yields ( 2N + 1 ) adiabatic
molecule-plus-field potentials W,+(R ) [i = 1,2, . . ., (2N
+1) if N+ is the total number of upper Floquet blocks
which are retained to reach a given accuracy, the super-
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Vg „5 ) = g [C; 2 + &
(R)~g, i+2p+1)+C; 2 ~d, n+2p )]

p=0

d, n+4

Vg, .p
and the residual coupling is calculated through

(13}

2hv

d, ni2

Vg, n. f
+m

w„
Wf

=C»(R )C,o(R ) V „+,z„(R ) . (14)

The last step of the calculation is to reconsider the dia-
batically close-coupled equations within a two-channel
frame,

-- Vg, n-f

/

yva, n-z
,

&

,.-Wz

-- W

[T„+W, (R) E]g+—(R)+W~+, (R)~ (R)=0,
(15)

[T„+W, (R) E]y (R—)+W,+) (R)y+(R)=0,

.-- Vg, n-)

j(

)r i
V )

d, n-4

Wg
\

5

FIG. 1. (aj Diabatic and (b) semiadiabatic representation of
dressed electronic potential curves. The solid lines correspond
to the higher Floquet blocks, the dashed lines to the lower Flo-
quet blocks. The arrows indicate the radiative couplings. The
result of separate diagonalization within each group of curves is
shown in (b).

script "plus" indicates that we are dealing with "upper"
blocks]. The same operation is undertaken for the
"lower" Floquet blocks (the ones which involve less than
n photons) coupled to the dissociative state dressed with
n photons Vz „. The result is (2N + 1) adiabatic poten-
tials W, (R ) [i =1,2, . . ., (2N +1), the superscript
"minus" being the analogous of "plus" for "lower"
blocks]. It is to be noted that due to the selection rules
[Eq. (4)] the matrices to be diagonalized are in tridiagonal
form for which performant algorithms can be used.
Within the "upper" (or "lower" ) blocks the adiabatic po-
tentials with avoided curve crossing are represented on
part (b) of Fig. 1. They are only coupled through the
nonadiabatic kinetic terms of Eq. (9), which will be
neglected in the following since the interblock energy gap
is large. The only place where such a coupling would be
important is the curve crossing occurring between
W,+(R) and W, (R) potentials. Instead of treating it
adiabatically we calculate the residual 6eld-dependent di-
abatic potential coupling between these two states. The
two-step diagonalization (upper and lower blocks sepa-
rately) leads to eigenvectors: C,+(R) and C, (R} (i being
the index of the corresponding eigenvalue). The "upper"
(or "lower" ) block adiabatic wave functions as expanded
on the diabatic basis (briefiy noted as ~g or d, n )) are
given by

and to solve it with appropriate boundary conditions to
obtain the resulting Feshbach resonances.

We conclude this section by recalling other types of
adiabatic approximations used in Ref. 2, with respect to
which the performances of the above "semiadiabatic"
treatment will be checked in the next section. At inter-
mediate laser intensities, a useful tool for the interpreta-
tion of optical nonlinearities is to restrict the adiabatic
representation to a single Floquet block, thus excluding
actual multiphoton absorptions. The corresponding adia-
batic states accommodate laser-induced tunneling or
shape resonances, ' coupled to each other by nonadiabat-
ic residual couplings. A further step in the approxima-
tion may be performed if the quasibound levels supported
by the lower adiabatic potential, are far from the ones
supported by the higher adiabatic potential. This is
clearly the case for excitation wavelengths leading to
avoided crossings at large interfragment separation.
When the field parameters (i.e. , intensity and wavelength)
correspond to this particular regime, kinetic couplings
may be neglected (decoupling approximation) and the
shape resonances are obtained via direct integration of a
single nuclear Schrodinger equation.

This approximation may already account for nonlinear
effects within a single-photon picture, but it is severely re-
stricted to moderate intensity and specific wavelengths.
We show now that the "semiadiabatic" approach de-
scribed above has a much broader range of validity due to
the inclusion of multiblock effects, and may handle a
large number of coupled channels without prohibitive
computational efforts.

III. RESULTS

To illustrate the main features of the serniadiabatic
model we reconsider the photodissociation of
Hz+(v =0, J= 1) for which a thorough analysis of the
nonlinear behavior of the laser-induced resonances has
been previously conducted in the diabatic approach.
Only two electronic states were retained, namely, the
ground ( lscrs ) 'X+ and the dissociative (2pa„) 'X„+,
given by uniform Morse-type representations
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V 0(R )=Do[exp[ 2—13(R —R, )]—2t exp[ P—(R —R, )]I

(a=g or d), (16)

I

psd(R ) =@+ I 1 —exp[ 13y(—R —R, )] I . (17)

where the bound or repulsive character is related to the
sign of t . The transition dipole moment is taken from
Bunkin and Tugov, '

of dissociation (R, & R, ).
All calculations are done by solving the coupled equa-

tions subject to Siegert-type boundary conditions. We
refer to the well-documented technique of the analytic
continuation of the Hamiltonian by complex rotation of
the radial coordinate, ' which leads to the resonance
width I and energy shift hE from the zero-field position
of the vibrational bound state. Three classes of approxi-
mations are studied and their performances are compared

All the parameters are listed in Ref. 2 and the resulting
matter-field interaction is expressed there in the length
form [Eq. (4)]. It is to be noticed that Eq. (17) with a neg-
ative value of P corresponds to an asymptotically diver
gent dipole. This did not bring numerical difficulties into
the previous calculations, restricted to a range of laser
wavelengths and intensities where bound-free transitions
dominate the photodissociation process. For strong fields
and especially when free-free transitions above the disso-
ciation threshold become important, ' it is more efficient
to use the asymptotically convergent velocity from [Eqs.
(6) and (7), with Vd(R )

—Vs(R )~0 at large R] to avoid
the otherwise increasing number of channels needed for
convergency. All calculations presented in this paper are
done with the matter-field interaction expressed (in
cm ') as

(a)

O'FAN
FIELD

& ~~mm

A"iiiE~~DIATF
&F'LD

STRONG
FlELD

V d(R )= '
[Vd(R ) —V (R )]v I p d(R ), (18)

1.17X10 '
2'

with I in Wcm and pgd in atomic units.
Finally, we recall that a J-conserving approximation,

neglecting the different rotational channels which are
coupled by the laser field, is adopted.

As has been pointed out previously approximations in
the diabatic and adiabatic frames may lead to quite
different results (sometimes complementary) according to
the characteristic parameters of the laser source (i.e., in-

tensity and wavelength) and of the target molecule. Scal-
ing values for these parameters are the characteristic
internal frequency (vibrational or rotational) of the mole-
cule and the wavelength A,~,„which corresponds to the
maximum of the dissociation line shape. In our specific
example the vibrational mode frequency of H2+ in the
energy region of interest is co, =2000 cm ' and
A, ,„=1250 A for absorption from the ground vibrational
level.

For the forthcoming discussion we map the laser-field
interaction parameters into a system with
(co/co„A, /A, ,„) as coordinates and the point (1,1) as ori-
gin [see Fig. 2(a)]. A. ,„ is the laser wavelength and
co=fi 'V d(R, ) the Rabi frequency, proportional to v'I,
at the crossing point R, between the attractive and repul-
sive curves in a single-photon diabatic representation.
Vertical dotted lines separate the plane into three intensi-
ty regimes which have already been defined in our previ-
ous work and correspond to the weak (co/co, « 1), inter-
mediate (co/co, =1), and strong (co/co, )&1) matter-field
couplings, respectively. The upper half-plane corre-
sponds to a c+ type of dissociation (crossing point on the
right, at R, )R, ) and the lower half-plane to a c type

(nml
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I (cm )'
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SOO-

—-—qp —100}- 0
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FIG. 2. (a) Field intensity regime and type of dissociation
(c—

) in the different regions of the plane (colruv, A, /A, ,„) (see
text). The circles place the six examples discussed in the text.
(b) Comparison of the results obtained with different methods
for the cases 1, 3, 4, and 6 of (a). 0, exact calculation; ~,
semiadiabatic; 0, single-photon diabatic; ~, single-photon adia-
batic; 6, multiblock adiabatic.
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with converged diabatic calculations including five Flo-
quet blocks.

(i) The single-photon two-channel diabatic approxima-
tion which neglects multiphoton (multiblocks) sects and
leads to a Feshbach resonance. It is very appropriate in
region I and still valid in region II where even important
nonlinearities may be accurately reproduced.

(ii) Adiabatic approximations, which reduce the systein
to a single adiabatically dressed channel with a shape res-
onance. Multiblock effects may be partially included by
diagonalizing the ten initial diabatic channels, instead of
only two as in our previous work. It is appropriate when
the field intensity is large enough to well separate the
channels resulting from the diagonalization, in order that
the neglected nonadiabatic couplings are small. A situa-
tion which occurs in intermediate (diagonalization within

a single Floquet block) or strong-field region (multiblock
diagonalization) provided the laser frequency leads to a
c type of dissociation (R, )R, ). In the opposite case
the neglected upper adiabatic state is very much involved

in the process and this approximation fails.
(iii) The present semiadiabatic approximation which

again considers a Feshbach resonance between two
multiphoton-dressed coupled channels resulting from a
separate diagonalization of the upper and lower Floquet
blocks. Nonadiabatic couplings within each group of
states (upper and lower) are neglected. We show below
that this approximation has a uniform validity over the
intensity regime, at least for a c+ type of crossing. For a
c type of dissociation in a strong field the results are
less accurate.

A numerical comparison between the different approxi-
mations and the fully converged close-coupled results is

presented through six illustrative examples. They are la-

beled from 1 to 6 on Fig. 2(a) and are chosen according to
the molecule-plus-laser characteristics in regions sarn-

pling the weak-, intermediate-, and strong-field regimes.
Each situation corresponds to a field-induced curve cross-
ing of the c or c type. Numerical values for the reso-
nance widths and shifts resulting from the different
methods are collected in Table I and Fig. 2(b), for the
weak and strong field regimes.

(1) Example 1 corresponds to a weak-field regime with
c+-type curve crossing. This is a typical situation where
the single-photon diabatic approximation is valid and
where single-channel adiabatic approaches fail. One ob-
tains three figures of accuracy within the diabatic frame
and a factor of 100 difference within the adiabatic frames
when compared to the exact result. The semiadiabatic
approximation reproduces within four figures of accuracy
the width, as well as the position of the resonance.

(2) Example 2 is chosen in the intermediate-field regime
with again a c+-type curve crossing. The width and shift
values obtained with the single-photon diabatic approxi-
mation differ from the exact results by 4% and 15%, re-
spectively. These discrepancies can be interpreted in
terms of field-induced nonlinearities. The field intensity
is not large enough to bring adiabatic approximations
within comparable accuracy. It is, however, to be no-
ticed that a diagonalization taking into account multi-

photon processes slightly improves the value of the width
but achieves 1% of accuracy for the energy shift of the
resonance. As in the previous example, the semiadiabatic
approximation yields numerical values with four figures
in common with the exact calculation.

(3) Example 3 illustrates a strong-field case with again

TABLE I. Results (in cm ) for the resonance width (I ) and shift (AE) obtained with the different methods and for the six exam-
ples described in the text (see Fig. 2). I (in W/cm ) is the laser intensity and k (in nm) the wavelength.

I (W/cm )

A, (nm)

(1)
I=3.5 X 10'
A, = 160

(2)
I=3.5x10"
A, = 160

(3)
I=1.4 x 10"
A, =160

(4)
I=3.5X10'
A. = 100

(5)
I=3.5x10"
A, = 100

(6)
I=1.4x 10"
I,= 100

One-photon
diabatic

0.6981
—5.221

88.353
—509.09

442.77
—1877.79

3.4294
1.377

379.69
133.48

1792.9
78.06

One photon

72.38
0.091

183.18
—505.47

538.14
—1860.58

1623.52
2672.95

2173.95
2322.67

3240.1

1467.1

Type of calculation
Adiabatic

Multiphoton

72.36
—0.71

177.01
—581.98

482.01
—2141.94

1623.48
2672.59

2169.59
2287.09

2672.6
1623.5

Semiadiabatic

0.6977
—6.01

84.831
—584.14

393.06
—2152.87

3.4295
1.128

380.48
107.01

1781.2
—46.95

Converged
calculation

0.6978
—6.011

84.830
—584.03

393~ 51
—2152.06

3.4295
1.128

380.48
107.01

1782.7
—47.22
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a c -type curve crossing. Field-induced nonlinearities
mainly affect the resonance position and the single-
photon diabatic approximation completely fails in repro-
ducing it. Although adiabatic approximations are im-
proved by diagonalizing over all Floquet blocks, their ac-
curacy remains limited. This can be explained by refer-
ring to the (v =0, J= 1 ) right turning point which lies,
for the wavelength under consideration, close to the
avoided crossing, such that the neglected upper adiabatic
channel is involved in the decay process. The semiadia-
batic approach by including the nonadiabatic coupling at
this point achieves three to four figures accuracy for the
resonance width and position.

(4) Example 4 corresponds again to a weak-field case
but here with a c -type curve crossing; two parameters
which advocate against the use of the adiabatic frame.
As expected excellent agreement is obtained with the
single-photon diabatic approximation, whereas adiabatic
approximations are out of scale. With the semiadiabatic
approximation one gets four to five figures accuracy even
in this c type of configuration.

(5) Example 5 shows a reduction of the validity of the
single-photon diabatic approximation for this
intermediate-field strength responsible for the increasing
nonlinearities in the resonance position. The two ver-
sions of the adiabatic approximation fail because of the
c -type curve crossing. But again five figures accuracy is
achieved when using the semiadiabatic approach.

(6) Example 6 deals with the most unfavorable situa-
tion where the strength of the field invalidates single-
photon descriptions (both diabatic and adiabatic) and the
c -type curve crossing, by mixing neighboring reso-
nances limits the validity of the multiphoton adiabatic

description. The semiadiabatic approximation partly
takes into account this resonance mixing only at one
crossing point between potentials resulting from the
separate upper and lower Floquet blocks diagonalization,
while the neglected nonadiabatic couplings are large in
the vicinity. But even in this apparently unfavorable situ-
ation this approximation is surprisingly good, reproduc-
ing the width and the shift within two to three figures ac-
curacy.

From these examples we conclude that the semiadia-
batic approach is able to reproduce uniformally accurate
results whereas the approximate diabatic or adiabatic
descriptions have their respective domains of validity.
Although in its present form this method yields total pho-
todissociation cross sections only, without access to the
energy distribution of the fragments, its simplicity and
large range of validity make it very efficient to study non-
linear effects which would otherwise require prohibitively
time-consuming calculations. Such cases would be en-
countered for very intense fields and rather short wave-

lengths, where many electronic states may play a role, or
even in intermediate fields which actually couple (beyond
the J-conserving approximation) a large number of chan-
nels with different J values. We have recently studied
this rotational mixing in H2 within the semiadiabatic
approach of this paper, including many Floquet blocks
each with a whole rotational structure.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. F. H. Mies for fruitful
discussions.

T. F. George, I. H. Zimrnerman, J. M. Yuan, J. R. Laing, and
P. L. DeVries, Acc. Chem. Res. 10, 449 (1977);J. M. Yuan, J.
R. Laing, and T. F. George, J. Chem. Phys. 66, 1107 (1977);
A. M. Lau, Phys. Rev. A 16, 1535 (1977); A. M. Lau and C.
K. Rhodes, ibid. 16, 2392 (1977).

~X. He, O. Atabek, and A. Giusti-Suzor, Phys. Rev. A 38, 5586
(1988). There is a misprint in the expression of the radiative
coupling V,„t (p. 5589) that should be multiplied by a factor of
—,'. See Eq. (18) of the present paper.

M. S. Child, in Atom-Molecule Collision Theory, edited by R. B.
Bernstein (Plenum, New York, 1979), p. 427.

4B. R. Johnson and D. Secrest, J. Chem. Phys. 48, 4682 (1968).
5W. A. Lester, Methods Comput. Phys. 10, 211 (1977).
D. W. Norcross and M. J. Seaton, J. Phys. B 6, 614 (1973).

7F. T. Smith, Phys. Rev. 179, 111 (1969).
8P. Pernot, O. Atabek, J. A. Beswick, and B. Levy, Int. J.

Quantum Chem. 33, 161 (1988).
T. T. Nguyen Dang, S. Durocher, and O. Atabek, Chem. Phys.

129, 451 (1989).
' A. D. Bandrauk and M. S. Child, Mol. Phys. 19, 95 (1970); M.

S. Child, J. Mol. Spectrosc. 53, 280 (1974); A. D. Bandrauk
and O. Atabek, J. Phys. Chem. 91, 6469 (1987).

' S. I. Chu, J. Chem. Phys. 75, 2215 (1981).
A. F.J. Siegert, Phys. Rev. 56, 750 (1939).
O. Atabek and R. Lefebvre, Chem. Phys. 56, 195 (1981).
R. P. Feyman, Phys. Rev. 56, 340 (1939).
M. Baer, G. Drolshagen, and J. P. Toennies, J. Chem. Phys.
73, 1690 (1980).
M. V. Fedorov, O. Kudrevatova, V. Makarov, and A.
Sarnokhin, Opt. Commun. 13, 299 (1975); A. M. Lau, Phys.
Rev. A 13, 139 (1976).

7F. V. Bunkin and I. I. Tugov, Phys. Rev. A 8, 601 (1973).
A. Giusti-Suzor, X. He, O. Atabek, and F. Mies, Phys. Rev.
Lett. 64, 515 (1990).
O. Atabek and R. Lefebvre, Phys. Rev. A 22, 1817 (1980).
X. He and O. Atabek (unpublished).


