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This paper presents an analysis of the Rabi oscillations of two-level atoms in the scattering-state
representation. A collision complex obtained from a pair of identical two-level atoms is coupled to
a field mode and it is found that there can be three distinct Rabi frequencies. These reduce to a sin-

gle Rabi frequency for a photon distribution that is sharply peaked around an average number
n )&1. One then finds that, in addition to the three frequency components in the off-diagonal ele-
ment of the atomic density matrix, there are two components that are symmetrically displaced
around the mode frequency at intervals of twice the Rabi frequency. They represent the collisional-

ly induced cooperative motion of the atoms. %'hen various observable quantities are averaged over
the orientation of the complex, one obtains results that apply to many-atom systems in the binary
collision approximation. Collisional effects do not enter the above results as lifetimes due to the fact
that scattering states have precisely defined energies and correspond to entire particle histories. The
collision potential opens up new radiative coupling channels, which collectively represent spectral
line broadening. The collision potential and the radiative coupling combine to produce static and
quasistatic dipole moments for the complex. At the threshold for atomic population inversion, the
density matrix for the complex, as well as for an atom, becomes a constant multiple of the identity
matrix, demonstrating that the threshold of stimulated emission is also a critical point for collision-
al effects, within the approximations of this paper.

I. INTRODUCTION

Popular theories of light propagation in many-body
systems may be roughly divided into two groups: semi-
classical theories and projection algebra of density-matrix
operators. In both types of approaches, one usually starts
a theoretical analysis with severely restrictive assump-
tions about relative strengths of radiative and nonradia-
tive couplings. The widely used semiclassical theory of
light propagation' is valid, provided that there are no
significant nonradiative interactions among atoms, or in
the opposite limit, if nonradiative interactions, such as
collisions, are intense and rapid, as well as localized, so
that the incident field has no effect on individual events.
In this latter limit, collisions are takeo into account by
means of finite linewidths. The most precise approach to
radiation fields plus an X-body system is to treat the en-
tire collection as one quantum system, with one wave
function for each distinct many-body state. The quantum
properties of its components, such as those of atoms and
molecules, or of radiation fields, may then be deduced by
means of appropriate projection operators. Various
density-matrix operator methods are based on this sys-
tematic reduction technique. ' These methods become
quite complex as soon as one tries to impose some sort of
self-consistency, or to treat mutual influences between
the material system and the radiation field on equal
terms. Usually the physics becomes completely obscured
behind a complicated formalism.

With strongly interacting atoms and molecules which

spontaneously organize themselves into a crystalline or-
der, there is no alternative to some form of projection
algebra, either on density-matrix operators or directly on
wave functions. However, when such spontaneous organ-
ized behavior does not take place, for example, in gases,
it is possible to develop an intermediate approach in

which one identifies sufficiently small units which may be
considered as independent in the absence of radiation
fields. An independent unit may be a pair of colliding
atoms ("binary-collision approximation"), a triplet of mu-

tually scattering atoms, etc. These units may be de-
scribed by scattering states and referred to as collision
complexes. Collision complexes may then be directly
coupled to radiation fields in a dressed atom formalism.
Once the density matrix of a complex is determined as a
function of time, it can be partially traced over to yield
the density matrix for individual atoms. Thus, the pro-
posed method permits one to take into account
significant correlations arising from collisions while treat-
ing the coupling between the radiation field and the ma-
terial system rigorously. Earlier we applied the method
to a collisionally triggered coherence phenomenon in
atomic vapors and to an alternative description of the
collisionally opened radiative channels. In the present
paper, we apply the method to the problem of Rabi oscil-
lations in a simple model system.

One uses a dressed atom representation in the descrip-
tion of the interaction of a nearly resonant intense field
with an atom (well-known examples are the resonance
fluorescence and Rabi oscillations of atoms). The num-
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0= 1+(E H„—V+—is) ' V, (1.lb)

where F is the energy of the asymptotic state
~ 1( ) „and is

treated as a c-number parameter. The transformation
(1.1a) can be viewed as a canonical transformation when
there are no bound states of the two atoms induced by V,
or even if there are such bound states for an attractive V,
if they can be neglected with little effect on the dynamics
of the pair. This follows from a fundamental theorem'
which states that, to every solution g, of the Schrodinger
equation

iA' —f, =(H„+V)fait, (1.2a)

which is orthogonal to all bound states, there corre-
sponds a unique solution of the particle Schrodinger
equation

i'—P, =H„P, , (1.2b)

such that the norm obeys

(1.2c)lim
// vjj,

—P, //

=0 .
t~ oo

Conversely, to every solution of (1.2b), there corresponds
exactly one solution of (1.2a) such that (1.2c) holds. The
asymptotic pair states can therefore be put into one-to-
one correspondence with the scattering states in the ab-
sence of bound states. In fact, the operator 0 satisfies the
relations"

0 0=1, (1.3a)

nn'= I —y ~q, ) &, q, ~, (1.3b)
p

where ~g&)'s are the bound states of H„+ V. Thus, 0 is
actually a unitary operator and (l. la) is a unitary trans-

ber of atomic states involved in radiative transitions in-

duced by an incident optical field is usually small. When
one associates these states with the number states of the
incident field quanta, the Harniltonian of the system of
one atom plus many quanta becomes truncated in the
product Hilbert space, at least in some form of the
rotating-wave approximation. The determination of the
eigenvalues and eigenstates of the Hamiltonian is then re-
duced to the problem of the removal of degeneracies.
This extremely simple and direct method has provided an
efficient tool with which quantum properties of the sys-
tem of one atom plus many quanta have been investigated
rigorously.

Scattering states are well known from the early work
on the quantum theory of scattering. Let us consider a
pair of colliding atoms. One can solve the Schrodinger
equation for the collision process by describing the quan-
tum state of the pair by the scattering state correspond-
ing to a specified asymptotic state of the pair in the limit
of vanishing collision potential. If V is the localized col-
lision potential and Hz represents the asymptotic Hamil-
tonian of the two atoms, then the scattering state corre-
sponding to an asymptotic state ~P) „ is given by

(l.la)

formation if there are no bound states. Once a collision
potential is specified, (l. la) gives the state of the pair
pararnetrized by its energy.

The dressed atom formalism can be directly applied to
the scattering states generated by the transformation
(l. la). This has several advantages. First, by coupling
the scattering states directly with the appropriate number
states of the radiation field and solving for the dressed
states of the complex, one takes into account the effect of
the field on the collision complex, hence, on the collision-
al process, in a direct and physically transparent way. A
collision event is no longer an irreducible event as in the
semiclassical theories. The new formalism reflects the
fact that a collision event is influenced by the radiation
field. Second, the effect of the collisional process on the
radiative coupling is also taken into account in a direct
way. Specifically, collisionally triggered cooperative
effects, as well as collisional broadening, are exhibited in
a unified formalism. Of course, the degree of accuracy to
which the mutual influences between the collisional and
radiative processes are taken into account in a many-
body system depends on the number of atoms in the corn-
plex and on the approximations made in order to solve
the effective Harniltonian when particular photon-
number states are associated with the atomic states. If
the collision complex has two atoms, that is, if 2' atoms
of a gas are paired into N collision complexes, the results
are accurate in the binary-collision approximation. One
can systematically increase the number of atoms in the
complex. For example, a two-atom complex may be
paired with another atom to obtain a three-atom com-
plex. In the second pairing, the scattering states of the
two-atom complex are treated as if they were the asymp-
totic states with respect to the scattering states of the
three-atom complex. Calculations with three-atom com-
plexes take into account three-body correlations as well
as two-body correlations. This procedure may be repeat-
ed to obtain larger complexes for more accuracy in calcu-
lations of many-body effects. It is seen that our method
of approach to radiative interactions in many-body sys-
tems is inductive, in contrast to projection algebra
methods, which are didactic.

In this paper our main purpose is to illustrate the new
method. Consistent with this purpose, we chose the
well-known Rabi oscillations of two-level atoms for
analysis. However, we also obtain new results. In sum-
mary these are the following: (a) For the complex of a
pair of two-level atoms, there is more than one Rabi fre-
quency. These frequencies are determined by a cubic
equation. (b) At high field intensities, one recovers a sin-
gle Rabi frequency, but there are still collisionally in-
duced cooperative effects. For example, the off-diagonal
element of the atomic density matrix has four frequency
satellites which are symmetrically displaced from the
mode frequency, two by an amount equal to the Rabi fre-
quency and two by twice the Rabi frequency. The latter
are induced by the collisional process. (c) Under the
influence of the fundamental mode, static or quasistatic
dipole moments of the collision complex can be pro-
duced. These moments are associated with degenerate
states of the complex. (d) Within the approximations of
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Sec. III, the threshold for atomic population inversion is
a critical point not only for radiative transitions, but also
for collisional effects. At this threshold, the collisional
effects vanish and the density matrix for the complex, as
well as the reduced density matrix for the atoms, becomes
a multiple of the identity matrix, independent of time.

In Sec. II, we demonstrate the formation of a collision
complex from a pair of indistinguishable two-level atoms.
We use the straightline trajectory approximation. The
dipole moment operator of the complex in the
scattering-state representation exhibits new radiative cou-
pling channels which are induced by V. The coupling
coefficients between the complex and the radiation field
become dependent on energy as well as on V. We couple
the complex to a single field mode (occasionally referred
to as the fundamental mode in this paper), and assume
that the mode frequency is sufficiently close to the atomic
resonance frequency so that the rotating-wave approxi-
mation can be made. The diagonalization of this simple
Hamiltonian with the aid of dressed states yields a biqua-
dratic equation for the energy eigenvalues. One solution
corresponds to an unshifted energy level of the complex.
The remaining cubic equation yields three distinct Rabi
frequencies. These solutions are quite sensitive to the de-
tuning between the mode frequency and the atomic reso-
nance frequency and to the number of the quanta in the
mode. The exact solutions of the eigenstates and eigenen-
ergies permit the determination of the time-dependent
density matrix for the complex plus the field once the ini-
tial conditions are specified. We discuss these initial con-
ditions, assuming that they are specified in the asymptot-
ic limit.

In Sec. III, we consider the case where the number of
the field quanta is sharply peaked around an average
number which is much larger than one. The collisionally
split Rabi frequencies merge together and yield one Rabi
frequency, which is still modified by V through the cou-
pling coefficient. Some collisionally induced cooperative
effects appear at twice this Rabi frequency. With a fur-
ther simplification of the initial conditions in the
scattering-state representation, the elements of the time-
dependent density matrix for the complex are explicitly
displayed. In the following, we refer to the frequency
components of the diagonal elements of density matrices
as the Rabi spectrum, to those of the off-diagonal ele-
ments as the Mollow spectrum. The Rabi spectrum of
the complex for a sharply peaked distribution of photon
numbers has five components at 0, +g', and +2(', where
g' is the Rabi frequency. The Mollow spectrum of the
complex has frequency components at 0, +g', +2(', co,
co+/', co+2(', 2', 2co+g', and 2co+2g'. The same spectra
are found for the atomic density matrix, which is ob-
tained by partially tracing over the density matrix of the
complex. The vanishing of the detuning from the atomic
resonance and/or the limit of infinite average number of
quanta in the mode define the strong-coupling limit. In
this limit, the amplitudes of many of the above frequency
components vanish. For example, the Mollow spectrum
of an atom reduces to just five components at co, co+(',
and co+2/'. In comparison, the standard near-resonant
Mollow spectrum has just the components at co and

co+/'. Thus, the components at co+2/ represent the col-
lisionally induced cooperation between the two atoms in
the complex. They vanish when V=o. The components
of the Mollow spectrum of the complex at 0, +g', and
+2/' represent the static and quasistatic polarizations of
the complex. Under the combined action of the field and
the collision potential, a complex acts as if it were an in-
dependent permanent dipole. As discussed further in
Sec. V, small static electric fields can align such dipoles in
large domains. The density matrix of the complex, as
well as the atomic density matrix, becomes a constant
multiple of the identity matrix at the threshold for the in-
version of the atomic population. Collisional effects van-
ish. This indicates that the threshold for atomic popula-
tion inversion is a critical point for both radiative and
collisional processes.

It should be emphasized that the collisional effects do
not appear as energy uncertainties or lifetimes in the
above results. This is due to a different perspective of
collisions in the scattering-state representation, as dis-
cussed in Sec. IV. Normally, collisions are viewed in the
time domain, where an atom rushes from one collision
event to another, which leads to uncertainties in atomic
energy levels and hence to spectral line broadening. By
contrast, scattering states have precisely defined energies
and therefore each scattering state defines an entire parti-
cle history. In this picture, radiative transitions corre-
spond to hopping from one particular history to another.
The collision potential opens up many new radiative cou-
pling channels. These collectively describe spectral line
broadening. The collision potential V also modifies the
magnitude of the Rabi frequency (or frequencies). In Sec.
IV we also discuss the binary-collision approximation.
When the results of Sec. III are properly averaged over
the orientation of the complex, one obtains expressions
which are valid for many-atom systems in the binary-
collision approximation. Section V gives a few conclud-
ing remarks.

A final remark of this introduction concerns the
neglect of the bound states that permits the treatment of
the transformations induced by 0 as unitary transforma-
tions. This means that our method can be applied to
gases of atoms (or molecules) if there are no chemical
phase transitions. Temperatures, pressures, as well as the
type of atoms, must be such that no chemical transforma-
tions must take place, and that chemical species must
preserve their identity.

II. A SIMPLIFIED HAMILTONIAN
AND ITS SOLUTION

In this section we consider a simple collision complex
consisting of a pair of identical two-level atoms in a
single-mode radiation field and obtain the density ma-
trices for the pair and the individual atoms. We further
simplify the general Hamiltonian in the scattering-state
representation by assuming that momenta exchanged
during collisions, as well as recoi1 momenta associated
with radiative transitions, are negligible. Thus, the atoms
of the complex preserve their center-of-mass (c.m. ) mo-
menta throughout various transitions. This is equivalent



1572 AHMET EL/I AND DAVID DEPATIE 42

to the straightline trajectory approximation used in many
semiclassical theories. It restricts the validity of the re-
sults to long-range collisions.

Since the atoms of the complex are identical, the
asymptotic states are either symmetric or antisymmetric
with respect to the interchange of the atoms. Symmetric
operators like the collision potential and the dipole
operator of the complex do not couple symmetric states
to antisymmetric ones. All possible states of the complex
are therefore either symmetric or antisymmetric, with no
mixing between the states of different parity. In the fol-
lowing we assume that the states of the complex are sym-
metric.

For two identical two-level atoms, there are four
asymptotic states. They can be written as

—(Io;p &. Io;p & + Io;p & Io;p &. ),
2

where

g2 2 g2 2

2m 2m

g2 2 g2 2
c Ec E +E + +1 2 0 1

(2.3c)

(2.3d)

g2 2 g2 2

2m 2m
(2.3e)

Here Eo and E, are the energies and the atomic ground
and excited states, respectively. The scattering states cor-
responding to (2.1) are given by

Ip&=[1+(E„' Hz ——V+ie) 'V]Ilu&„, (2.4a)

which are the eigenstates of H~+V with the same
eigenenergies as in (2.3c)—(2.3e):

(2.1a) (H„+ V) Ip & =E„' p & . (2.4b)

—(Io;p &. I 1;p & + Io; p & I 1;p &. »
2

(2. 1b)

l2&z = (I 1;pi &, 0;p2&b+ I 1;pi &b 10;pz&, ),
2

(2.1c)

—(I 1;pi &. I 1;p2&b+ I 1;pi &i, Il;p2 &. ) .
1

2

Next, let us consider the dipole moment operator for
the complex and the coupling coefficients to the field.
For any operator 0 which is specified in the space of the
asymptotic states, the matrix elements in the scattering-
state representation are obtained from the transformation
induced by 0:

&i 1~Ii &= y n„'„(E„)„&i,OIi, &„n„„,(E„,),
P]P2

(2.5a)

where
2.1d

Here, the state vectors Ia;p; &, b (a= 01;i=1,2) refer to
the individual atomic states. a designates the internal
atomic state, p; the c.m. momentum. a, b label the atoms.
a=0 is the ground state, a=1 is the excited state. One
should interpret the meaning of, for example, IO; p, &, as

Io, p, &, (A, ;x, I0;p, &=
~OL

e ' '1io( A ), (2.2)

where A, b refers to the sets of the internal variables of
the atoms a and b, and X, b to the c.m. coordinates. &go is
the wave function for the internal ground state. Under
the straightline trajectory approximation, p& and p2 are
constant parameters without dynamical significance. It is
therefore entirely sufficient to label these asymptotic
states by Ip&„(p=0,1,2,3). They are the eigenstates of
the asymptotic Hamiltonian H~ and are orthonormal:

g & p'I p &
=

g & p'I n(E„)I p & g =n„„(E„) (2.5b)

Some mathematical care needs to be exercised in the eval-
uation of the diagonal matrix elements and the matrix
elements between degenerate states. Gell-Mann and
Goldberger" have shown that in the limit c.~0,

lim „(pIIM& = lim n„„(E„)=1.
E~O E—+0

(2.6)

lim n„.„(E„)=0 .
0

(2.7)

Furthermore, the limit c.~0 must be accompanied by the
limit L ~~, where VzL=L'=the quantization volume,
for consistent physical interpretation. If two distinct
states Ip& and Ip, '& have the same energy E„=E„,then
the Gell-Mann-Goldberger limiting procedure yields

H~ Ip&, =E„'Ip& ~, (2.3a)

(2.3b)

Thus, for the asymptotic states in (2.1), the diagonal ma-
trix elements of the operator 0 are 1, and some of its oth-
er matrix elements are given by

ni2(E2 ) =n2, (E', ) =0,
no, (E;)=n (E') =-,'[(.&ol„&ol)n(E, +E, )(lo&. ll &„)+(.&ol, &ol )n(E, +E,)(l». lo&, )],
n»(E; ) =n»(E;) =-,'[(.&ll„& 1 l)n(E, +E, )(l 1 &. Io&, )+(.& 1 I, & 1 l)n(E, +E, )(lo&. Il&, )],
n3o(EO) =

—,'. & 1 lab & 1ln(2Eo)Io &.e lo&b,

(2.8a)

(2.8b)

(2.8c)

(2.8d)
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where product state vectors at the right-hand side refer
only to the internal states of the atoms. Other matrix ele-
ments such as Q, o(EO) Q,3(E3), etc. , may be obtained
from (2.8b) —(2.8d) by appropriate interchanges of the ket
and bra vectors and by inserting the appropriate energy
arguments for the operator Q. Note that the reason for
the appearance of just the internal states and internal en-
ergies on the right-hand side of (2.8b) —(2.8d) is the
straightline trajectory approximation. In this approxima-
tion, V has no effect on the c.m. states. When one factor-
izes the atomic internal states and the c.m. states, e.g.,

2)(k) =2de'"'"cos(k x'/2) =2d, (2.10)

where, for pair separations which are much less than the
wavelength of the mode, we set cos(k.x'/2) equal to 1.
Furthermore, in the calculations the exponential factor
exp(ik x) always appears with the exponential factors
exp(ip;. x). As long as the atomic c.m. momenta are
much larger than the photon momentum, one can replace
exp(ik x) by 1. With these approximations, 2) is reduced
to (2d). In the space of the asymptotic states, the matrix
elements of 2) are given by

I ~;p; &. = I
~ &.e I p; &. , 3 &PIDIP & A 2 A &+1+2Il~l~2&. (2.11)

and uses &p;lp, &=5,, the translational energy parts are
canceled in the energy arguments of 0 and one is left
with only the internal states and internal energies.

For a pair of atoms, the dipole moment density and its
Fourier transform are given by

where (a,a2) and (aza2) are the internal states corre-
sponding to p and p', taken in the same order as in the
first terms of (2.la) —(2.1d). Using (2.10), the nonvanish-
ing matrix elements are

D(r) = g 5(r —X, )d, ,
j=a, b

fdre'"'D(r) = g e 'd =2)(k),

(2 9a)

(2.9b)

= „&2 ID I
3 & g

=do) (2.12)

j =a, b

where d is the electric dipole moment operator of the jth
atom. The indistinguishability of the atoms and the
neglect of radiative recoil permit one to simplify (2.9b).
Let x=(X, +X& )/2 and x'=X, —Xb. Then

and their Hermitian conjugates. The subscripts on d
refer to the atomic internal states. For a two-level atom,
only d01 and d10=d01 are nonzero. The matrix elements
of D in the scattering-state representation are obtained
from (2.5a) and (2.12):

& @IDIO'& = doi[QO„(E„')Qi„(E„' )+Qo„(E„')Q2„(E„')+Qi„(E„')Q3„(E„',)+Q2„(E„')Q3„(E„')]

+doi[Q(„(E„')Qo„.(E„' )+Q2„(E„')Qo„(E„')+Q3„(E„')Qi„.(E„', )+Q3„(E„')Q2„(E„')] . (2.13)

27TN

sv,„

Finally, the coupling coefficients to a radiation mode can be written as
' 1/2

&p e Dlp'&, (2.14a)

where co is the frequency of the mode, 0 is its polarization vector. One can show from (2.8) and (2.13) that g„„obeys
the symmetry relations

g01 02 g 13 g 23 (2.14b)

The fact that the collisional process opens up new radiative coupling channels can be seen from (2.13). For example,
the dipole matrix element & OIDI 3 & is nonzero and arises entirely from the collision potential. It couples the complex to
radiation modes which are at twice the atomic transition frequency. This coupling describes the cooperation of the
atoms through the collisional process in that individual photons absorbed or emitted in this channel are shared by the
two atoms. Such cooperative effects can cause second harmonic generation in atomic vapors.

In the scattering-state representation the general form of the Hamiltonian is

(x 1,P 1,cx2, P2, 0
E.

,p...p, l~(p(~~p2~ & & ~)p)~2p~o I

—g &~g~a ~~a~~
A, , k

g.'. ..(p]p2, p]p2, k) l~]p]~pp2o & & ~]p]~pp2~1~$$+ H. c.
I I I I

pi, a2, p2, &i,pi, &2, P2, k, , k

(2.15a)
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Here E
p p

is the energy of the complex. o designates

the symmetry (o = + 1) or the antisymmetry (cT = —1) of
the pair of the atoms with respect to the interchange of
the atoms. a&i, and azk are the Geld operators for the
mode (A.k). g is the coupling coefficient in the
scattering-state representation given by

g . ~ ~ P ip2~ PIPz
1 2' 2 2

' 1/2
2M' gg

& +1pl+2P2~ l~kg (k)
I +1pl+2P2+ &

VoL

(2.15b)

In the present paper we will work with a simplified ver-

sion of this Hamiltonian by omitting all field modes ex-

cept one, with frequency co, which we will refer to as the
fundamental mode, and by making the rotating-wave ap-
proximation with respect to this fundamental mode. Un-
der the assumption that momenta exchanged in col-
lisions, as well as radiative recoil momenta, are negligible,
we may use the compact notation of (2.1)—(2.4) and our
working Hamiltonian becomes

H= yE„'Ip&&pl+f2~~'~

+[i@gipll & &01+gipl2& &01+g„3&& ll

+g3il3&&2l)ci+H. c.], (2.16)

where a and a are destruction and creation operators for

the fundamental mode. Even though (2.16) omits the
cooperative effects associated with second harmonic gen-
eration, the density matrix of the complex may have fre-
quency components which oscillate at 2~ due to two-
photon transitions.

The eigenvalues and eigenstates of the Hamiltonian in
(2.16) can be obtained by writing an arbitrary state Ig & as
a linear superposition of the states of the complex and the
radiation field in the form

P„&=ipl0& in+2&+i, II &a In+I&

+i212&e ln + I &+i, 13 & ln &

—:gl„lp&gl n+m„&, (2.17a)

where In & designates the radiation state with n quanta
(n ~0) and

m = 1
P

0

for p=0,
for @=1,2,
for p=3 .

(2.17b)

HI1(„&=El'„& (2.18a)

one finds that

When H operates on
I P„&, the resulting state vector

remains within the subspace defined by the basis vectors
in (2.17a). From

0 —iA'g3i v'n +1

E2+(n + 1)A'co ifig3, v'n +—1

i fig» &n + 1 E 3 +n %coifig„&n +1

Ep+(n +2)f'ico ifig", ()&—n +2 ifig )p—&n +2

ifig, p&n +2 E;+(n +1)fico

i', p&n +2 0

lo lo

l, l,

12 l2
(2.18b)

The eigenvalue problem for H is thus reduced to the diagonalization of a 4X4 Hermitian matrix. With the definitions

E =fig+ E', + ( n + 1 )fico,

Ah=E', —Eo —Ace,

one Gnds the eigenvalue equation

g"—[2(n +2)]lg„l'+2(n +I)lg3i I'+ ~']g'+2&[(n +2) lgip I' —(n +1)lg2( I' ll =o .

(2.19a)

(2.19b)

(2.20)

Let us designate the roots of (2.20) by („2, where
A. =0,1,2,3. The overall g factor gives a root that is zero.
Let this root be g„3. The remaining three roots are the
solutions of a cubic equation. Define the quantity

g„p—2+9„cos
3

(2.22a)

I

equation is irreducible and there are three real roots

~n ="n Un

where

u„=-,'[6,'+2(n+2)lg»I'+2(n+1)lg» I'],
Ub [(n +2)lg&pl —(n +1)lg3, I2] .

(2.21a)

(2.21b)

(2.21c)

g„)= —2+0„cos

2Q il „cos

(2.22b)

(2.22c)

Since the matrix in (2.18b) is Hermitian, w„& 0, the cubic where
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y„=tan ' Wn
(2.22d)

I1((t)&=e ' ' " g&= gc„ze "'
lg„z& . (2.26b)

n, A,

Let l„z„represent the components of the eigenvector cor-
responding to g„z. Define

The corresponding density-matrix operator is given by

p(t) = lg(t) & & 1((t) I

N„„=[ [g„~(g„~—6 )
—2( n + 1)Ig3~ I ]

+2(n+2)(g„q —b) lg, ol

+4(n+1)(n+2)lg»l'Ig» I'] '" .

Then

1
1.~0= [4d k.~

—~)—2(n +1)lg3i I'],
nA,

1
n +2(4z ~}gio

2
(~ +1)(~ +2)g&og31

nA,

(2.23a}

(2.23b)

(2.23c)

(2.23d)

n, A, , n', A,
'

'&~n~ n ~ ]'~"

(2.26c)

p(o}= g ly. &p. ,„(0)&1(„
n, A, , n', k.

'

then

(2.27a)

p(t) = g p„,&[e "' "" p„,. „,„,(0)]&1(„,, I

n, k, n', A,
'

If at time t =0 the system can be described only by a mix-
ture of states, for example, by the density-matrix operator
p(0),

These eigenvectors are complete as we11 as orthonormal:
(2.27b)

g 4*~„I.~ „=fiu.
P

(2.24a) n, A. , n', A,
'

(2.24b)

In summary, the eigenstates of H are given by

(2.25a)

=[A)„q+E', +(n +1)trtco]lp„q& . (2.25b)

n =0 k. =O
(2.26a}

If the state of the total system at time t=O is given by a
state like (2.26a), then the state at time t is given by

An arbitrary state of the collision complex plus the radia-
tion field can be written as

Clearly, the specification of either the initial-state ampli-
tudes c„& in (2.26a} or the initial density-matrix elements
p„z.„z.(0) in (2.27a) is equivalent to a complete solution
for the dynamics of the system. Since (2.27) includes
(2.26) as a special case, let us concentrate on the density
matrices.

We postulate that the initial (boundary) conditions are
specified in the asymptotic limit and for individual atoms.
We also assume that, at t =0, the density matrix of the to-
tal system can be factored into an outer product of the
density matrix for the complex and the density matrix for
the field. These assumptions correspond to a physical
picture in which the radiation field and the collision po-
tential are turned on simultaneously on t=O. We there-
fore need to relate p„z.„z.(0) to the asymptotic states of
the complex at t=O and determine the general connec-
tion formulas between the density matrix of the complex
and the density matrix of the individual atoms. From
(2.25a),

p„&,„,& (0)= & p„&lp(0)lg„~ &
= g I„*oui„q„&~ +m„l & pip(0)lp' & l~'+m„& (2.28)

Factoring the density matrix as

p(0) =p'(0)IIp~(0), (2.29a)

p A. ;
~(0)= X i.~/ .'Au'p. +,.'+.

PP P P

+uu" Eu )pu"u'"(0 +u"'u'( u'

where p'(0) is the density matrix operator for the complex
and pr(0) is for the field, one finds

(2.29c)

where p„"„'.(0) denotes „&p I
p'(0)

I

p' & „. To compute
p„"„'(0),we note that Eqs. (2.1) can be summarized as

& n +m„l & pip(0)lp' &s ln'+m„&

=&@,lp'(0)lp, &p&' „,, (o), (2.29b)
&i, &i, &Z &2

cu. .. Ia, ;p, , &.ala, ;p;, &b . (2.30)
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p„"„',(0)= „(112lp"(0)I31p'„'(0)liM'& „ (2.31)

Since both the collision potential and the radiation field
are turned on at t=0, it is reasonable to assume that
p"'(0) may be further factored into the atomic density
matrices for the two atoms of the complex:

Ac(0)—

I . t I I

IXp", , (0)C&. .. . , .
~2'2'~2i 2 ~i'1' ~2' 2

(2.32)

Substituting (2.30) into (2.31), we obtain p„"„'(0) in terms
of the elements of the atomic density matrix p"(0):

Note that all of the nonvanishing C";,.'s are equal to
Il&2:

0 0 1 1 2 2 3 3 1
Cp&. 02 02.0& p&. ]2 ]2.0] = ]].02

=
p2 (2.33)

Suppose that p"(0) is diagonal and that the occupation probabilities of the atomic states are given by

p";. ;(0)=& &;;f (p;), (2.34)

where f (p, ) is the conditional probability that the internal state of the atom is a if the atom is in the c.m. momentum
state p;. Because each atom is either in the ground state or the excited state,

fo(p;)+f1(p;)=1 . (2.35)

Substituting (2.34) into (2.32), one finds that the off-diagonal elements ofp"' vanish and the diagonal elements are given

by

poo'(0) =fo(pi )fo(p2)

pi~i~(0) =fo(pi )f1(p2)

p22 (0)=fo(p2»i(pi »
P33 (0) f 1 (Pl)f 1(P2)

(2.36a)

(2.36b)

(2.36c)

(2.36d)

When these initial conditions are transformed into the scattering-state representation, one obtains the initial density
matrix in the scattering-state representation, which we designate by I':

F„„—= g Q„„,(E' )p"-'„. (0)Q„~ (E„' )
II III

= fo(P1)fo(P2)Q~o(EPQoq (Eq ) +fo(P1)f1 (P2)Qqi(EPQiq'(Eq' )

+fo(P2)f 1(P1)Q„2(E„')Q2„(E„')+f1(pi)f, (p2)Q„3(Ei', )Q31, (Ei', ) .

The time-dependent density matrices for the complex and the individual atoms are obtained by tracing over the states
of the field mode. From (2.27b) and (2.37), one finds for the density matrix of the complex in the scattering-state repre-
sentation

p„'„(t)=
n, n', l, , l.',p",p"'

—]t [g„~—g„~ —(m —m )~)
5(n +m„, n '+ m„)e " " " " pr+ „+ (0)l„z„l„'~„„F„„„„,l„,z,„„,l„;z. . .

It ) III nynPPIII, nPnP (2.38)

Tracing over the states of one of the atoms in (2.38) and
transforming back to the space of asymptotic states, one
finds the time-dependent atomic density matrix:

p", , (t)= g C, ,-p"',(t)(C, ,' „, )*, .
p, p', a",i"

(2.39a)

where

p„"„'(t)= g Q„„(E„'-)p„'-„~(t)Q„.„...(E„'-.) . (2.39b)
P P

It is seen from (2.38), (2.25b), and (2.22) that the origi-
nal energy levels are split into four components. One
component is unshifted and corresponds to („3=0. The
other three components have distinct shifts in the most
general case, represented by g„o, g„„and g„2. This means

that, in principle, there are three distinct Rabi frequen-
cies. This is surprising in view of the conventional three-
peak Mollow spectrum, ' where each of the energy lev-
els is split into two components and the shifts which are
determined by a single Rabi frequency are symmetric
with respect to the original level. Clearly, the additional
levels and the corresponding Rabi frequencies in the
present analysis arise from the collision-induced coopera-
tion between the two atoms. The signs and magnitudes
of g„o, g„i, and $„2 are quite sensitive to the detuning
from the atomic resonance and to the intensity of the
field. The phase angle P„ in (2.22d) approaches —m. /2
for 5~0 and/or n~~. This causes $„,~$„3=0 and

g„2~—g„o, producing two symmetric levels around the
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unshifted level, and recovering something similar to the
standard Mollow spectrum. The intense field case will be
discussed in more detail in the next section. Both U„and
u„are sensitive to h. However, v„should be relatively
insensitive to the field intensity since, on the basis of sym-
metry, one would expect g, p and g3, either to have the
same magnitudes or to differ very little. If we let

dio=d io &ii;oo(0}= +&i;oo(0}

then to first order in V and in the limit a~0:
(2.40)

g10 =
' 1/2

2%6)

&VpL

&»;oo(0)
10ed 1 — ' +O(V ),

27TCO

R VpL

1/2
+& i;oo(0)

1 0

(2.41a)

g 31 g10 =g

(2.41b)

(2.41c)

u„=u =b, /g/',

u„= ,'[5 +(4—n+6)/g/ ] .

(2.43a)

(2.43b)

U is completely independent of the intensity. Whatever
the intensity is, P„approaches —n /2 as one approaches
the atomic resonance, and one obtains a single Rabi fre-
quency. Clearly, any possibility for the observation of
the multiple Rabi frequencies lies with large detunings
from the atomic frequency and with extremely low inten-
sities. These requirements can make experimental obser-
vation extremely difFicult. Nevertheless, it may be possi-
ble to inject a few Rydberg atoms into high-Q cavities'
or into optical traps' and to look for the collisionally
split Rabi frequencies, for example, in the free-induction
decays of atoms or in the spectrum of scattered light.

The appearance of just one angle variable in (2.4la)
and (2.41b) may be surprising at first glance, since there
are two atoms in the complex. However, we assumed
that the two atoms of the complex are distinguishable. If
the internal d10 were to point in different directions for
each atom, then the atoms would be distinguishable. Of
course, one can still use the symmetric and antisymmetric
combinations of asymptotic atomic states for distinguish-
able atoms. For the symmetric combinations, one then
has the replacement

Here V is the Fourier transforin of V with respect to
atomic separations

V, ,(k)= g J dRe'" "f'(A,')g" (A )
1 2' 1 2 ~ ~ pL

a b

X V(A, Ab', R)

X Q, ( A, )Q, ( Ab } . (2.42)

In (2.42), A, b refers to the internal variables of the
atoms, R is the atomic separation X, Xb, g—'s are the
asymptotic atomic states. When (2.41c) is used in (2.21b)
and (2.21c), u„and u„become

III. INTENSE FIELD

In this section we discuss the case in which the average
number of quanta in the mode n »1 and the distribution
of n's is sharply peaked in the vicinity of n (for example,
when the inode is in a coherent state). By the word "in-
tense" in the heading of this section, we simply mean that
n »1, even though this may, in practical terms, mean a
relatively weak optical field. When the field is intense in
this sense, one recovers the familiar features of the Rabi
oscillations in the two-level atom model. The collisional-
ly split distinct Rabi frequencies discussed in Sec. II col-
lapse into a single Rabi frequency, which has the familiar
form. Nevertheless, there are still collisionally induced
cooperative effects which appear as oscillations at the
second harmonic of the Rabi frequency. The
simplifications induced by the intense field assumption, as
well as some further reasonable approximations, permit
one to display explicit expressions for the density ma-
trices. These expressions show an interesting effect aris-
ing from a particular set of initial conditions. If the ini-
tial conditions correspond to the threshold for the inver-
sion of the atomic population, then the collisional effects
vanish and the density matrices remain constant and pro-
portional to the unit matrix. It follows that the threshold
for stimulated emission is a critical point for collisional,
as well as for radiative, cooperative effects.

Using (2.41c), replacing n's by n and ignoring 1's and
2 s in (2.20), one obtains the simplified eigenvalue equa-
tion

(b, +4n~g )g =0—.

The eigenvalues are

(3.1a)

—+(g2+ 4n ~g ~

2 )1/2

2,&=0

(3.1b)

(3.lc)

It is clear from (2.41) and (3.1b) that the quantity g' is the
generalized Rabi frequency for an atom in a coherent
field mode. If 0 is the angle between the polarization
vector and the bare atomic dipole moment

e d,o= ~d, o~cosO,

then g' can be written as

g'=~6~(1+/ cos 8)'

where

(3.2a)

(3.2b)

(3.2c)

is the square of the ratio of the standard Rabi frequency
to detuning. It is also seen from (2.41) that the collision

&.dio -'& «io+dio'}

in (2.41a} and (2.41b) when the atoms a and b are distin-
guishable. Formulas for distinguishable atoms are more
cumbersome than those for indistinguishable atoms and
will not be pursued here.
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2g'

', g&—2n

Io=
', g—&2n

2('

', g—&2n

I, =
', g&—2n

(3.3a)

potential V modifies the magnitude and the phase of the
atomic dipole moment.

The eigenvectors corresponding to +g' are

These vectors form an orthonormal set.
Before we use the preceding eigenvectors in (2.38) to

obtain the time-dependent density matrix of the complex,
we simplify (2.38) by taking only the diagonal elements of
the matrix Fof the initial conditions. To order V, F„„is
given by

F1,1,
= |1Iof0(pl)fo(pz)+fit lfo(pl )f 1(P2)

+~pzfo(pz)fl(PI)+&p3fl(P1)fl(P2)+0( I' ) .

(3.4)
g'+ 6

2('
g'+5

2g' If the conditional probabilities are independent of p;,
then

b

g~a

'g "V'2n——

(3.3b)

The other eigen vectors corresponding to degenerate

3 0 may be chosen to be orthogonal to the vectors in

(3.3a) as well as to each other:

Foo f0& Fll F22 fof 1& F33 f 1
2 2 (3.5)

The neglected off-diagonal elements of F are of the order
of V; they play the primary role in the collisionally trig-
gered second-harmonic generation. However, in the
present paper our focus is on Rabi oscillations, and this
approximation considerably simplifies the final results.
With respect to a single complex, it preserves the essen-
tial features of the cooperative effects in that the density-
matrix elements have the same number of frequency com-
ponents as when the off-diagonal matrix elements of F are
not omitted.

From (2.38), (3.3), and (3.4), one finds that the elements
of p'(t) in the intense field approximation are given by

poo(t)= [(3g' +2(' b +36 )Foo+(g' —b )(g' +36 )(Fl, +F22)+3(g' —b ) F33]
1

+
4

[(g' +b )Foo —6 (F,1+F22)—(g' —6 )F33]cosg't+ 4 (Fml —Fll —Fzz+F33)cos2('t,, z z z & 2 2 (gl 2 gz)2

(3.6a)

p'„(t)= I(g' b, )(g' +35 )Foo+—[(g 6 ) +2( +26 l(F11+F22)+(g b )(0 +38 )F331

Q2 +2(gl 2 Qz) (g 2 Qz)+ (F„—Fzz)+
2(l 2 2('

(
—Foo+F, , +F22 —F33)+ 2

(F„—Fzz) cosg't
2(l 2

(gt 2 Qz)2
+

~ ( Foo+ F„+Fzz —F33 )c—os2('t,
8 t4 (3.6b)

pzz( t ) =p 1 1 ( t;F11~F22), (3.6c)

p33(t)= [3(g' 5) Foo+(g' —b, )(g' +—3b, )(F„+F22)+(3g' +2/' b, +3b, )F33]
1

(
12 Qz+ [ —(g' 6)F00—b, (F„+F—zz)+((' +b, )F33]cosj't

(g& 2 Qz)2+
4 (Foo F, ,

—Fzz+F33 —cos2( t
8 ' (3.6d)
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Pp, (t) = t'g 4g n e I (IPI

4 p 4 I
b—,(g' +36, )Fpp —b(p —3b, )(F„+F22)+36,(g' —6 )F33

+e '~'[ —(g' —b, )((''+(' 6+28, )Fpp

+&((' b)(—('+26 )(F„+F22)+(g' —b, )((' —2b, )F33]

+e'~'[(g'+5)((' —g'5+26 )F00+6(g' —2b, )(g'+b, )(F11+F22)—(g'2 —b, )(g'+25)F33]

+ —,
'

( (' —b, )[(g'+ b, )e '& ' (—g' b, )e '&—'](Fpp —F„—F22+ F33 )

p02(t) ppl(t IF11 F22) I

+g' [2b, +(g' b, )e —'~' —(g'+b, )e'&'](F„—F22)], (3.6e)

(3.6f)
2I crJI( g& 2 g2 )

P03(},4 (Fpp F11 F22+F33 )16('

X [2((' 3b )+46(g—'+b, )e'~' 4A(g' —h—)e '~' —(g'+6) e '~' —(g' —b, ) e '&'], (3.6g)

p»(t}= (Fpo —F1, —F22+F33)[g' +2)' b, 3b, 4h —(g' ——6 )cosg't —(g' —b, ) cos2$'t], (3.6h)

l Q)f

p', 3(t)=
4 t 26[3(g' —b )Fpp

—(g' —3h )(F„+F22)—(g' +33, )F33+2(' (F, 1
—F22)]

+e+'~ I2(g'+ 5)[—(g' b)(g'+—26)F00+6 (g' 2b )(F„+F22)—
+(g' —g'6+26, )F33 —g' (F11—F22)]

'& I2(g' —g)[(g'+b, )(g' —2b, )F00+ 6(g'+26, )(F„+F22)
—(g' +g 5+26 )F33+( (F11 F22)]

+(g' —5 )[(g'+b, le '~' —(g' —b )e "~'](Fpp —F11 —F22+F33) j I

P23( t) =P13( t; F„~F22 )

(3.6i)

(3.6j)

ppp(t): fp,g«1

(3.7)p»(t},p22(t) = fo(l fo), —
g«1

p33(t) (1 fp)g«1

As expected, the diagonal elements of p' reduce in this
limit to the probabilities of the formation of the pair
states calculated from the asymptotic atomic probabili-
ties. In the other limit g»1, which may be called the
strong-coupling regime, poo and p33 have five frequency
components, but p» and pzz do not have the components
at +g':

The notation F»~F2& means that F» and F2& should be
interchanged, which reverses the sign of the terms that
are proportional to (F» —

F22 ).
It is seen from (3.6a) —(3.6d) that the spectrum of the

diagonal matrix elements of p' consists of five frequency
components of 0, +(', and +2('. In the standard Rabi
oscillations of two-level atoms, one has only three com-
ponents corresponding to 0 and +g'. Thus, the spectral
lines of p„'„at 2g' arise from the pairing of the two
atoms. Note that the components at +g' and +2/' disap-
pear when g « 1, which may be called the weak-coupling
regime:

Ppp(t) = —'+
—,'(f11—

—,') +(fp —,' }cos(Q—„~cosO~t)

+ —,'(fp —
—,
'

) cos(20„ icosOit),

p'„(t),p22(t): —,
' —

—,'( f11
—

—,
'

)

—
—,'( fp —

—,
'

) cos(2Q„ icosOi t),
p33(t) = 4+ 2(fp 2 ) (fp &

)cos(2IIt1 ~cosO~t)

(3.8)

Here sin (Q~ ~c sOo~t~/2) and cos (Qz ~c s o~tO/2) are the
time-dependent probabilities of the lower and upper
states of a two-level atom which are obtained in the stan-
dard Rabi oscillation problem. The limits in (3.9)

+ —,'( fp —
—,
'

) cos(2021 icosOit),

where we used the fact that g' becomes QR ~cosO~ for
g » l. In order to compare (3.8) with the standard atom-
ic Rabi spectrum, let us assume that asymptotically both
of the atoms are in the excited state, that is f0 =0:
p~(t)~[sin ( —,III& ~cosO~t)]

p»(t), pz2(t)~sin ( —,'Qt1 ~cosO~t)cos ( —,'Q~ ~cosO~t), (3.9)

p33(t) ~[cos ( —,'Q„~cosO~ t)]
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X [ sin(Qz Icos8lt)

+ (fo
—

—,
'

)sin(2Qa I cos8I t)],
I COt + lg

pi3 p23 =
' e (fo

X [ sin(Q„ lcos8lt)

—(fo —
—,')sin(2Q~ Icos8lt)],

Pi2
.- —,'(fo —

—,
')'

g»1

po3 i e ""'(f,——,
' )'[ 1 —cos( 2Qg I

cos8
I
t ) ]g»1

(3.10)

where we set g = Igl exp(i/~ ). From (2.41), one finds

l Vi i.oocos8

[4(E E )2+ Cy I2]1/2

The first four elements in (3.10) oscillate at to+Qii Icos8I
and co+2Q+ Icos8I, which can be expected from single
photon transitions and from the fact that both atoms are
executing Rabi oscillations with frequency Q„ lcos8I. It
is interesting that p12 is independent of time as well as of
the field. In other words, there is a static polarization be-
tween the two degenerate states of the complex in the
strong-coupling limit. The implications of p12 are dis-
cussed further in Sec. V. p03 oscillates at 2' and
2to+2Q„lcos8I in the strong-coupling limit. If we put
fo =0 as before, the limits in (3.10) become

i(cot —p ):—e ' sin ( —,'QR Icos8lt)

(3.11)

P01~P02

X cos( —,'Qz
I
cos8I t),

i(cot+/ )

p», pzi - —e ' sin( —,'Qz lcos8lt)
g»1

X cos~( —,
' Qii Icos8I t),

C lP12, =
8 ~g»1

(3.12)

po3 --e ' 'sin ( —,'Qz Icos8lt)cos ( —,'Q„ lcos8lt) .
g»1

The off-diagonal matrix elements in (3.12) should be com-
pared with the off-diagonal density-matrix element of a
two-level atom executing Rabi oscillations, starting from
its excited state, which is given by

represent the occupation probabilities obtained simply
from the pairing of two statistically independent atoms.
The cooperative nature of the motions of the two atoms
is more clearly manifested in the off-diagonal elements of
p'( t).

It is seen from (3.6e)—(3.6j) that the spectral lines of
po, , po2, p», and pz3 are at co, co+(', and co+2('. The lines
of p', 2 are at 0, +f, and +2('. po3 has spectral lines at
2', 2co+g', and 2co+2g'. In the weak-coupling limit all of
these off-diagonal matrix elements vanish, p0& and p12 as

g, the others as g. On the other hand, in the strong-
coupling limit,

C C
I COt If

poi po2 - —,e (fo —
—, )

fo=f i =-,' (3.13a)

(3.13b)

All of the off-diagonal elements vanish and the density
matrix of the complex reduces to a constant times the
unit matrix [Eq. (3.13b) also implies that p' is proportion-
al to the unit matrix in the representation of the asymp-
totic states since the transformation induced by 0 is uni-
tary; see Eq. (2.39b)]. Thus, the collisionally induced
effects vanish, and the threshold for the stimulated emis-
sion from the atoms is also a critical point for the col-
lisional effects.

We should emphasize that this conclusion holds to the
degree of the validity of the approximation made for F„„
in going from (2.37) to (3.5). At the threshold, the factors
arising from fo and f, in (2.37) are equal to —,', and F„„
can be written as

(3.14)

Although this expression yields —,
' for the diagonal ele-

ments due to the unitarity of 0, it does not vanish for the
off-diagonal elements of F because of the different energy
parameters in 0's. F„„ for pWp' is at least of the order
of V. Whether the threshold is still a critical point when
such terms are included is an open question.

As the preceding discussion makes it clear, it is the
whole complex that couples to the electromagnetic field.
p'(t) is therefore a physically more significant quantity
than the atomic density matrix p"(t) whose elements are
given by (2.39a). Nevertheless, we will discuss at least
certain parts of p"(t) in order to exhibit certain features
that arise from collisions, as well as those which are fa-
miliar from the standard two-level atom problem. Be-
cause of the form of QQ, p"(t) can be decomposed into
three parts. From (l. lb) and (2.5b) one sees that

—exp( —itot)sin(Qii lcos8lt/2)cos(Qii Icos8I t 12),
where Qti =Q„(V=O). The off-diagonal elements of p'(t)
generate a polarization field through the matrix elements
of the dipole moment operator of the complex in the
scattering-state representation, given by (2.13). In princi-
ple, the polarization field can have frequency components
at 0, g', 2g', co, co+(', to+2@, 2', 2'+(', and 2co+2g'.
Relative strengths of various components depend on the
detuning from the atomic resonance, on the intensity of
the fundamental mode used in (2.16), as well as on its
statistics, and on the collision potential V. Some of the
spectral components can be suppressed in certain cou-
pling regimes. The time-dependent polarization field of
the complex couples to the other modes of the elec-
tromagnetic field (%co) which have the same frequencies
as those listed above. Thus, several new components ap-
pear in the usual Mollow spectrum. These new com-
ponents carry information about the individual matrix
elements of the collision potential.

The matrix elements of p'(t) in (3.6) exhibit an interest-
ing effect if the initial conditions correspond to the
threshold for the inversion of the atomic population. At
this threshold
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P |Ll p p

P P P

(3.15a)

p"(t)=p(t)+p (t)+p (t) . (3.15b)

p'(t) corresponds to the first term of (3.15a). p"(t) corre-
sponds to the terms with one Kronecker 5. p"'(t) corre-
sponds to the last term of (3.15a). We will discuss only

p (t) I.et.us write it as

I e
—i (a—a')cut

Pai; a'i'
s =0,21,+2

Is is/ t
P ai 'a'i'e (3.16)

Then the diagonal elements are given by

We have grouped the terms according to the number of
Kronecker 5's. The term with two Kronecker 5's is of
the zeroth order in V. The terms with one Kronecker 5
are at least of the order of V. The 1ast term is at least of
the order of V2. One can decompose p"(t) accordingly:

I+2
Oai;ai

(2f0 —1)

4 4(1+/ cos 8)

8(1+( cos 8)

~Ij;li rOi;Oi(fa 1 f0} '

(3.17a)

(3.17b)

(3.17c)

(3.17d)

Equation (3.17) means that, if we focus on atomic behav-

ior, we find that the atomic population probabilities exe-
cute the standard Rabi oscillations. In p'(t), the effect of
the scattering on atomic population probabilities is to
modify the standard Rabi frequency by modifying the

coupling coefficient to the radiation field. The off-

diagonal elements of p'(t), however, have spectral com-
ponents at co+2(' as well as at co and co+(':

16(1+(2cos 8)'

+3gzcos 8[e 'f02 —e t(1 fa) ]+4i s—intI) (2 —
g cos 8)fa(1 fa)I, —

ti tglcos81[I+(I+( cos 8}' )
I [ 1+~2 &8+(1+~2 28),n][ fp g+(1 f )2 g]

16(1+/ cos 8)

+[3+(cos 8—(I+/ cos 8)' ][ fae '+(1 f0)—e ']—
+4i sining[

—2+(I+( cos 8)' ]f0(1 fa)I, —

r' ' =r" [(I+(cos 8)' ~—(I+( cos 8)' ]

&2
—g ~cos8~ [I+(I+(cos 8)' ] . , z

~0i; 1i
4( 1 +(2 28}2

r' =r' [(1+g cos 8. }'. ~—(1+g2cos 8)'

The components at to+2/ are generated entirely by the collision process. In the limit of strong coupling,

p,';. ;(t) = —,'+( —1)'—,'(f0 —
—,')cos(Qa icos8it),

g»1
l CO/

p0, .„(t) = (f0 —
—,')[cosggsin(Q„~cos8~t) —i(fa —

—,')sing sin(2Qz ~cos8~t)] .
g»1 2

(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.19}

These have the same form as one might have expected on
the basis of the Rabi oscillations of the two-level atoms
except for the second term in the off-diagonal element.
This second term represents the collisionally induced
components of the atomic Mollow spectrum, which are
separated from the fundamental frequency by twice as
much as are the standard components. Note that there is
a tradeoff between the standard side components of the
Mollow spectrum and the collisionally induced com-

ponents in (3.19). The amplitudes of the former are pro-
portional to cosPg, the amplitudes of the latter to sining.
It is seen from (3.11} that sing compares the potential
energy to the energy separation of the atoms. sing goes
to zero linearly as V~O. On the other hand, if the po-
tential energy is much larger than the atomic-energy sep-
aration, the standard Mollow side peaks tend to disap-
pear and one is left with the collisionally induced com-
ponents alone. The direct experimental observation of
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pol ol(t) =
& g g Q»( E )Q& (E )p (t),

g=1,2 p, ,p,
'

po'z o&(t) =.po'l. ol(t;Fll~Fzz),

p l'l . l l ( t ) = —,
' g g Q» (E

&
)Q „*„'( E& )p„'„(t )

7/
—2, 3 p, p

Ply. 12( t) =Pl l. ll(t;Fl1 F22 ),
po', .„(t)= —,

' g [ Qo„(E„)Qq„(E„,)

(3.20a)

(3.20b)

(3.20c)

(3.20d)

+Q,„(E„)Q3q(E„)]p„'„(t),

Po~z;lz( )=Pol ll(tiF» Fez)

(3.20e)

(3.20f)

It follows from the unitarity of Q and from (3.13b) that,
at the threshold,

&o =
z
—Pa'i;a i ( ) = 4 fiaa ~ii (3.2 la)

(3.2 lb)

Thus, all off-diagonal atomic correlations, radiative as
well as collisional, vanish at the point where stimulated
emission at the atomic frequency can begin.

IV. COMMENT ON THE
BINARY-COLLISION APPROXIMATION

The discussions of Secs. II and III concern just one col-
lision complex. When there are N independent corn-
plexes, the orientation angle 8 becomes a stochastic vari-
able. If 0 is an additive operator for the N-complex sys-
tem,

8=+6
p=1

then its average value is given by a stochastic average
over the traces of 0 's with p'(t):

N

((0(t) ))s= g —,
' f d (cos0)Tr[p'(cosO, t)

p=1

(4.1)

X 6 (cos8)]
1=

—,'N d cosO Tr p' cosO, t 1 cosO—1

the atomic density matrix as given in (3.19) by means of
optical method appears to be quite difficult but feasible.
One needs to design experiments in which the atoms are
transferred (one at a time on average and within a finite
time period) from the region where collisions and the
coupling to the fundamental mode take place to a region
where they are isolated and decay.

The threshold for the atomic population inversion is
also a critical point for the reduced density matrix p"(t).
Using (2.39), one can write the matrix elements of p"(t)
as

The simplicity of the above stochastic average hides
the significant shift in the perspective with which one
views collisions in radiative interactions in the
scattering-state representation as compared to the stan-
dard picture of many-particle systems interacting with
radiation fields. In the standard picture, one visualizes an
atom wandering around and undergoing collisions at
different places and times. After each collision, the atom
loses the memory of any previous collision event. This
means that after each collision, a new particle history
starts. One also assumes that each collision event takes
only a short while and that most of radiative interactions
of the atom occur when the atom is in between two col-
lisional events. In contrast, the scattering states have
precisely defined energies. As far as collisional processes
are concerned, they take into account entire particle his-
tories, that is to say, entire particle trajectories. For the
description of a 2N-particle system, one superposes N his-
tories of collision complexes one upon another. In this
new picture, a radiative transition means substituting one
pair history for another under the influence of the field.
This is analogous to a Feynman path integration in which
one uses expansions in terms of entire trajectories rather
than individual space-time points. '

The contrast between the standard and scattering-state
pictures indicates that the scattering-state representation
can be particularly useful in analyses of coherent phe-
nomena in many-particle systems. When entire particle
histories are used in their descriptions, atoms may have
partial memories about collision events in the presence of
coherent radiation fields. Memories are partial because
of superpositions of many distinct histories. The various
quantum amplitudes of the independent complexes inter-
fere. What survives these interferences represents a col-
lective mode of the entire system. Surviving memory
effects correspond to correlations among atoms and are
embodied in collective modes. Because radiative interac-
tions and collisions are treated on equal terms, the order
that a coherent field may impose on the material system
is taken into account in a rigorous quantum formalism,
but in a physically transparent way. We have applied the
present method to a collisionally triggered second-
harmonic generation in atomic vapors and expect it to
be useful for analyses of other collisionally triggered
coherence phenomena, such as the collision-induced
four-wave mixing. '

As examples of the stochastic average in (4.2), we
briefly consider the state distribution of complexes and
the dipole moment density in the strong-coupling limit.
From (3.8) and (4.2), one finds that the average number of
complexes in the state p is given by

(4.2)

((6(t) ))e describes a property of the 2¹tom system in
the binary-collision approximation. Thus, quantities like
the time-dependent distribution of atoms, the dipole mo-
ment density, etc. , become simple averages over 0. where

(2)
sin20g t

+ 'g (4.3a)
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(0) — (O) —1 + 1( 4. 1 )2

(O) — (O) —1 1( r 1 )2

(1) (1)
90 93 J 0

(1) (1)
91 I2

(2) (2) (2)— (2) —1 r r

(4.3b)

It is seen that the time-dependent distribution of the com-
plexes exhibits decaying oscillations about certain con-
stants. The same type of ringing behavior is also ob-
served in the polarization density. Writing (2.13) in the
form

&) IDIO'&=d„s„„, , (4.4)

one finds that the polarization density of the ¹omplex
system is given by

{t)=1V&T Dp'(t))() =
—~Ido)I(fo —

—,
'

g»1

X [(S,+S —S,3
—

S23 )R (Qz t)+(fo
—' )(So) +S02+S»+S23)R (2Q2t t)]+c.c. , (45a)

where

&&» oo

[4(E g )2+ I~ I2])/2
(4.5b)

2 1 2 Sirlx
R (x)= ——cosx +

X X X
(4.5c)

If the two-level atoms were like independent spins, one
would expect their dipole moments to align along the po-
larization vector e of the intense field mode without any
reference to the collision potential. But, in (4.5a), P is
proportional to sin(t1g which depends on the collision po-
tential. Clearly, (4.5a) shows that the collisional process
does not permit the atoms to act independently. The
quantity sings measures the degree to which the two
field-excited atomic dipoles within one complex can coor-
dinate with each other. The polarization of the entire
system is then proportional to sing .

P (t) given by (4.5a) has frequency components at
co+QR and co+2Qz. The frequency components of p02(t)
near 2to, as given by (3.10), do not survive the average in
(4.2). If we had kept the oF-diagonal elements of F„„.in
(2.38), some of these would have introduced an extra fac-
tor of g into the amplitudes of p02(t). Such terms survive
the average in (4.2) and contribute to the second-
harmonic generation in atomic vapors.

V. CONCLUDING REMARKS

In the preceding sections we used the scattering-state
representation in conjunction with a dressed atom for-
malism in the analysis of the Rabi oscillations of a pair of
two-level atoms. This method provided for the simul-
taneous analysis of collisional and radiative processes in a
rnathematica11y simple fashion. It also provided a new

perspective of the effects of collisions on radiative transi-
tions. The preceding discussion makes it clear that the
method is particularly suitable for analyses of collisional-

ly induced cooperative effects. Such cooperative effects
can clearly be seen in the Mollow spectrum.

For a pair of colliding two-level atoms we found that
there is, in principle, more than one Rabi frequency. The
magnitudes of these different Rabi frequencies depend on
the detuning from the atomic resonance and on the num-

t

ber of quanta in the field mode. For an intense coherent
mode, these distinct frequencies merge, and one obtains a
single Rabi frequency for the problem. One also recovers
the usual Rabi and Mollow spectra. However, there are
additional components in these spectra at twice the Rabi
frequency which represent the pairing and the collisional-
ly induced cooperative motions of the atoms.

It is important to emphasize that in the above results,
the effect of the collisional process on radiative transi-
tions appears as the modification of the magnitude and
phase of the coupling coefticient between the complex
and the field, hence, the modification of the magnitude of
the Rabi frequency or frequencies. Collisional effects do
not enter the results as lifetime parameters or energy un-
certainties. This is a direct consequence of the radically
different physical picture of collisions in the scattering-
state representation compared to the standard time-
dependent picture, as discussed in Sec. IV. In the
scattering-state representation, spectral line broadening is
interpreted as the opening of new coupling channels by
V, due to partial breaking of the translational symmetry.
This is discussed more extensively in Ref. 6. Because of
the straightline trajectory approximation used in this pa-
per, this symmetry-breaking aspect is somewhat hidden
in the results. One deals only with the internal transi-
tions of the atoms. Nevertheless, V opens up new radia-
tive coupling channels with respect to internal transitions
as seen from (2.13) and these represent a "line broaden-
ing" in the straightline trajectory approximation.

An interesting result of the analysis of the Rabi oscilla-
tions in the scattering-state representation is the fact that
p'(t), as well as p"(t) obtained by partially tracing over
p'(t), becomes a multiple of the indentity matrix at the
threshold for atomic population inversion, independent
of time and orientation of atomic dipoles. The collisional
effects disappear. As a result, the density-matrix ele-

ments in (4.2) are unaffected by the stochastic average at
the threshold. One can visualize performing Kadanoff
transformations' on the state distributions of the 2X-
atom system by partitioning it into smaller units of paired
atoms. At the threshold, such transformations would
simply reproduce the original distribution. This means
that the threshold for the atomic population inversion is
a "fixed point" not only with respect to radiative process-
es but also with respect to collisional processes. Strictly
speaking, we demonstrated this only in the binary-
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collision approximation and to the validity of using (3.5)
for (2.37). It would be interesting to pursue the question
of whether the threshold remains a critical point when
these approximations are relaxed.

Another quite interesting result of the analysis is the
appearance of a quasistatic polarization p, z. We will dis-
cuss this phenomenon in more detail elsewhere. Here we
simply note that the dipole moment of the complex corre-
sponding to p;z is given by

p, = ( I ID I 2)p2i+ c c, (5.1)

which becomes completely static in the strong-coupling
regime. Both collisions and radiative transitions are
necessary to produce a finite p, . pz, vanishes without the
coupling to the fundamental mode, (1~D~2) vanishes if
V vanishes. The existence of two degenerate states for
the complex is also critical. According to (5.1), each
complex behaves as if it were a static dipole. Although
the fundamental mode contributes to the existence of p„
it does not align these moments. This follows from the
fact that a stochastic average over p, 's yields zero. How-
ever, such dipole moments can be aligned by static or
quasistatic electric fields. Minute amounts of static elec-

tric fields may create large domains in which p, 's are
aligned. Such responses yield information about matrix
elements of collision potentials which may not be readily
observable by other methods. For example, according to
(2.8), (2.13), and (2.42), (1~D~2) is approximately given
by

(1IDI2) =—2d„Re
&oo;oi(0)

E& Eo+l E'
(5.2)
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Here we expanded (l. lb) in powers of V and kept only the
linear term. The matrix element Voo. o, (0) describes a
transition in which one atom is deexcited while its
partner remains in the ground state, with no momentum
exchange between them. Finally, the formation of p, 's in
intense light may be called the "dynamic paraelectricity, "
since dynamically induced p, s in an electric field act very
much like independent spins in a magnetic field.
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