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In this paper, we report on the effect of an external force on the dynamical behavior of the CO,
laser with a saturable absorber. Different regimes have been obtained as the modulation amplitude
or frequency is changed. These regimes are compared to the standard phenomenology of the circle
map, i.e., the transition from quasiperiodicity to locked regimes and chaos according to the Farey
hierarchy with Arnold tongues. Return maps of the trajectories reconstructed from time series are
shown. These results are compared with those of numerical simulations based on a simple model of

the laser with a saturable absorber.

I. INTRODUCTION

The laser containing a saturable absorber (LSA) is an
excellent illustration of the impact of nonlinear dynamics
in the field of laser instabilities. In fact, the concepts
currently in use in this field have recently proved very
useful to understand and classify the different kinds of in-
stabilities displayed by this system and are known collec-
tively as passive Q switching (PQS).! ™! In the CO, laser
containing various absorbers such as SF,, CH;l,
HCOOH, etc., different dynamical regimes occur. De-
pending on the operating conditions, one can observe
limit cycles originating from a supercritical Hopf bifurca-
tion or more complicated Shil’nikov-type dynamics in-
volving an unstable saddle focus. Both regimes may
evolve towards chaos as the parameters are changed.®

A major problem encountered by experimentalists who
wish to use this system to generate high-peak-power
pulses is the jitter that affects the pulses. In order to sta-
bilize the frequency of the PQS pulses, a modulation may
be applied to some control parameter of the LSA.'> In
this paper, we report on the effect of such a modulation
on the dynamical behavior of the LSA. A similar prob-
lem was recently considered theoretically by Lauterborn
and Eick, who made numerical simulations on a two-level
model of a LSA with modulated pump'? that could de-
scribe the experiments with modulated Al ,Ga,_ As-
GaAs lasers.!* The CO, laser containing a saturable ab-
sorber usually does not follow very well the predictions of
two-level models, and experiments on a CO, laser with
modulated saturable absorber (LMSA) must be per-
formed in order to check its dynamical behavior. The
various regimes obtained as the modulation amplitude or
frequency is changed follow the standard phenomenology
of periodically forced systems, i.e., the transition from
quasiperiodicity to locked regimes according to the Farey
hierarchy with Arnold tongues.!> We have also paid at-
tention to the fine structure of the locked regions in
which period-doubling cascades have been observed.

This paper is organized as follows: in Sec. II, the ex-
periment is presented and we discuss how the modulation
acts on the LSA parameters. In Sec. III, a general out-
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line of the experimental results is given. A more detailed
study is given in the case of a LSA operating in the self-
pulsing regime just below the first period-doubling bifur-
cation. The behavior of the system is discussed through
the analysis of Poincaré sections of the phase-space tra-
jectories reconstructed from time series. Section V is de-
voted to the comparison of these results with those of nu-
merical simulations based on a simple model of the LSA.

II. MODULATION TECHNIQUE

The experiments were carried out on the same laser as
that used in our previous investigations of the LSA dy-
namics.® The LSA is operated on the P(32) CO, laser
line at 10.7 um (noted 10P32 in the following) with CH;I
as a saturable absorber. This system was chosen since its
different instabilities are well known and CH;I was pre-
ferred to SF, since it has a permanent electric dipole.
This property allows us to use the Stark effect to modu-
late sinusoidally the absorber. This technique makes pos-
sible an easy modulation of a laser parameter up to 200
kHz, i.e., well within the frequency range of the instabili-
ties that appear in the CO,+ CH;I LSA. Unfortunately,
the bandwidth limitation of the amplifier used in the ex-
periments and the capacitive character of the load induce
a decrease of the modulation amplitude at high frequen-
cies. The associated change of the driving amplitude as
the frequency is swept was not compensated for in large
frequency scans but was included in the results presented
later.

The relation between the Stark field and the parame-
ters of the absorber cannot be evaluated precisely.
Indeed, the effect of a “‘static’ electric field is to shift the
energy levels in the absorber and as a consequence to
change the detuning between the laser and the absorption
frequencies. In CH,l, the situation is much more compli-
cated by the fact that many lines due to nuclear quadru-
pole coupling fall within the 10P32 laser mode and are
likely to interact with the laser radiation.!® These lines
are characterized by relatively large rotation quantum
numbers resulting in a strong degeneracy of the energy
levels and splitting in many M components of the absorp-
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tion lines in the presence of the Stark field. Moreover, as
the Stark field is highly inhomogeneous in our absorbing
cell and the absorbing medium is Doppler broadened, one
may consider that it essentially produces a modulation of
the number of absorbing molecules, neglecting all detun-
ings that are largely averaged out. For the results
presented below, the amplitude of the modulation is es-
timated to be of the order of magnitude of 1% for a Stark
voltage of 300 V.

III. GENERAL OUTLINE OF THE RESULTS

The CO, LSA exhibits several types of self-pulsing
operations, classified in two principal groups that differ
both by the pulse shapes and by their evolution as the
control parameters are changed: (i) Type-I PQS is
characterized by pulse shapes consisting of a high narrow
peak followed by a series of n exponentially diverging un-
dulations. We will denote this regime hereafter P'", v,
its associated repetition frequency, and v;;=T ~! the fre-
quency of the fast undulation inside the pulse. As the ex-
perimental parameters are changed, this P regime ei-
ther evolves to the P"*1) regime or doubles in period.
(i) In type-II PQS, the continuous-wave (cw) regime de-
stabilizes through a supercritical Hopf bifurcation, i.e.,
starting with a small-amplitude limit cycle of period T
similar to that of the undulations of the type-I1 PQS. As
the parameters are changed, the amplitude of this cycle
increases, and eventually, the regime can evolve to chaos
through a period-doubling cascade.%® Although hys-
teresis was observed between them, there is often a con-
tinuous transition between type-I and type-II PQS that
actually represents limit cases, and there are many situa-
tions in which the dynamical regime of the LSA is inter-
mediate between these regimes. It must be noticed that
the two frequencies vy and vy evolve with the parameters
of the system, and are locked together in the vicinity of
the transition between type-I and type-I1 PQS.

The modulation-induced effects depend mainly on the
free regime of the LSA, i.e., whether the LSA is operating
in type-I or type-II PQS in the absence of external driv-
ing. In our experiments, conditions have been set so that
the LSA is unstable and undergoes type-I or type-II PQS
as the absorber pressure and/or the cavity detuning are
changed. Figure 1 displays the phase diagram of our
LSA versus these two parameters. Type-II PQS is indi-
cated by T while P'* corresponds to the type-I regime in
which the laser emits single-peaked pulses. The transi-
tion from the T to the P© regime occurs in a continuous
way in the region of the dashed line. In the hatched
zone, the regime is either P'" or 2T, and the transition
between these two regimes is also continuous. On the
other hand, the period-doubling transition as well as the
PPV transition is abrupt.

Periodic forcing of the LSA has been performed in
stable (cw) and different unstable regimes as follows.

(a) By periodically forcing the LSA working in the
2T-P'V regimes, or in another regime located in a region
close to the bifurcation to these regimes, it has been pos-
sible to observe quasiperiodic and phase-locked regimes
following the Farey hierarchy. The quasiperiodic re-
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FIG. 1. Experimental phase diagram of the CO, laser with
CH;l as a saturable absorber. The laser operates on the 10P32
with a discharge current of 15 mA through a mixture of CO,,
N,, and He with respective partial pressure of 3 Torr, 5 Torr,
and 8.5 Torr. The hatched zone on the figure corresponds to
2T-P'V regimes. The solid lines indicate abrupt transitions
while the dashed one corresponds to a continuous change from
type-I to type-II PQS. The region denoted “next mode” refers
to the next longitudinal mode.

gimes are due to the interaction of the external mode
with frequency v,, with an internal mode whose frequen-
cy vy is that of the type-II PQS. The ratio of the
response frequency v, of the system to the modulation
frequency is called the winding number; the regions of
locked regimes are associated to a rational winding num-
ber, and are interpreted as the widest Arnold’s tongues
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where p and q are integers and q less than 6. The regimes
of higher g correspond to narrower regions and so are
difficult to analyze because of the blurring due to una-
voidable technical noise.

(b) The behavior described above also appears when
the free LSA works in a type-II PQS regime far from the
T-2T bifurcation or in a cw regime close to the Hopf bi-
furcation. As the distance between the operating and the
T-2T bifurcation points is growing, the locking regions
become narrower and finally only the principal one corre-
sponding to p =qg =1 remains visible at the experimental
resolution. In this situation, a small-amplitude modula-
tion at a frequency close to the internal one just induces a
spectral narrowing, corresponding to a decreasing of the
natural fluctuations of the system. The Hopf bifurcation
does not constitute a limit for this behavior: in cw mode,
the output of the forced system is periodic at the period
of the external driving and its response exhibits a very flat
resonance at a frequency close to that extrapolated from
the values of those of the type-II PQS.!7 In all the cases,
as the amplitude of the modulation is increased, the
response exhibits a period-doubling cascade whose
threshold increases as the system is operated farther from
the T-2T bifurcation region. Finally, the cascade disap-
pears: this is certainly a consequence of the fact that in
our experiments, the Stark modulation is not very
efficient, and so the modulation of the absorption param-
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eter remains small ( <1072%). However, even in the ab-
sence of period doubling, the shape of the signal evolves
as a function of the position of the operating point in the
phase diagram.

(c) Forcing the P'© PQS far from the P'"-2T transi-
tion, and more generally a P'") PQS far from a transition
from type-I to type-II PQS, induces a frequency locking
with a sharp resonance at the fundamental frequency and
a spectral narrowing of the laser intensity spectrum.

Note that the modulation effect on the cw mode below
the Hopf bifurcation may be interpreted as a precursor of
the bifurcation as locked regimes with Arnold tongues
may be observed even on the nonpulsing LSA in the pa-
rameter region close to the onset of the PQS regime.
Similar precursor effects were also observed in the other
dynamical regimes as discussed in Sec. IV.

IV. DRIVING A LSA PULSE
CLOSE TO THE T-2T BIFURCATION

A detailed analysis of the behavior of the LMSA in the
T-2T bifurcation region is given here. More precisely, we
will consider that all the parameters of the LSA are fixed
so that the regime is T-periodic but close to the T-2T bi-
furcation. In this case, the only significant free control
parameters of the LMSA are the frequency and the am-
plitude of modulation. The basic structure of the two-
dimensional reduced phase diagram remains similar to
the Farey tree. However, many differences appear with
the standard Farey hierarchy, as, e.g., the one obtained
by the circle map 6,,,=6,+Q+(K/27)sin(276,),
where 6, ,, and 08, are defined modulo 1 and (2 and K are
parameters.'® These differences may be classified in three
groups concerning: (i) the macrostructure of the phase
diagram, i.e., the global order of the regions of locking in-
side the regions of unlocked regime; (ii) the fine structure
inside the tongues; and (iii) the fine structure of the un-
locked regimes. Although these three regions of the pa-
rameter space are not completely independent, we will
consider each one successively for the sake of clarity.

A. Macrostructure of the phase diagram

The Farey tree of the circle map is composed of an
infinity of tongues that all intersect at the same value of
the control parameter K =K;=1. At K,, the response
of the system is always periodic, whatever the forcing fre-
quency: the effective frequency of the response versus the
frequency forcing follows the ‘““devil’s staircase.” For a
modulation amplitude larger than K,, the system is
chaotic in the regions where the tongues overlap; in the
center of the tongues, it exhibits period-doubling bifurca-
tions culminating in chaos. If we look at the response of
the system to the forcing versus the modulation rate, the
regime is first quasiperiodic at weak rates, then becomes
periodic when the amplitude increases, and finally chaot-
ic after an eventual period-doubling sequence. This
scenario has already been observed in experiments on the
Rayleigh-Bénard system.'®

In order to determine the global structure of the phase
diagram of the LMSA reduced to the two above-
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mentioned significant dimensions, different alternatives
are possible: the simplest ones consist of exploring the
parameter space along one of the main directions, i.e.,
varying one of the parameters while the other one is
fixed, and repeating this operation for different values of
the fixed parameter. Using the same periodic sampling
technique as in our study of the laser with modulated loss
and/or frequency,? i.e., a sample-and-hold module trig-
gered by the external modulation, the real-time evolution
of the LMSA bifurcation diagrams is monitored as a
function of the control parameter. As an example, Fig. 2
shows the sampler output when the frequency v,, of the
driving field is swept in the 20-200 kHz range. When
the modulated laser is working in a periodic regime, the
pulsing frequency is locked to that of the external field at
a value given by vy /p =v,, /q, where p and g identify the
tongue. Thus the sampler triggered by the external driv-
ing delivers ¢ different output values. On the other hand,
when the system is quasiperiodic or chaotic, the output
covers a large range of values. This technique does not
permit us to distinguish between quasiperiodic and chaot-
ic regimes. Note also that owing to the amplifier satura-
tion, the effective modulation rate is not constant in Fig.
2, but decreases as a function of the frequency. This is
taken into account in the following presentation of the re-
sults.

The phase diagram obtained by this method put in evi-
dence an original behavior at large modulation rate.
When two tongues coalesce, the one corresponding to the
higher g disappears for the benefit of the other one. As a
consequence, the response of the system at increasing
modulation rate, but fixed frequency, may eventually
reach different successive regimes: it is first quasiperiod-
ic, then may be periodic when crossing the border of a
tongue. Several successive changes in the period may
occur as the system jumps to “stronger” tongues. Unfor-
tunately, the present status of our setup does not allow us
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FIG. 2. Bifurcation diagram of the LSA in the presence of
external driving for a LSA operated in a type-II regime close to
the 7-2T bifurcation as indicated by the star in Fig. 1. The sam-
pled output of the laser is displayed vs the driving frequency.
The natural instability frequency of the laser is 57 kHz. Be-
cause of the bandwidth limitation of the amplifier used to do
this record, the amplitude of modulation is 500 V at 30 kHz and
decreases continuously to reach 80 V at 130 kHz.
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to verify if this behavior keeps on for higher g tongues,
and so for lower modulation rates. For this reason no at-
tempt was made to find a critical line in this system.
Moreover, such a critical line may have a complicated
shape in real systems and then loses most of its
significance in such cases.

B. Fine structure of the tongues

For a weak force, the regime of the LMSA in a locked
region is periodic at the frequency vy/p=v, /q. The
sampling technique permits us to determine easily the
value of g. The p number can then be deduced from the
value of the eigenfrequency v;;. However, p and ¢ do not
completely describe the signal. In particular, two signals
with the same period may present a completely different
shape. In this case, the only way to separate them is a
phase-space plot. This is beyond the scope of this paper
in which we studied the global evolution of the response
in the different regions of the parameter space.

When the rate of forcing increases, a qualitative
change in the response of the system occurs, consisting in
the presence of period-doubling bifurcations followed by
some irregular regimes that are likely to be chaotic since
they appear after a period-doubling cascade. After, e.g.,
the first period-doubling bifurcation, the response fre-
quency of the system evolves from v /p=v, /q to
vi/2p =v,,/2q and is then identified by 2¢ branches in
the bifurcation diagram. More generally, the frequency
of the system in the period-doubling cascade is given by
vii/2"p =wv,, /2"q, where n is an integer. After the cas-
cade, the regime loses its regularity and the experimental
diagram resembles a continuous like set of points. This is
illustrated in Fig. 2, in the case where the free laser is
operated in a periodic type-II PQS regime at about 57
kHz, just at the edge of the period-doubling region as
shown in Fig. 1. As the external frequency is swept, vari-
ous locking regions are observed, for instance, around 57
kHz (p/q=1), 82 kHz (p/q=2/3), 95 kHz
(p/q=3/5), and 115 kHz (p/q =1/2). Between these
main locking regions, narrower ones can also be observed
but the most prominent feature is the fine structure
which appears inside the locking regions. In the
p/q =1/2 tongue, the effective response of the laser de-
pends on the position inside the tongue: for example, at
v,, =107 kHz, the actual response is at 53.5 kHz, i.e.,
around vy (but slightly different from that value because
of the locking on the modulation frequency). In contrast,
at v,, =111 or 121 kHz, the response frequency is v,, /4,
i.e., about v; /2. Atwv,, =119 kHz, eight branches appear
in the bifurcation diagram, so the response frequency is
v, /8=v;/4. One can see also a response at v,, /16 at
116 kHz and an erratic one at 114 kHz. This last regime
is expected to be chaotic since it occurs after a period-
doubling cascade, and can be described as “locked” since
it appears inside a region of locking. Note also that the
sampled values are spread over the same range of values
as during the corresponding period-doubling cascade;
this means that we observe here the first steps of the in-
verse cascade.

Figure 3 gives the Farey tree for a set of parameters
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FIG. 3. Evolution of the dynamical regimes of the periodical-
ly driven LSA as a function of the frequency and the amplitude
of the external driving. The free LSA was operating in the con-
ditions of the star in Fig. 1. In these conditions, the efficiency of
the modulation and the amplifier saturation did not allow the
modulation rate to increase enough to observe the intersection
between the tongues. The white regions correspond to non-
periodic regimes, which may be either chaotic or quasiperiodic.
The shaded zones correspond to locked regimes. In the bright
gray region, the period of the driven system is the same as that
of the forcing one. The middle (dark) gray corresponds to a
period doubling (period quadrupling) of the response compared
to the forcing. The white zone over the dotted line corresponds
to a region that could not be explored because of the bandwidth
limitation of the amplifier used in this experiment.

where it was not technically possible to increase the
modulation amplitude enough to observe the collision be-
tween the different tongues. This figure has been con-
structed using the technique described above and corre-
sponds to a series of bifurcation diagrams whose resolu-
tion was chosen to sweep the p/q =1 and the p/q =1/2
tongues. Consequently, only four tongues are visible,
corresponding to the widest ones. Other tongues may be
obtained when decreasing the sweeping amplitude. As
mentioned above, the quasiperiodic regimes are not
differentiated from the chaotic ones and are represented
both in white in the phase diagram. On the contrary, the
periodic regimes, easily identified, are reported in Fig. 3
in different gray intensities according to the v /2"q ratio:
light for n =0, medium for n =1, and dark for n =2.
The global structure inside the tongues appears clearly,
showing a succession of period-doubling bifurcations.
The threshold of appearance of these bifurcations is very
low compared to the ones observed in other systems.
This may be explained by the fact that for this set of pa-
rameters, the unmodulated LSA is close to bifurcating to
a period-doubled regime. So the modulation acts in a
way as a precursor of the bifurcation. Moreover, the
comparison of the tongues shows differences in the cas-
cade, principally in the position of the bifurcation points
with respect to the vertical axis. For example, the period
doubling appears much more rapidly in the p/qg=1/2
tongue than in the p /¢ =1 tongue.

It must also be noticed that the period-doubling bifur-
cations do not appear symmetrically with respect to the
center of the locking region and that their shape seems to
indicate that there could be a dynamical effect induced by
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the fast sweep of the control parameter.?! However, it

has been carefully checked that although a small delay of
the bifurcations could occur in our experiments, most of
the asymmetry is a genuine effect. This denotes the pres-
ence of an underlying asymmetry in the tongue, probably
coming from the presence of the other eigenfrequency v,
introduced in Sec. III.

The overall shape of the sampled signal in the locked
regions with a rapid change around the subharmonics of
the eigenfrequency is due to a rapid phase shift similar to
that occurring in a resonant circuit driven near reso-
nance.

C. Unlocked regimes

We have shown above that there exists a locked chaos
inside the tongues on the basis of the period-doubling cas-
cade leading to this regime. In the case of the circle map,
the regime is quasiperiodic outside the locked region. In
order to differentiate this quasiperiodic regime from a
possibly chaotic one, the bifurcation diagram described
above is no more sufficient. The spectrum of the signal
can provide the information, although it is sometimes
difficult to differentiate a quasiperiodic spectrum from a
chaotic one as in the experiments, the frequency jitter
broadens the peaks of the spectrum. The previous tech-
nique used to obtain the bifurcation diagrams has been
modified to include a second sampling unit, and to give
an oscilloscope display of the nth sampled value versus
the (n +1)th one. In a phase space where the phase of
the signal constitutes one of the directions, this plot
represents a first return map of the attractor. Such plots
are extremely powerful in assigning the dynamical behav-
ior of an unstable system: a limit cycle is represented by
a set of ¢ points [see, e.g., Fig. 4(a)], a chaotic attractor by
a noninversible curve, and a quasiperiodic torus by a
closed curve. This technique allows us to check that for a
weak amplitude modulation, the regime outside the
tongues is quasiperiodic [Fig. 4(b)]. The first return map
is a closed curve whose complexity depends on the neigh-
boring regimes. For example, in the vicinity of a locked
region, the curve presents points of higher probability
that are the extension of the points of the return map of
the locked region. This is the case of Fig. 4(b) which cor-
responds to a quasiperiodic regime close to the p /g =4/9
locking.

If the force is increased, windings appear in the closed
curves representing the return map of the attractor [Fig.
4(c)]. This type of destruction of a two-dimensional torus
that transforms directly into a chaotic attractor arises in
the Curry and Yorke model. Illustrations of the behavior
of this two-dimensional map may be found in Ref. 22,
and a similar scenario has already been observed in some
experimental systems, such as, e.g., Rayleigh-Bénard con-
vection.?* The chaotic regime associated with the “wind-
ing” attractor is sometimes called “‘chaotic phase inter-
mittency.” In the LMSA, the transition to such a chaotic
regime outside the Arnold tongues seems to occur at very
different modulation amplitudes when the frequency of
the forcing is scanned, and this is another argument
which confirms the complexity of the critical line.
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If the force is increased further, there appear regions
where the return map is neither a set of points nor a
closed curve, but a more complicated pattern [Fig. 4(d)]
composed of isolated surfaces. The complexity and the
shape of these attractors differ clearly from those encoun-
tered in the usual scenario following the destruction of a
two-dimensional torus, where the attractor remains as a
“deformation” of the torus. On the contrary, the system
seems here to evolve through a phase transition, increas-
ing its complexity. The presence of the second eigenfre-
quency v; whose role was already suspected inside the
tongues, may contribute to this evolution. In the experi-
ments presented here, the quasiequality of v; and vy
prevents a detailed analysis. Future investigations in
another situation should allow clarification of this point.

V. NUMERICAL SIMULATIONS

It is interesting to compare these results with those
provided by numerical simulations. This numerical work
was realized on the basis of the modified three-level mod-
el that we used in the modeling of the dynamical behavior
of the LSA.?* This model, which assumes a fast absorber,
provides a good qualitative agreement with the experi-
mental results concerning the unmodulated CO, LSA. It
is composed of a set of three nonlinear coupled
differential equations:

=1 —1)— 14
f=1w-n--"—,

U=e[W—-U1+D],
W=e(d+bU—W),

where [ is the laser intensity, U is the scaled population
inversion in the active medium with associated damping
rate €, and W is a variable representing the source term in
the three-level model. In this fast absorber model, the
passive cell only introduces intensity-dependent losses
represented by a scaled absorption 4 and a relative sa-
turability a. A is the laser gain, b depends on the ratio of
relaxation parameters and is fixed hereafter at a value of
0.85 as in Ref. 24. Overdots refer to derivatives with
respect to time in units of the cavity damping time.

The influence of the Stark modulation has been intro-
duced by considering that the main effect of the electric
field is to change the number of absorbing molecules as
discussed in Sec. II. So, the equations of the LMSA are
the same as those of the LSA, except for 4 that is now
time dependent:

A=Ay[1+m cos2mv,1)],

where m is the amplitude of the forcing and v,, the
modulation frequency.

In this model, the gain threshold of the LSA is given
by A=A4,=(A4,+1)(1—b). For 4 > A, this system
has two fixed points: the first one corresponds to an in-
tensity I, =0; the second one corresponds to an intensity
I, 0. The respective stability of these two points deter-
mines the dynamics of the LSA. These dynamics may
also depend on the presence of other attractors as, e.g.,
limit cycles.
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It is interesting to relate the chosen parameters to the
dynamical behavior of the LSA in the absence of modula-
tion and very different situations may occur since the
Shil’nikov dynamics of the LSA give rise to a large
variety of signals. In a first step, simulations have been
undertaken in the type-II PQS region, which corresponds
to the experimental situation and where the interpreta-
tion of the calculated results is likely to be easier. Using
the same set of parameters as in Ref. 24, the situation is
complicated by the existence of a large bistability be-
tween the type-II PQS and I, stable regime as A4 is
chosen as a control parameter. So it appears difficult to
modulate moderately the system without forcing it to fall
into the basin of attraction of the I, stable point.

The parameters have been slightly modified with
respect to Ref. 24, as indicated in Table I, in order to
reduce the bistability domain and the values have been
chosen so that the LSA in the absence of modulation
works in the conditions indicated by the star in Fig. 1.
Thus, all the other parameters being held constant, a
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change of the pressure in the absorber gives the evolution
cw—T—2T or PV PO with bifurcations at 36.5,
37.15, and 40 mTorr, respectively. The transition from
2T to P'" is continuous. Such a scenario corresponds to
the experimental one. However, as the modulation pa-
rameter is the absorption 4, it is interesting to look at
the evolution of the system at constant pressure and vary-
ing 4. It appears that at a pressure of 37 mTorr, which
corresponds to the situation of Sec. IV, the scenario as a
function of 4 is cw— T—2T —4T continuous transition
to 2PV pM_, PO with bifurcation points in 1.825,
1.860, 1.900, 1.970, and 2.570, respectively. The operat-
ing point corresponding to the values of Table I is in
A =1.850 and is separated from the T-2T bifurcation by
AA4=0.01. In the following, the modulation rates will be
expressed in units of A 4.

In the model, the response to an external driving of the
LSA working far from the 7-27 bifurcation is character-
ized by narrow tongues without fine structures. Such a
behavior is similar to that observed experimentally for
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FIG. 4. Experimental return maps of the regimes of the LMSA I(z +T) vs I(¢) where T =wv,,'. The free LSA was operating in the
same conditions as in Fig. 3 with the following forcing: (a) this periodic regime obtained for a modulation of 60 V at v,, =129 kHz
corresponds to the winding number 4/9; (b) just nearby, at v,, =135 kHz with the same amplitude of modulation, the regime is quasi-
periodic, some parts of the trajectory have a higher density of points; (c) chaos is obtained at v,, =102 kHz for 100 V of modulation;

(d) chaos again at v,, =147 kHz and 40 V of modulation.
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TABLE 1. Values of the parameters used in the calculations.
P denotes pressure in mTorr.

0.137
2
0.05P
120/P
0.85

S Q _x';m
)

the same type of situation.

A more detailed study has been done at 37 mTorr cor-
responding to the situation developed in Sec. IV. We fol-
low the same scheme of analysis as in that section.

A. Macrostructure of the phase diagram

The differences between the global structure of the cal-
culated phase diagram and the circle map are the same as
in the experimental case. That concerns mainly the be-
havior of the system at the interaction between two
tongues. Figure 5 shows a phase diagram resulting from
the calculations with the set of parameters of Table I.
For the sake of clarity, only the three first larger tongues
have been represented, i.e., the ones associated with the
winding numbers 1, 1/2, and 2/3. The 1/3 tongue is out-
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FIG. 5. Calculated phase diagram as a function of the driv-
ing frequency. The parameters used are those of Table I. The
frequency of the free system is 53 kHz. For the sake of simplici-
ty, only the three first main tongues have been represented:
they are respectively associated with the winding numbers 1 (53
kHz), 1/2 (106 kHz), and 2/3 (89 kHz). The 1/3 tongue is out-
side the limits of the figure. The dashed lines of the 2/3 tongue
have been represented to clarify the figure, but the correspond-
ing limit has not been accurately checked. The white regions
correspond to nonperiodic regimes, identified as chaos inside
the tongues. On the contrary, outside the tongues, these re-
gimes may be either chaotic or quasiperiodic. The colored
zones correspond to locked regimes. In the bright gray region,
the period of the driven system is the same as that of the forcing
one. The middle (dark) gray corresponds to a period doubling
(period quadrupling) of the response compared to the forcing.
The other components of the period-doubling cascade are too
narrow and so not represented here.
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side the limits of the figure. The free system oscillates at
53 kHz. The same convention as in Fig. 3 is applied for
the representation of the different regimes. In particular,
the quasiperiodic regimes and the chaotic ones have not
been dissociated and are represented both in white. The
behavior of the LMSA at high modulation rate is illus-
trated in this figure. It differs from that observed, e.g., in
the logistic map, because the collision between two
tongues results in the disappearance of one of the tongues
for the benefit of the other one. For instance, in Fig. 5,
for a modulation amplitude of 40.7A 4, the p/q =2/3
tongue collides with the p/q=1 tongue and the former
disappears. Such a behavior has also been observed ex-
perimentally. However, the modulation rates appearing
in Fig. 5 may seem high, and result from the deliberate
choice of presenting the whole phenomenology of the
model on a single set of parameters, corresponding to the
experimental conditions of Fig. 3. The precise compar-
ison of Figs. 3 and 5 shows that modulation amplitudes
used in the simulations are typically five times larger than
the ones estimated experimentally. This difference,
which has to be softened owing to the poor quality of the
estimation of the experimental modulation rates, could be
reduced by a better choice of the parameters in the simu-
lations.

B. Fine structure of the tongues

The same type of structure as in the experiments re-
ported above is found in the numerical simulations (Fig.
5). In the p/q tongues, a series of period-doubling cas-
cades gives successively the regimes (p/2"q)v,,. This
cascade culminates in an aperiodic regime similar to the
experimental one, and which may be identified as chaos.
This chaos is characterized by a power spectrum with a
continuous component and a maximum in v,,, which cor-
responds to a “locked” situation. Figure 6(a) shows the
return map of this regime. Such a return map is charac-
teristic of a chaos following the Feigenbaum scenario.
Similar diagrams were obtained in the case of a laser with
modulated losses,?® for the same type of situation. In
fact, in the particular case where the modulation frequen-
cy is close to the eigenfrequency of the LSA, the LMSA
is very similar to the laser with internal modulation
(LIM). So it is not surprising to find a Feigenbaum
scenario at low modulation amplitude, and a more de-
tailed analysis of the numerical results should show the
same variety of phenomena such as crises, periodic win-
dows, etc., as was observed in the LIM.

The other characteristics of the experimental Farey
tree (asymmetry, shift of the bifurcation points inside the
different tongues) are also present here. Note that the
chaotic region in the p/q =1 tongue is shifted to higher
frequencies with increasing amplitudes. Such a shift was
not observed experimentally, but this may be attributed
to the poor resolution of the experiments in which the
driving frequency is swept.

C. Unlocked regimes

Outside the tongues and for a weak forcing, the
response in the model of the LSA is quasiperiodic. This
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appears clearly in the spectrum of the signal, or in the
first return map, as, e.g., in Fig. 6(b). Th_is regime is ob-
tained for a modulation amplitude of 5A 4 at a frequency
of 119.25 kHz, corresponding to a winding number close
to 9/4. On the curves nine zones of higher density are
visible, corresponding to the nine points of the locked re-
gime. Although the shape of this curve is not identical to
that of Fig. 4(b), their gross features with accumulation
points and trailing ends lying on a ‘“‘close curve” look
similar.

At a stronger force the same type of chaotic regime as
in the experiments may occur. Because of the very com-
plex distribution of the quasiperiodic and chaotic regimes
in the phase diagram, they were not distinguished in Fig.
5. But a return map of a chaotic regime shows on Fig.
6(c) a remarkable analogy with Fig. 4(c) and with the
maps obtained from the Curry and Yorke model.?? This
confirms the hypothesis of the destruction of the two-
dimensional torus. A precise analysis shows that at the
resolution of the calculations, the torus with an irrational
winding number can transform directly in a chaotic at-
tractor, without the intermediate locked region.

(a)
z
‘=
=
s |/
s |/
&
R
s
I (t) (arb. units)
o (C)
2
= \
=3
0
Tt
= T
p o~
*
L] “‘\.
f""
( mn
— ™ T
I (t) (arb. units)

DANGOISSE, GLORIEUX, AND HENNEQUIN 42

At increased modulation rates, the chaotic behavior
becomes more complicated and the branches of the asso-
ciated return map ‘“broaden” [Fig. 6(d)], leading to the
same type of pattern as in Fig. 4(d). The spectrum of
such a signal presents a continuous component with a
maximum at vy;, leading to a kind of “free” chaos, since
vy is the eigenfrequency of the free system. The transi-
tion between the two types of regimes is continuous, and
so the second one appears as a transformed version of the
first one. A more precise characterization of the attrac-
tor should be reached by a more detailed study of the at-
tractor, as that provided by, e.g., a dimensionality
analysis.

VI. CONCLUSION

We have shown that the basic structure of the response
of the LSA to an absorption modulation corresponds to
the Farey hierarchy. However, a detailed analysis of the
behavior of the LMSA reveals some important differences
that can be classified as follows: (i) the accumulation
point of the tongues associated to a devil’s staircase is ab-

(b)

(arb. units)

I (t+T)

1 (t) (arb. units)

(d)

(arb. units)

[ (t+T)
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FIG. 6. Theoretical return maps of the regimes of the LMSA I(¢t +T) vs I(t), the parameters being those of Table I. The condi-
tions of modulation and the associated temporal regimes are (a) v,, =61 kHz, m =0.3=55A 4, “locked” chaos; (b) v,, =119.25 kHz,
m =0.0275=5A 4, quasiperiodic regime just at the edge of the locking at 4/9 v,,; (c) v,, =70 kHz, m =0.019=3.5A 4, “winding”
chaos; (d) v,, =70 kHz, m =0.075=14A 4, “free” chaos.
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sent. In the LMSA, the collision between two tongues
leads to the disparition of the “weaker” one (ii) a period-
doubling cascade culminating in chaos occurs in the
tongues at low modulation amplitude. (iii) Outside the
tongues, a chaos coming from the destruction of the
quasiperiodic torus is observed.

The addition of all these phenomena gives a tree which
is much more complicated than the Farey tree of the cir-
cle map. For instance, increasing the modulation ampli-
tude at constant frequency, it is possible to find succes-
sively quasiperiodicity, various periodic regimes, and
different types of chaos ordered in a rather complicated
way.

A simple model of the LMSA provides an excellent
qualitative agreement with the experimental results.

Future investigations may concern quantitative charac-
terizations of the observed regimes, such as dimensionali-
ty analyses, but the qualitative description of the behav-
iors of the LMSA should be completed. Indeed, several
phenomena that have not been presented here have been
observed in our experiments. In particular, this is the
case for bistabilities between different regimes, and for
the response when the LSA presents a more complex
phase diagram, including, e.g., P'", n >1 regimes. In
such conditions, the role of the second eigenfrequency of
the LSA should be more clearly exhibited.

This paper reports only a preliminary investigation of
the LMSA. The LSA displays a very large variety of
dynamical behaviors and our study could be extended in
different directions.
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FIG. 3. Evolution of the dynamical regimes of the periodical-
ly driven LSA as a function of the frequency and the amplitude
of the external driving. The free LSA was operating in the con-
ditions of the star in Fig. 1. In these conditions, the efficiency of
the modulation and the amplifier saturation did not allow the
modulation rate to increase enough to observe the intersection
between the tongues. The white regions correspond to non-
periodic regimes, which may be either chaotic or quasiperiodic.
The shaded zones correspond to locked regimes. In the bright
gray region, the period of the driven system is the same as that
of the forcing one. The middle (dark) gray corresponds to a
period doubling (period quadrupling) of the response compared
to the forcing. The white zone over the dotted line corresponds
to a region that could not be explored because of the bandwidth
limitation of the amplifier used in this experiment.
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FIG. 5. Calculated phase diagram as a function of the driv-
ing frequency. The parameters used are those of Table I. The
frequency of the free system is 53 kHz. For the sake of simplici-
ty, only the three first main tongues have been represented:
they are respectively associated with the winding numbers 1 (53
kHz), 1/2 (106 kHz), and 2/3 (89 kHz). The 1/3 tongue is out-
side the limits of the figure. The dashed lines of the 2/3 tongue
have been represented to clarify the figure, but the correspond-
ing limit has not been accurately checked. The white regions
correspond to nonperiodic regimes, identified as chaos inside
the tongues. On the contrary, outside the tongues, these re-
gimes may be either chaotic or quasiperiodic. The colored
zones correspond to locked regimes. In the bright gray region,
the period of the driven system is the same as that of the forcing
one. The middle (dark) gray corresponds to a period doubling
(period quadrupling) of the response compared to the forcing.
The other components of the period-doubling cascade are too
narrow and so not represented here.



