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For the purpose of improving upon present approximate functionals, nonuniform coordinate scal-
ing is introduced into density-functional theory, where nq(x, y, z)=A, n(k,x,y, z) is an example of a
nonuniformly scaled electron density. Inequalities are derived for the exact noninteracting kinetic
energy T, [n]. For example, T, [nz] ~A'T,"[n]+T»[n]+T;[n], where T,",T», and T,* are the x,y,
and z components of T, . Surprisingly, the gradient expansion through fourth order violates the ine-
qualities. We also observe that the Thomas-Fermi approximation for T„T,", and the local-density
approximation for the exchange-correlation energy, E„",", do not distinguish between nonuniform
scaling along different coordinates. That is, TTF[n~]= T, "[n$] and E„","[n~]=ELo [n»]. In
contrast, for the true noninteracting kinetic energy it is proved that T, [n q]AT, [n»] for a general
density without special symmetry, and corresponding inequalities are conjectured to apply as well to
the exact E„,. Moreover, T, "incorrectly gives the same value for its x, y, and z components.

I. INTRODUCTION

In density-functional theory, ' the exact ground-state
energy for external potential U (r) may be obtained from

E =min T, [n]+ J U(r)n(r)d r
n

nrnr'
r r'—

and

T, [nz]=A, T,[n],

E„[nz]=A. E[n] .

(2)

(3)

The Thomas-Fermi functional for T, [n] and the Dirac
functional for E„[n] are the only possible choices in the
local-density approximation (LDA) to satisfy Eqs. (2) and
(3), respectively. We write

T [n]=T "[n]=cJ n d r (4)

where E„,[n] is the exchange-correlation functional and
T, [n] is the noninteracting kinetic energy. Many tech-
niques have been used to produce approximate forms for
T, [n] and E„,[n], one of which is the uniform scaling
technique which has been very useful for determining the
general structures of T, [n] and E„,[n]. For the purpose
of further improving upon present approximate density
functionals, this paper introduces the use of nonuniform
coordinate scaling.

Let us first briefly review uniform scaling properties
used in density-functional theory. The uniformly scaled
density n&(r) is defined by n&(r) =A. n(&, Ay, kz) since A,

acts equally on all three coordinates. Here the scale fac-
tor 1i, assures that nz(r) is normalized to N electrons.
Even though E„, satisfies uniform scaling inequalities, it
has been proven that T, [n] and the exchange energy
E„[n]satisfy uniform scaling equalities:

ELDA[n] —ED[ ]
—d Jn4/3d3r

Equations (2) and (3) are always imposed upon approxi-
mations to T, [n] and E„[n]

In this paper, it shall be shown that with nonuniform
scaling there does not exist an equality like Eq. (2). In-
stead, there exist two interesting inequalities for the exact
T, [n] These .inequalities are neither satisfied by the von
Weizsacher term T, [n] nor by the gradient expansion
through fourth order T, [n]. For some special cases
such as one- and two-electron systems and non-
interacting systems whose potentials can be separated
into x,y, and z component, the inequalities reduce to
equalities. Once again, T, " does not satisfy these equali-
ties. We shall also derive nonuniform scaling properties
for E„[n] for special cases. With E„,the nonuniform
scaling requisites are violated for the special cases and
E," is conjectured to violate nonuniform scaling re-
quisities in general.

II. NONUNIFORM SCALING REQUIREMENTS
FOR T, [n]

We first define the nonuniformly scaled density

n i, (x,y, z) =1n(kiyx, z)

with analogous definitions for nz and nz. Note that A,

multiples only the x coordinate in n&. The prefactor X
assures that n& integrates to X electrons. The corre-
sponding scaled kinetic energy functional T, [n z ] is
defined by

T [nx] (@mm~T~@min)
A

where 4 '" is that single determinant which yields n&
A.

and minimizes ( T ). Recall that with uniform scaling2

tI»min{r r ) g3N/2@min(1{r
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One may therefore be tempted to write a similar relation
for nonuniform scaling:

below that

(Adc]y]z], . . . , AJKNyNziv )

e (r], . . . , r/ ) A, e„(Ax],y],z], . . . , ABC]v,yN, ziv ).
n& yields n & and minimizes

Unfortunately, Eq. (9) does not hold in general because

(9) N
1 g2

& f„'+X27', +A,21', ) where f„=g ——
Bx;

( A,x ]y ]z ], . . . , A,x]vy]vz]v )

does not generally minimize ( f'). Instead, we shall show
I

etc.
It is straightforward to worke 4„'"(Ax]y]z], . . . , AJCNyivz]v) gives n 2

out that

f f& "+.'"(~]y]z„.. . , ~~y~z~)'~ "C.'"(~]y]z], . . . , ~~yNz~)dx2dy2dz2 dxNdyNdz+

=A f f 4 „'"(kx]y]z], . . . , MNyNziv)'4„'"(M]y]z], . . . , Ax„y„z„)d(&2)dy2dz2 d(M]v)dyNdz]v

=An(&],y],z] ) =ni (x],y],z] )

(Note that we are suppressing spin in this paper for simplicity of presentation. ) Next, one finds

(A, 4„'"(M y]z],]. . . , A xiyvizv]v)~f'„+A, i~+A, f', ~A, 4„'"(kx]y]z], . . . , Vr]vy]vzN))

=~ '& @.'"(x]y]z], . . . , x]vy]vz]v) l~'(&. + &y+ &, }I@„'"(x]y]z],. , x]vyivziv) &

, xivyNzN }&,

which completes the proof that

@n (~]y]z] ~]vyivzN }

minimizes I, (f'„+A, f' +A, 1, ) or minimizes (1'„+AS' +A, f', ). H, ence, although

4„'"(Ax]y]z], . . . , Axivy]vzN )

and 4 „'" both belong to the same density n z, it is obvious that in general

(10)

4 „'"AA, 4„'"(M]y]z], . . . , Axivyivz]v) . (12)

Consequently, from the minimization statement in the definition of 4 „'", we obtain

&@„.'"I &l@„i"& —& ~""@(~]y]z],. . . , ~]vy]vz]v) I &l~""@'(~x]y]z], (13)

and

(A, 4„'"(M]y]z„.. . , &ivyivziv)~1„+AT' +A, f', , ~A, 4„'"(M]y]Z„.. . , Ax]vy]vz„))

& (q min~g +g2g +g2j ~@min)
n& y z X (14)

We shall later show that Eq. (9} holds for soine special
cases, so that the inequalities become equalities in Eqs.
(13) and (14) for these special cases.

Eqs. (13) and (14) give, respectively,

T~[n]=(4„'"~1'q~4„'"), q=x, y, or z

so that

T, [n) = T,"[n]+Tf [n]+ T;[n] .

(17)

and

T, [n ~ ](AT,"[n]+T, [n), + T;[n] (15) The components Tq may be obtained from T, by ern-

ployment of Eq. (15). By rearranging Eq. (15) one finds

A. T, [n] ( T,"[n],]+AT~[n], ]+A, T;[n, ] ] (16) k T,"[n]+T, [n]+ T;[n)—T, [n 2 ])0 . (19)

for any n and any non-negative k. In general, the strict
inequalities in Eqs. (15) and (16) hold for A,A1 because,
except for the special situations to be discussed later, the
inequality in Eq. (12) holds. In Eqs. (15) and (16), we
have defined T,"[n]= —,'(BT, [n 2 ]/M. )] (20)

Since the left-hand side has its minimum at A, =1, it fol-
lows that
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Thus

T~[n] = ~ (BT,[n ) ]I%, )2

III. UNREASONABLE NONUNIFORM SCALING
EQUALITIES FOR T "AND E"

(21)

given by Eq. (21). This equation leads to the following
lemma: If

(29)

then

TxTF[n] TYTF[n] Tz, TF[n] ~ TTF[n] (22)

By means of Eq. (21) we now assert that the Thomas-
Fermi kinetic energy gives the incorrect result that al-
ways

T,"[n]= T~[n] = T;[n] .

Conversely, if

(3O)

In contrast, unless there is special symmetry for n, the
true T, of course satisfies

T,"[ n]AT~[n]WT;[n],

then

(31)

T,"[n]AT, [n]A T;[n] .

To see how Eq. (22) arises observe that

T "[n"]=A, c f n( Axy, z)' d(Ax)dy dz,

which dictates

T, "[n)]=A / T, "[n], q =x, y, or z .

(23)

(24)

(25)

T, [n2 ]WT, [n~q]WT, [n2], (32)

which means that T, [nf] must Uary with q is T;[n],
T~[n], and T;[n] are not equal. This latter requisite is
violated by T, "as exhibited in Eq. (25). To reiterate the
development above, the local-density approximation for
T„and probably for E„„doesnot generally meet nonuni-
form scaling requirements.

Equation (22), in turn, stems from combination of Eqs.
(25) and (21).

It is important to observe that all local-density func-
tionals, such as T, and E„, , etc, are unreasonable
from the viewpoint of proper nonuniform scaling because
they do not distinguish between nonuniform scaling along
the different coordinates. Instead, Eq. (25) shows that
T, "[n)] is always independent of q and, as shall be
shown below,

IV. NONUNIFORM SCALING INADEQUACIES
OF FOURTH-ORDER GRADIENT EXPANSION FOR T,

The von Weizsacker kinetic energy term T, , does not
generally satisfy Eqs. (15) and (16) when the strict ine-
qualities apply with the exact T, . To see this note that
T, is defined by

ELDA[nx ] ELDA[n3 ]
—ELDA[nx ] (26) T fv[n] f n 1/2( ] V2)n 1/2d 3r (33)

even when n possesses no special symmetry. Equation
(26) follows from the fact that This means that by Eq. (21) we have

E„,"[n]=f n „s,[n] dr (27) [n]= f n'/ —— n i/z2d r,1 8

Bq
(34)

implies
which gives, in contrast to Eqs. (15) and (16), the equali-
ties

(28)

ELD [nz]= f n (Ax, y, z)e„,[An(Ax, y, z)]d(Ax)dy dz

= f n(r)e„,[An(r)]d r .
and

T, [nz]=A T,"' [n]+T, ' [n]+T,' [n] (35)

We confirm Eq. (26) by noting that the right-hand side of
Eq. (28) is independent of q.

Intuitively, Eqs. (25) and (26), which apply to T, " and

E„, , respectively, can not be valid for a general density.
One can always make the nonuniformly scaled densities
n $ quite difFerent from one another for different q so that
the exact functionals T, [n L] and E„,[n z] are expected to
be heavily dependent upon q. To clarify our argument, at
least for T, [n], we reveal here a lemma which can be
used to test whether T, [n)] varies with q. With this in
mind, we have already proven that T, , T, , and T,' are

A, T, [n]=T,"' [nz]+A T, ' [n&]+A T [n&] . (36)

The Hodges gradient expansion through fourth order
is T, [n]= T, [n]+ —,

' T, [n]+ T4[n], where T4[n] is

given by

(V n)T4[n]=C4 f 5/3
9 V n/ nV/ 1 /Vn/

8 8/3 3 11/3

(37)

and where C4 is a constant. Consider the fourth-order
term T4[n] With some algeb. ra, it can be shown that
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T [n ]=CA, f
a2 a2 a2

+ + n(r}
Bx By Bz

5/3

9
8

B' B' B'
2

'

B+ + n(r) A, n
Bx By B z

8/3

2 2

+ n + n
B B

ay az

2

1+—
3

'2

n + n + n
a a a

Bx Bz

n 11/3

2 2

d3r. (38)

Surprisingly,

lim T4[n&]~ ~,
A. ~0

so that

and

T, [nz]=A. T,"[n]+T, [n]+ T;[n],

k T, [n]=T,"[n& ]+A, T, [n&]+A, T;[nz] .

(41)

(42)

lim T,o' [n", ]
A, ~O

(40}

V. EXAMPLES IN WHICH EQUALITIES APPLY
IN EQS. (15) AND (16), AND NONUNIFORM

SCALING REQUIREMENTS FOR E, [n]

In Sec. II, we have proven that the nonuniformly
scaled wave function

(» iy iz ), . . . , «gy~z~ }

which violates Eq. (15). It appears that nonuniform scal-
ing requirements are very dilcult to satisfy and will thus
help construct the very best approximation to T, [n]

lim T, [n&]= T~[n]+ T;[n])0, (43)

lim T, [n zx ]= T,"[n])0,1

g~ QO

(44)

which are violated by T, "[n] when Eq. (30) holds.
When Eq. (9) applies, we are able to deduce the exact

nonuniform scaling properties of E„[n]which is given by

Compared to Eqs. (15) and (16), Eqs. (41) and (42) are
even more stringent to be satisfied. For instance, T, "[n]
does not satisfy Eqs. (41) and (42) when Eq. (30) holds,
while T, "[n] satisfies Eqs. (15) and (16) when Eq. (30)
holds. In addition, two limiting relations can be deduced
from Eqs. (41) and (42):

gives the scaled density n z but does not necessarily mini-

mize ( T), from which Eq. (12) arises in general. Conse-
quently, the inequalities in Eqs. (15) and (16) take place.
However, we have found some special cases in which

I 2

E[n)= ——f f ', drdr',
where

(45)

(» iy iz i «xywzx }

not only yields n &, but simultaneously minimizes ( T), so
that Eq. (9) holds for these special cases and the inequali-
ties in Eqs. (15) and (16) become equalities:

y(r, r')=y(x, y, z;x', y', z')=g; &(t,*(x'y'z'}P, (xyz),

and where the P, are the Kohn-Sham orbitals of which
the determinant 4„'" is composed. From Eqs. (45) and
(9), one finds

l~y(», y, ;~ ',y' ')l'
d dy d, dx, dy, dz,

[(x —x') +(y —y') +(z —z') ]'

1
ly(r, r'}l' d3 d3„.

[P '(x —x')'+(y —y') +(z —z') ]'
(46)

With some algebra, it can be shown that

B
lim E, [n 2 ]= lim E„[An(x,A,y, A,z , ) ]g~ oo A, ~O BA,

1 y(r, r') I'

[( I )2+ ( i)2]1/2

(47)

lim E„[n 2 ]= 1im E„[A. n (x A,y, A,z ) ]
0 Bk

f ly(r, r')l d r d r'

l(x —x')l
and

lim (E„[n,'. ]+E„[n~z]+E,[nz])=E„[n] .
B

A. ~] Bk

(48)

(49)
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Equations (46)—(48) give

lim E„[ni ]W lim E [n f ]W lim E [n 'i ] & ~
g~ oo g~ oo g~ oo

and

(50)

The equivalent problem is to show that A.
' P;(Ax, y, z) is

an eigenfunction of (
—

—,'V +v,s), where v, ir is a single-

particle potential. To do so, we transform Eq. (56) into a
new form:

lim E„[ni ]Alim E„[n~&]&lim E„[n&]& ~ .
0 BA, x-o Bk k-o Bk

(51) or

1 + v, (AX ) P„(AX ) =El,.P'i,. (Ax )

Both Eqs. (50) and (51) lead to

E„[ni ]WE„[n~~ ]WE„[ni ] . (52)

t)2
+X v„(A.x ) A,

'~
Pk(A.X )

Equations (50)—(52) are violated by E„[n].
We now identify two types of densities where Eq. (9)

applies, which guarantees the validity of our results de-
rived in this section. Firstly, consider a density whose
noninteracting Hamiltonian is

=(A, e")A, ' P'(A, x)

Combining Eqs. (57)—(59), one obtains

1——V +v,s A.
'~ $;(Ax,y, z)=e,'k' P;(Ax,y, z),

(59)

(60)

N

H = g [ —
—,'V;+v„(x;)+v (y;)+v, (z, )] . (53)

The exact T, [n] for this system (assumed for simplicity
to consist of only doubly occupied orbitals) is

M

T, [n]=2 + J P;( ,
' V )—P;—d r, (54)

andwhere v, s
= A. v„(AX )+ v~ (y)+ v, (z),

c,
' =X'c„+c.&+e'.

The second example is embodied by the one- and two-
electron systems where the scaled wave function yields
the scaled density n

&
and also minimizes ( T ). Proof for

this statement is similar to the one given above.

1 8
, +v. (x) Nk(x) =El 0k(x» (56)

1 8
, +v, (y) Wi(y)=elhi(y»

By
(57)

1 +v, (z) P' (z) =E' tI}' (z),
2 az2

(58)

with e; =ek+ a~i+ e', and tI};(r)=((}k(x )P(y )P' (z), where

k, l, and m are understood to depend on i.
The 4„'" constructed from the P, (r) minimizes ( T).

We now prove that the scaled wave function

(kx iy iz i, . . . , Ax~y~z~ )

constructed from the A,
'

P, (Ax, y, z) also minimizes ( T).

where P; satisfies the following equations:

[ —
—,
' V +v„(x)+v (y)+ v, (z)]P, (r)

=E;P, (r), i =1,2, . . . , M (55)

with M =E/2 Equation. (55) can be solved by separa-
tion of variables:

VI. CONCLUDING REMARKS

We summarize the main results achieved in this paper.
First of all, we have introduced nonuniform coordinate
scaling into density-functional theory. A set of nonuni-
form scaling relations concerning the exact kinetic energy
T, [n] has been derived. It has been proven here that the
Thomas-Fermi functional, the von Weizsacker term, the
fourth-order gradient term, and the whole gradient ex-
pansion through fourth order all fail to satisfy these exact
nonuniform scaling conditions for T, [n] For some . spe-
cial cases, we have obtained even more stringent condi-
tions for both T, [n] and E, [n], which are, once again,
violated by the LDA. Finally it should be noted that the
gradient expansion through second order, T, "+—,'T, ,

satisfies Eq. (15), (16), and (23), but this expansion
violates the condition that the Pauli potential be non-
negative ' for all r. The Pauli potential is defined as
5( T, [n ]—T„,[n ] ) /5n. In closing, we emphasize that an
important challenge for an approximate T, is its capabili-
ty of generating reasonably accurate molecular binding
energies. With this in mind, we feel that proper behavior
with respect to nonuniform scaling is necessary because
bonding causes nonuniform distortions in the density.
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