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We investigate the semiclassical electric-dipole-allowed interaction of a unidirectional plane-wave

electric field with a homogeneously broadened two-level medium prepared in a coherent superposi-
tion of energy eigenstates. Atomic level pumping and the effects of phase matching the new polar-
ization contributions are discussed. The slowly varying polarization is derived and applied to the

problem of the propagation of a weak field. The polarization of the medium acquires a direct (field-

independent) contribution due to the injected coherence. W'e find that the slowly varying envelope

propagation equation retains the standard single-mode absorption coe5cient but develops addition-

al driving terms. Phase matching in both time and space is crucial for the injected coherence to
couple to a field. The phase-matched case of weak-field propagation proves to be a linear super'posi-

tion of two processes: the usual Beer's law exponential decay (or growth) and a constant field sup-

ported by the medium. The injected coherence enables a weak electric field to persist in an absorb-

ing medium.

I. INTRODUCTION

A typical method for studying the interaction of radia-
tion and atomic matter is to direct a beam of atoms into
the path of an electric field. The atoms may be prepared
in an energy eigenstate and injected into the region of the
field. If the atoms are in their lower state, they absorb. If
they are in their upper state, they undergo stimulated
emission. Our goal here is to direct a beam of atoms,
prepared in a coherent superposition of energy eigen-
states, into the region of the field and study the effects of
what we call an injected atomic coherence. For situations
in which atoms are introduced into the interaction region
at a constant rate, the initial atomic state is of consider-
able importance. We consider situations for which there
are only two atomic levels of interest and the atoms have
nonvanishing probability amplitudes in either or both of
these states. The superposition state is sensitive to the
relative phase of the probability amplitudes for the two
levels. Since this phase can be easily disturbed, the atom-
ic coherence for electronic levels typically has a short
lifetime. The level probabilities are not sensitive to the
atomic coherence and are therefore disturbed less easily.

Traditional methods of atomic state preparation for cw
studies produce atoms usually in energy eigenstates or
possibly in coherent superposition states. Techniques
capable of preparing atoms in the same state of atomic
coherence are usually not able to preserve the coherence
for a large number of atoms. Weak electromagnetic in-
teractions between atoms do not change the level proba-
bilities, but typically alter the individual phases of the
coherence in some random fashion. The net result for the
assembly of atoms is that the atomic coherence averages
to zero. The system behaves as if each atom were
prepared in one of the energy eigenstates. We investigate
the properties of systems whose net atomic coherence for
the entire ensemble is non vanishing. Each atom is

prepared in a similar superposition state and we assume
that the preparation process enables us to preserve the
coherence.

The effect of atomic coherence on a quantized electric
field is being actively studied by Scully and co-workers
with regard to the quantum beat laser and the correlated
emission laser. ' The phase sensitivity of processes to
the state of atomic coherence is also being investigated by
Zaheer and Zubairy' ' and in squeezing. ' ' These
fully quantum-mechanical analyses provide us with the
motivation to carry out the semiclassical treatment. In
particular, we have studied the effects of injected atomic
coherence on the one- and two-photon electric-dipole
coupling of homogeneously broadened two-level atoms
and a one-, two-, or three-mode electric field. We present
our results in a series of papers. Since the present work is
the first in this series, we briefly review the concepts of
atomic-level pumping and phase matching. This discus-
sion will suffice for all other papers. We limit the scope
of the presentation to the simplest atom-field coupling,
namely, the one-photon single-mode interaction.

In previous investigations concerning two-level atoms
interacting with one or more modes of an electric field,
expressions describing induced polarizations, populations
pulsations, nonlinear absorption coefficients, and mode
coupling are presented (Ref. 15 and references therein).
The possibility of having two or more field modes allows
a spatial grating in the population difference to form with
which one or more fields may interact. The introduction
of a properly phased distribution of atomic dipoles leads
to an atom-field interaction similar to existing multimode
treatments in that both propagating disturbances may in-
teract coherently to form population pulsations in the
two-level medium. These interferences produce
sidemodes in the total polarization about the solely field-
induced polarization component. A significant difference
for the treatment of an injected atomic coherence results
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from the fact that the coherence is a property of the
medium itself and does not result from the interaction of
any fields under study. We note further that this coher-
ence cannot behave like a field and begin to saturate the
atoms. The injected atomic coherence may not scatter off
of any population pulsations and, therefore, the polariza-
tion is not expected to show sidebands about the atomic
transition frequency.

We discuss atomic-level pumping and atomic coher-
ence in Sec. II. The problem of phase matching is de-
scribed in Sec. III. Phase matching in both time and
space is crucial in order for the injected atomic coherence
to have any net effect on the atom-field coupling. Section
IV treats the one-photon interaction of a single-mode uni-
directional electric Geld and an injected atomic coher-
ence. Since the coherence between the two energy eigen-
states has an associated electric-dipole moment, the pro-
cess of injecting atoms with a nonvanishing two-level
coherence results in a direct input polarization. The total
polarization of the medium then has a contribution oscil-
lating at the atomic transition frequency, independent of
the electric field and any possible nonlinear interactions
that may arise.

We obtain an expression for the polarization of the
medium that was initially prepared in a coherent super-
position of states. The total polarization consists of the
usual field-induced polarization at the Geld frequency and
a pair of frequency symmetric sidebands having a dis-
placement from the field frequency given by the magni-
tude of the atom-field detuning. In the frequency-
degenerate case (the field frequency coincides with the
atomic resonance frequency), the contributions to the po-
larization from the injected coherence and the scattering
processes are all at the same frequency as the usual polar-
ization arising from the injected population difference.
Section IV presents the necessary background for deriv-

ing the slowly varying polarization used in an earlier
work' to study the frequency locking of a phase-matched
ring-laser cavity mode. The running-wave field experi-
ences gain since the injected coherence is itself a source of
polarization. A more detailed treatment of this system is
to be presented in the following paper. '

The electric field is specialized to a single running wave
and the slowly varying field envelope propagation equa-
tion is derived in Sec. V. The equation shows additional
driving terms due the injected atomic coherence. For the
perfectly phase-matched case the field is driven by all
three contributions produced by the injected coherence,
but the coefficient of the term linear in the electric field
does not depend on the coherence. In the nondegenerate
case the injected coherence is phase mismatched with the
field-induced polarization. For poorly phase-matched
configurations the injected coherence has no effect on the
polarization oscillating at the field frequency. The ab-
sorption coefficient is then the standard single-mode re-
sult. ' The detuned case still possesses the polarization
oscillating at the atomic transition frequency. The
remaining contributions arise from the scattering of the
electric field off of the population pulsations produced by
the coherent interaction of the field and the injected
atomic coherence. These nonlinear processes produce

symmetrically up- and down-shifted polarization side-
bands. Higher-order sidebands are not produced, in con-
trast to purely field-induced polarizations, since the in-
jected atomic coherence is a property of the medium and
may therefore only appear once in a given interaction.
The weak-field solution of the propagation equation is
given in Sec. VI and the perfectly phase-matched case is
discussed in Sec. VII. Our findings are summarized in
Sec. VIII.

The injected coherence allows a detuned single-mode
electric field to develop sidebands that may grow to pro-
duce a true multirnode field. The frequency spacing be-
tween the electric-field modes is equal to the magnitude
of the detuning of the atomic resonance frequency from
the optical field frequency. It is then natural to consider
a more complicated electric field, namely, one consisting
of three modes. We might imagine that the sidemodes re-
sult from the polarization sidebands produced by a de-
tuned injected coherence. We also know that a two-mode
field naturally gives rise to additional modes with an in-
termode frequency spacing equal to the original frequen-
cy spacing. ' ' This multimode treatment has been car-
ried out and will be presented in subsequent work.

II. ATOMIC-LEVEL PUMPING

Typical atomic-level-pumping processes, such as
broadband optical pumping and collisional excitation,
rely on relaxation at some point in the process. In some
cases a pumping process may allow a coherence to exist
between the levels of interest in a single atom, but since
relaxation is involved, the phases of this coherence for a
collection of atoms tend to be random. The net effect is
that the atomic coherence is averaged out. We investi-
gate systems in which the atomic-level pumping preserves
the atomic coherence, at least to some degree.

The atomic levels of interest are assumed to be excited
states that are pumped at specific rates as well as under-
going decay out of these levels, with negligible decay
from the upper to lower level (as for the He-Ne laser).
This pump-decay mechanism causes the system to be
open, i.e., the number of atoms in the two levels of in-
terest is not conserved. This scheme is well suited to the
idea of injection from some external source. The atoms
are injected into the field region, interact, and leave the
system by decaying out of the levels of interest. The
atoms may also physically leave the interaction region.
This behaves as another decay channel and also avoids
the problem of an intolerably high density of atoms.

Traditional treatments of atomic-level pumping are
concerned with creating and sustaining a steady-state
population difference. The excited-state atomic decay
scheme requires the ratio of the level-pumping rate to de-
cay rate to be different for the two levels in order for the
coupling between the field and the medium to show any
net effect. The typical source for level pumping in gases
is considered to be collisions. Since collisions last on the
order of a few picoseconds, they are treated as instan-
taneous over the time scales of interest (the impact or
Markov approximation), i.e., the atomic coherence decay
time, and the oscillation periods of the sum and difference
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frequencies due to the electromagnetic coupling. The
effect of collisions is introduced into the microscopic
equations of motion of the medium as phenomenological
pump-decay terms which inject or remove atoms from a
given state. We use a density-matrix formalism to de-
scribe the dynamics. The density matrix for a given atom
consists of a matrix describing the coherent interaction
with the field, and another describing the incoherent
pump-decay processes. A collision strong enough to
change the atomic state also tends to yield a random
phase for any coherence that may arise. As a result, the
pump-decay density matrix is considered to be diagonal,
i.e., level probabilities receive a pumping contribution but
the off-diagonal coherence elements do not.

Decay processes introduced into the density-matrix
equations of motion can be grouped into three categories:
(i) state changing, (ii) phase interrupting, and (iii) transit
time. State-changing processes such as collisions and
spontaneous emission cause the atomic coherence to de-

cay at the average of the level probability decay rates.
Phase-interrupting collisions are those that do not change
the level probabilities, but do disturb the phase of the os-
cillating dipole moment in some random fashion. For a
single atom this is not of importance but for an ensemble,
the net atomic coherence is reduced. The effective decay
rate of the atomic coherence is then increased over the
rate determined by state-changing processes. The motion
of an atom across the finite beam width of the field intro-
duces an additional decay mechanism. We expect the de-

cay rates of all matrix elements to be similarly affected.
Transit-time effects can be of importance for the case in
which the atoms are injected into the system. The
motion of an atom causes it to sample the transverse
profile of the field and move out of the interaction region.
This allows us to maintain a reasonably uniform density
for a constant injection rate. If the electric field has
significant transverse variations, a plane-wave description
of the field is no longer valid. This must be kept in mind
when analyzing the results of atomic interactions with
laser beams having typical Gaussian beam profiles.

It is common in the case of atomic electronic transi-
tions that the two-level density-matrix transverse relaxa-
tion rate is much larger than the longitudinal decay rate.
In an atom there is typically no nearby set of levels that
would allow collisional excitation. Hard collisions may
occur without any change of state, causing only a distur-
bance of the phase of the atomic coherence. The atomic
coherence for a collection of atoms is not able to survive
for more than a few collisional time scales. For this
reason collective atomic coherence was ignored in the
past. It is difficult to preserve the bulk coherence long
enough for studies of cw optical interactions. For the
sake of contrast, we mention that in the infrared one typi-
cally studies the rotational and vibrational degrees of
freedom. The transitions of interest typically have a
nearby set of levels that allow a molecule to become col-
lisionally excited. In this case a phase-interrupting col-
lision is also a state-changing collision, so that pure
phase-interrupting effects are unlikely. For a more de-
tailed discussion see Ref. 19.

In order to model the atomic-level-pumping process

simply, we assume that a number N of atoms per unit
volume is injected into the system at a rate r, so that the
level-pumping rates per unit volume are A.,=¹~c,

~
and

A.„=¹~cb~, where c, and cb are the probability ampli-
tudes of the atomic levels shown in Fig. 1. These pump-
ing contributions are the ones we typically encounter for
excited-state systems, and they form the phase-insensitive
part of the atomic injection. We continue by allowing the
pumping to possess a nonvanishing atomic coherence
k,& =¹ec,e&, where we neglect the spatial dependence
for now and e denotes the statistical purity of the injected
mixture. For the case of completely uncorrelated atoms
(e=O, mixed state) the atomic coherence is averaged out
and we are left with the phase-insensitive part of the
pumping. For the perfectly correlated case (a= 1, pure
state) the maximum atomic coherence is achieved for the
particular (phase-sensitive) pumping scheme used. These
terms contribute directly to the population-matrix equa-
tions of motion. The terms arising from the phase-
insensitive part of the pumping have the factor N
denoting the unsaturated population difference. Terms
resulting from the phase-sensitive part appear with the
factor A,b,

The technique for creating a coherent atomic state has
been known for a long time in coherent transient stud-
ies. ' One often thinks in terms of the Bloch vector,
which is a construction for visualizing the response of a
two-level medium (with equal decay rates) to an elec-
tromagnetic pulse of energy. The vector model results
from a torque equation derived from the coupling of the
population difference and the atomic coherence. By al-
lowing the field to interact with the medium for a
prescribed length of time, any desired superposition of
the two levels can be obtained.

A system of current experimental and theoretical in-
terest is the micromaser. Recent experimental tech-
niques ' make it possible to study the interaction of a sin-
gle atom with an electromagnetic field in a high-Q maser
cavity. An atomic beam can be prepared in a coherent
superposition of states by injecting Rydberg atoms in the
upper state into a cavity so that a coherent microwave
field builds up. The phase of the field is impressed on the

FIG. 1. Schematic energy-level diagram for a two-level atom
with an angular resonance frequency co between the upper level
~a ) and lower level ~b ). The level probabilities are pumped at
rates per unit volume A,, and A, b and decay at rates y, and yb,
respectively. The two-level coherence is pumped at a rate per
unit volume A,b.



42 EFFECTS OF INJECTED ATOMIC COHERENCE ON ONE-. . . 1535

atoms, and they leave the cavity in a phase-locked
coherent superposition of states. It is crucial that the
coherence be phase locked; otherwise, the effects of the
atomic coherence are averaged out. The phase difference
in the probability amplitudes of the atomic states corre-
sponds to the phase of the field and is the same for all
atoms. The rnicromaser can be used for experimental
preparation of an atomic beam in a predetermined
coherent superposition of states.

III. PHASE MIXING

The interaction of an electric field and an injected
atomic coherence leads to possible phase mismatching in
both time and space. Temporal phase mismatch results
from the coupling of a field and injected coherence of
different frequencies. Spatial phase mismatch arises
when the polarization due to the injected coherence has a
different spatial profile from that of the electric field to
which it attempts to couple. The equation of motion
describing the atom-field coupling develops a phase-
mismatch factor, which leads to a periodic modulation of
the interaction. For systems of small dimensions, e.g.,
the micromaser, the medium behaves as "thin" so that
the spatial phase-mismatch factor changes negligibly over
the region of interest. The Maxwell equations require a
specific relationship to be satisfied for the spatial and
temporal variations of an electromagnetic field. This
dispersion relation constrains the magnitude of the wave
vector and the oscillation frequency. There is no such re-
lation for the injected coherence. The time dependence is
fixed by the Bohr frequency condition of the transition,
but the spatial distribution of atoms may be chosen arbi-
trarily. If we want the injected coherence to couple to a
propagating electric field, we must phase rnatch it to the
field. This constraint is also valid if we expect the atomic
coherence to give rise to a field on its own. This follows
directly from the fact that every field must satisfy the
dispersion relation if it is to survive in the medium.

In order to phase match running- or standing-wave
electric fields, a similar rapidly varying spatial profile
must be constructed for the injected coherence. If the
atomic injection is along the field propagation direction,
the atoms trace out a running-wave profile with a wave
number given by the ratio of the coherence oscillation
frequency to the atomic speed. Temporal phase match-
ing requires the atomic coherence and the field to oscil-
late at the same frequency. This clearly poses two prob-
lems. The first is that the atoms must travel at the speed
of light in order to trace out the matching spatial profile.
The second is that the resonance is destroyed by the
Doppler effect. In order to achieve an acceptable degree
of phase matching, we must then use the transverse de-
grees of freedom to carry out the atomic injection. In
this way we imagine setting up a series of coherent atom-
ic beam emitters along the field propagation direction,
and direct the beams transverse to the field.

The easiest case to consider is approximately phase
matching a standing wave by using identical atomic beam
emitters, and spacing the beams so that they inject
coherently prepared atoms at the peaks of the standing-

wave pattern. We may think of this as an attempt to ap-
proximate the sinusoidal field profile with a periodic rec-
tangular profile. The two-level medium is then not uni-
formly distributed in space and the profile cannot be de-
scribed by a single wave number. A better approxima-
tion may be obtained if we space the atomic beam emi-
tters as closely as possible and amplitude modulate the
strength of the emitted coherence. This may be carried
out by varying the purity of the statistical mixture e of
the atomic beams. This amounts to assigning @=e(z), the
wave number of the electric field. For a running wave we
arrange the system as for the standing-wave case, but we
modulate the atomic beams, so that each successive
atomic beam apparatus uses a properly incremented
phase. Another method is to incline the axis of the atom-
ic beam emitters relative to the propagation direction. A
linear phase dependence arises as a result of the varying
distance the beams must cover in order to reach the in-
teraction region. This is, of course, limited by the max-
imum distance over which an atomic coherence can be
maintained. When the distance becomes too large, the
velocity dispersion destroys the atomic coherence.

IV. SINGLE-MODE POLARIZATION

This section develops the atomic polarization for the
one-photon semiclassical electric-dipole interaction of a
single-mode electric field and a dilute atomic medium.
The medium is assumed to be an ensemble of "two-level"
atoms having identical energy-level structures in their
isolated states. We call ~a ) the upper energy eigenstate
and ~b ) the lower energy eigenstate of the unperturbed
system. The levels are assumed to acquire population
gain by the pumping rates per unit volume A,, and A, b,
coherence gain by the rate per unit volume A,b, and
suffer population loss at rates y, and yb, respectively.
These processes are taken to be independent of position
and time. Figure 1 is a schematic representation of such
a two-level atom. The dipole coherence retains its
effective decay rate y. The medium is assumed to be
homogeneously broadened so all atoms have an angular
frequency ~ for the atomic line center. The two levels of
interest are assumed to have a nonvanishing electric-
dipole matrix element, so that the coherent effects pro-
duced by the atom-field interaction are assumed to be
limited to the one-photon coupling of the states ~a ) and
~b) arising frotn the unperturbed quantum-mechanical
atomic Hamiltonian operator %o. The time-dependent
electric-dipole interaction energy operator is given by

V(r, t) = ei'E(r, t), —

where the operator er is the atomic electric-dipole mo-
ment and the electric field E(r, t) is considered to be a
classical scalar field for the semiclassical treatment
presented in this work.

To each atom of the ensemble a density operator p"
may be assigned, which together with all other such
operators form a population operator p(r, t). The Her-
mitian population operator contains all the information
we may obtain about the system and obeys the master
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equation (obtained from the Schrodinger or equivalent
Heisenberg equation of motion)

iA P =[%,p]+1(p),Gap

dt

where the total semiclassical Hamiltonian gf =Ho+ V(t },
and I consists of any possible phenomenological contri-
butions to the evolution, e.g., decay processes and exter-
nal pumping mechanisms. For arbitrary state vectors ~i )
and ~j ) the matrix element of the atomic electric-dipole
operator between these states is

p,,
—= &i~er~j )=p,', ,

and p;J is the corresponding element for the population
matrix. The general equation of motion for the
population-matrix elements is given by

in Fig. 2. The matrix elements of the interaction energy
in this representation using the rotating-wave approxima-
tion (RWA) are

V =V* = ——'p6'e
ab ba

The response of the medium is described in terms of a
population matrix p(r, t) using the equations of motion

p„=k, y,—p„(if—i 'V,bpb, +c.c. ),
Pbb b V bPbb ( ~ ~ VobPb

P b A b (r+~~)P.b+ ~ 'V.b(P o Pbb )

The level decay rates y, and yb are introduced phenome-
nologically and y is the dipole decay rate. We define the
two-level population sum and difference as

1

p; =A; —(y; +ice;))p~) ——[V,p]~) .
S(r, t) =p„(r, t)+pbb(r, t),
D (r, t) =p„(r, t) pbb(r, t—), (10)

The polarization of the medium is the expectation
value of the total dipole moment per unit volume that
can be calculated using the relation

respectively. It is convenient to express the above equa-
tions of motion in the temporally slowly varying (interac-
tion picture) forms

P(r, t)=&er) =Tr{eTP(r, t))I= g p; p;, (2)

where the sums are over complete sets of states. We need
only consider those states { ~

i ) ] that play a role in the
electromagnetic interaction. In the one-photon two-level
model the energy-eigenstate representation of interest is

{ i ) ]
= ~a ), ~b ). We define p = p, b and obtain the po-

larization expression

P =1, y p (iVPb+cc)
Pbb ~b YbPbb+('VPbo+c'c' )

Pob ~ ~ b ()'+'~)Pob+'V P Pbb }

where the atom-field coupling factor

V= —p8/2',

(12)

(13)

(14)

P (r, t) = p "p,b( r, t)+ c.c. (3) the slowly varying coherence matrix element

The off-diagonal population-matrix element is directly re-
lated to the polarization of the two-level medium and de-
pends on the level-population difference. This coupling
of the population difference and the polarization causes
the population-matrix element equations of motion to
yield a nonlinear relation between the electric field and
the polarization of the medium.

The simplest case of an electric field for our studies is
one which oscillates harmonically in time at a single an-
gular frequency v and has the form

e-i5t
t (16)

and the detuning of the atomic resonance frequency co

from the field frequency

ivt
pab pabe

the temporal injected-coherence-field phase-mismatch
factor

E ( r, t ) = ,' 6'( r, t )e ' '+—c.c. , (4)

where 8(r, t) is the complex mode amplitude and v is an

optical angular frequency. The amplitude 8 is con-
sidered to be slowly varying in time so that neghgible
variations occur for times on the order of the optical tern-

poral period 2n/v. We assume the injected atomic
coherence to have the form

ab

A =k eab ab

which is a dipole coherence oscillating at the resonance
frequency of the atomic transition with a complex ampli-
tude k,b that is slowly varying in time but may have a
spatial dependence that is rapidly varying —in particular,
that defined in Eq. (50) below. The spectrum of the elec-
tric field and the injected atomic coherence is illustrated

FIG. 2. Spectrum for a single-mode electric field 6 with an
injected atomic coherence A,,b for a one-photon transition. The
detuning of the atomic transition angular frequency from the
optical angular frequency v is 5=co—v. For nonlinear interac-
tions a sideband at frequency v —5 is anticipated.
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(17)

D= r—+D —r S+2A. —2(iVp&, +c c .).,
S= —y+S —

y D +2k, +,
(18)

(19)

where the incoherent exchange constants are defined as

The corresponding equations of motion for the popula-
tion difference and sum are

the dipole decay time T2 =1/r, and the dimensionless
complex-population-pulsation factor

1 1

2T, r, +ik5
+ 1

yb+ik6

The Fourier dipole coherence components p can be el-

iminated from the population difference expression by
substituting Eq. (25) into Eq. (28). We find

(20)
dk =gk[2T, Pk(q5k 1+q*5k 1)+N 51 o],

where the injected coherence coupling factor

(32)

In order to obtain an expression for the polarization,
we must solve Eq. (8) [or Eq. (13)] for the off-diagonal ele-
ment p,b. The contribution of the injected atomic coher-
ence to the coherent terms of Eq. (18) gives rise to tem-
poral oscillations at angular frequencies +5 in the popu-
lation difference. The detuning off line center determines
the rate of these population pulsations. The solutions for
the population-matrix elements of Eqs. (6)—(8) can be ob-
tained by describing the matrix elements in terms of tem-
poral frequency factors arising from the coherent interac-
tion of the electric field and the atomic oscillation. We
Fourier analyze both the polarization (dipole coherence)

p, b and the level populations p„and p» as

p,&(r, t) =e e im5& (22)

p ~(r, t)= g n &e'" ', a=a, b . (23)

We extend these expansions to the population difference
and write

D(r, t)= g d1, e'" '.
k = —oo

(24}

Substituting the expansions of Eqs. (22} and (23) into Eq.
(8), we find

p =iS Vd +S,X,b5

where the complex-Lorentzian denominator

S(5)=1/(r+i5),
with the convenient notation

(25)

(26)

S„=S[(k+ 1)5] (27)

and V as in Eq. (14}above. We continue the decomposi-
tion by using the expansions in Eqs. (6) and (7) to obtain
the general relations

dk = —I2T] 9'k(Vp* k
—V*pk )+N 5ko &

where the unsaturated population difference

~b/ yb

(28)

(29)

the time scales for the incoherent processes are given by
the average level lifetime

(30)

q
= i V—S',X;b,

the saturation factor

(33)

elk = I+IPq (Sk+S' k)
2

and the dimensionless Lorentzian

X(5)=r'/(r'+5') .

(34)

(35)

Since the physical intensity is defined as the average irra-
diance of the field, we write it as eel 8l /2 (in mks units).
A convenient parameter for our analysis is the dimen-
sionless intensity I = 8 /l 8, l, which corresponds to
the intensity that produces a steady-state population
difference which is one-half the unsaturated value. For
the one-photon coupling the corresponding field ampli-
tude is given by the expression for its inverse

g
—

1 —~(T T )1/2 (36)

We note that d k =d„" as expected since the population
difference is real valued. The self-consistent form for the
p components is derived by using Eq. (32) to eliminate
the population-difference components in Eq. (25). This
results in

p =iS VS [2T,P (q5, +q "5,)+N 5 0]

+S—l~ab5m, —1 (38)

It is worthwhile to consider what the general relations
of Eqs. (32) and (38) tell us about developing polarizations
in our one-photon two-level (excited-state) model. If
there is no pumping of the levels the system is "shut
down" so that no polarization persists. Once the pump-
ing is turned on, there is a possibility of polarization. For
pumping allowing no coherence (N %0, lA, b l

=0), ,

electric-field-induced polarizations develop. This is the
standard result of an electric field interacting with a
steady-state (saturated) population difference: the m =0
case of Eq. (38). If we now allow the coherence
(N WOW

l
A,,& l ), a field-independent polarization exists.

Whenever a field is present, it couples to this polarization
and drives the population difference, thus modifying the

and we write I, = l 8, l
. The dimensionless intensity is

then expressed as

(37)
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steady-state saturation of the medium. For systems
tuned off resonance, a beating occurs as indicated by the
k&0 terms in Eq. (32). These effects are the population
pulsations which may, in turn, interact with the field to
produce coherent nonlinear polarizations —terms in Eq.
(38) containing the population pulsation factor 9+. One
could imagine eliminating the effect of the unsaturated
population difference by pumping so that N =0, leaving
only contributions requiring the injected coherence.

The existence of a nonvanishing coherence from the
pumping process leads to a direct input polarization at
the atomic transition frequency. This is not due to a sat-
uration phenomenon, as evidenced by the lack of a satu-
ration factor in the last term of Eq. (38). Equations (32)
and (38) restrict the values of the indices to be
k, m =0,+1. The only Fourier components that appear
are po, p+, , do, and dz&. No other components are need-
ed and no restriction on the strength of the electric field
has been imposed. The polarization of the medium can
be written as

6(r, t}=A(r, t}e' (47)

I =
I
p@i'fil'T, T, . (48)

The injected coherence of Eq. (5) is also chosen to have a
unidirectional running-wave form,

i (K&.r —cot)

ab abc 7

iKA r
A, ~b =A,~be

(49)

(50)

where A,,b is a slowly varying complex amplitude, just as
8 is, and KA is the wave vector. We express the injected
coherence in terms of its phase mismatch relative to the
field as

where K is the wave vector satisfying the dispersion rela-
tion K =v/c, and @ is an electric-field mode amplitude,
which is slowly varying over an optical wavelength 2m/K
as well as slowly varying in time. For the running-wave
case l@=

l 8l, so the dimensionless intensity I of Eq. (37)
becomes

P (r, t) = ,'P(r, t)e—'"'+cc.
A =BR, e'

ob ab 7 (51)
=

—,
' [P,(r, t)e' '+Pz(r, t)

+P,(r, t)e ' ']e '"+c.c, (39)

where the temporally slowly varying complex-
polarization amplitudes are

P =2p'p2

The expressions for the polarization amplitudes are

P, =4p'T, 7+, S,V'2)*,X;b4', ,

P2=i2p'X X)VSO,

P3=2p'(1 ,'IV+, S, )*2)—
—,X,b,

(40)

(41)

(42)

(43)

where the special cases of the saturation factor ebb are the
real valued

where the injected-coherence-field phase-mismatch factor
i I(K~ —K) r —6t]B=e (52)

P (r, t }= —,
' [P,(r, t)B *+P2(r, t)

+P,(r, t)B]e' ' ""+c.c. , (53)

where the component complex-polarization amplitudes
are

If the space-time dependence of the injected coherence is
sufficiently similar to the field, then we may treat the
phase-mismatch factor as slowly varying in both time and
space. We assume that the electric field induces a polar-
ization

eVO= [1+IX(5)]
and the complex valued

1+IV+, [2)(25)+2)"(0)]

(44)

(45)

P, =P,e

P PeiKr
2 2

P, =P,e

(54)

(55)

The polarization P2 is induced solely by the electric field.
The sideband polarization P3 has a direct contribution
from the injected atomic coherence given by the first
term in Eq. (43), while the second term results from a
nonlinear interaction with the field. The other sideband
P, consists only of a nonlinear contribution.

d@(z) . E—I Z i
dz 2e

(57)

with the polarization amplitudes P slowly varying in
the same sense as 6.

The steady-state slowly varying Maxwell equation for
the electric-field amplitude reads

V. SINGLE-RUNNING-WAVE FIELD

In order to develop a propagation equation for the
electric-field mode, we must specify the spatial depen-
dence of the field and the injected atomic coherence. We
consider the simple case of a unidirectional running-wave
field by modifying Eq. (4) as

d = —a6+P,B *A,,*b+P3BA.,b,dz
(58)

where the z direction is taken to be along K and the time
dependences of the polarization amplitudes are assumed
to be negligible. We use the Fourier polarization ampli-
tudes of Eqs. (41)—(43) to write the propagation equation

E(r, t)= —,'6(r, t)e' ' "+c.c. , (46) where
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a =any%(5)ego,

P, =iP+$, y2)(25)S,e

p3=ipo (2 —I 9+, 4i)*,
ac= —X Kipi2/2eirty,

Po=Kp/2ey,

e '~=pl/~p@~ .

(59)

(60)

(61)

(62)

(63)

(64)

If we ignore the injected coherence, we obtain the fa-
miliar Beer's law equation with the same single-mode
complex-absorption coefficient. When the injected coher-
ence is turned on, it contributes to the polarization
directly at the atomic resonance frequency and through
population pulsation processes. The latter polarization
contributions are nonlinear in the electric field (aside
from saturation), causing the propagation equation to be-
come even more nonlinear. The propagation equation is
a nonlinear differential equation that is not easily solved.
When we tune the field off line center, the input field in-
duces a polarization at a different frequency than that
provided by the injected atomic coherence. The injected
coherence produces frequency-symmetric sidebands
about the field frequency. The magnitude of the sideband
displacement equals the detuning.

In general, the coupling of the injected coherence to
the electric field suffers a phase mismatch in both time
and space. A weak phase mismatch reduces the cou-
pling, thus making it more difficult to observe experimen-
tally. For a temporal mismatch the integration time of
the detector becomes important. If the detector has an
integration time v, then the coherence shows little change
with respect to the field for r &&5 '. For times such that
r R 5, the oscillations in the terms arising from the in-

jected coherence wash out. The observer then must tune
the spectrometer to the atomic resonance frequency in
order to see the effects of the injected coherence, but
these are unrelated to the original electric field. A similar
situation occurs for a spatial phase mismatch. If the in-
teraction region has a length i.n the propagation direction
that allows many oscillations of the phase-mismatch fac-
tor, then the coupling averages to zero. For interaction
lengths much less than the-spatial oscillation period, the
effect of the injected coherence is preserved, i.e., it is not
washed out.

We examine the properties of the propagation
coefficients of Eq. (58). The single-wave complex-
absorption coefficient of Eq. (59) is the standard
complex-Lorentzian response of an atomic dipole behav-
ing as a classical oscillator. The absorption profiles (real
part) are power-broadened Lorentzians with peak values
being saturated down due to a reduction in the popula-
tion difference. The index profiles show the typical fre-
quency dependence of the relative phase shift arising
from driving an oscillator off resonance.

The normalized conjugate-sideband injected coherence
coefficient P&/Po of Eq. (60) as a function of detuning for
various intensities is illustrated in Fig. 3. Please note that
the parameter values corresponding to the set of curves
on a single plot are listed in order of solid, dashed, dot-
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FICs. 3. The conjugate-sideband injected coherence
coefficient P, of Eq. (60) as a function of detuning for I =0.5, l,
4, and 16, with 4=0. In (a) the curve has indexlike profiles
similar to lm(a), but P, increases in strength with I since it de-
pends solely on the nonlinear scattering processes. Plot (b)
shows a Lorentzian-liice feature similar to Re(n) except for the
wings at large 5~ and the increase with field intensity.

dashed, and dotted curves. The dependence on detuning
proves to be only significant near resonance (5=0). The
large scale structure of the curves near resonance shows
that the real and imaginary parts are similar in form to
those of a with the real and imaginary parts interchanged
(with a sign change for the imaginary part). This is not
surprising if we view the injected coherence as a polariza-
tion and remember that it drives the field in a manner
that may be called in-quadrature, i.e., the real part cou-
ples to the imaginary part and vice versa. This coefficient
depends entirely on the coherent nonlinear interaction of
the field and the injected coherence. Im(P, ) shows shoul-
ders which lead into wings that are reminiscent of cou-
pling coefficients.

The normalized injected coherence coupling coefficient
P3 /PQ of Eq. (61 ) is plotted in Fig. 4 as a function of de-
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tuning for the same intensities as before. The gross struc-
ture seen here is again in-quadrature to n but we notice
that the imaginary part has wings approaching a nonzero
value, as if a resonant weak field were probing the unsa-

turated transition. This is a valid way of considering the
plot since the injected coherence contributes a constant
value independent of how strongly the transition is sa-
turated. The coherent contributions to P3 show up clear-

ly near resonance as they do for Pi, yet the curves look
very different. P, results from the interaction of 8 with

the grating formed by 8A;b le, ading to an oscillator
response yS(25), which quickly damps the profile in 5.
The coherent part of Ps results from 8 scattering off of
O'A, ,& leading to an overall modulating function y2)(0),
which is unity. This allows the central coherent features
of the interaction contained in 9+, 4i to fully develop.

The "inverted dip" structures in Figs. 3(b) and 4(b) are
commonly seen in the spectra of inhomogeneously
broadened media or by having the atomic transition
profile scanned through the saturator frequency, as
effectively done here.

The appearance of the sideband polarization in Eq. (53)
oscillating with a phase factor exp[i(K~ r co—t)] indi-

cates that the growth of a sidemode 6,exp[i (K, r —v, t)]
is possible, where v, =co and K& =v, /c as required by the
Maxwell equations. The first term in Eq. (43) for the
sideband amplitude P& simply indicates that there is a po-
larization oscillating as exp[i(KA r —tot)] since it has

been injected as such. This contribution to the polariza-
tion does not involve the response of the medium to any
coherent superposition of fields. The term containing the
complex-population-pulsation factor 9& can be thought
of as a coherent contribution since it results from the
scattering of the field off the fringe grating formed by the
coherent superposition of the field and the injected atom-
ic coherence. The ability of the field to propagate de-

pends on the phase-match condition
~ Kz —K

~

=—0.

VI. WEAK-FIELD SOLUTION

Re(popo) p
~
0

~ ~
~ ~
~ ~
~ ~
~ ~

We calculate the solution for the slowly varying
electric-field-mode envelope 8 for the weak-field case.
The linearized propagation equation is

-0.5 d

acyl')—

(5 )6'+i 2Poa, k,t,
e' (65)

~ ~

~ ~
~ ~ ~ ~ ~

-10
l

-5 0
&/v

10

where we assume that the field and injected coherence
travel nearly parallel to the z axis with the phase
mismatch bE =(KA —K) z. From this equation we

learn that the first-order spatial dependence of an
electric-field mode is determined by the standard linear
complex-absorption coefficient and the injected atomic
coherence amplitude modulated by its phase mismatch
with the field. The weak-field solution is

Im(p3/p, )

1.5

0.5
~ ~

~ ~

/
/

I
I

~ tfl

~ M

(b)

8(z) = [8(0)—6'f ]e '+ 6fe' (66)

2 0=1 B,A,,b .
aoy2)+i bE (67)

We concern ourselves with the propagation of a weak
field for the special case of central tuning and phase
matching in Sec. VII.

where the complex-absorption coefficient of Eq. (59) can
be linearized as a=—a2y2)(5), and the limiting value of
the field amplitude is

0
-10 10 VII. PHASE-MATCHED WEAK-FIELD PROPAGATION

FIG. 4. Plots of the real part (a) and imaginary part (b) of the
injected coherence coefficient P& of Eq. (61) vs the deiuning, for
the same values of the intensity I as listed in Fig. 3. For small
detunings the effects of the population pulsations can be seen.
The imaginary part has wings that approach a nonzero value
since the injected coherence itself is a polarization and contrib-
utes directly to the propagation.

The normal mode (unperturbed) electric field has an as-
sociated wave number that must satisfy the free-space
dispersion relation E =v/c. The dispersion relation re-
quires a fixed relationship between the magnitude of the
wave vector and the oscillation frequency of an elec-
tromagnetic disturbance. There is no restriction on the
spatial distribution of atoms comprising the medium, un-
less we impose one of our own choosing. As a result, the
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6'(z) = [6(0)—Cf ]e +8f,
with

(68)

medium oscillates in time with a frequency determined by
the difference in the unperturbed energies of the levels in-
volved in the transition (Bohr condition), but the spatial
variation is arbitrary. Therefore, there is no dispersion
relation constraining EA and ~.

The relative phase variations in time and space be-
tween the field and injected coherence determine the
effectiveness of the coupling as they propagate. In order
to achieve maximum coupling between the electric wave
and the polarization wave, the total relative phase (space
and time) must be constant as the wave propagate. This
corresponds to the case of perfect phase matching in
which the field is tuned to the atomic line center (5=0)
and the spatial variation of the injected coherence
satisfies K~ K=K. We assume negligible spatial varia-
tions transverse to the direction of propagation so let us
choose the z axis to be along the propagation direction
and KA=E for spatial phase matching. The phase-
matched weak-field solution is readily determined from
Eqs. (66) and (67) as

tained in the system density operator and reflects the pur-
ity of the statistical mixture. Let e denote the purity of
the statistical mixture we pump into the system. The re-
sulting strength of the injected atomic coherence becomes

There is still freedom in choosing the level decay rates.
Choosing equal decay rates y, =y& wipes out the unsa-
turated population difference (N =0), causing the medi-
um to become transparent (noninteracting) in so far as its
level populations are concerned. The existing two-level
coherence is not inert since it gives rise to an electric field
or couples to an existing one. We prefer to keep all
effects present so we choose y, Ayb, in particular, y, =—',
and yb= —,'. This yields N = —0.6 and T, =1. The
coherence lifetime we choose is T2=1. We express the
field amplitude 8 in units of the saturation amplitude
~C, ~

determined from Eq. (36). Any phases are given in
degrees. The propagation distance is given in units of
(ao) ', where au= —ao/N from Eq. (62). We estimate
p/fi-10 (in mks units) and consider fields to be weak
when ~8~ &&10 (in units of ~8, ~). In summary, the
starting values of interest are

ab
ao

2Po
f =l (69} N 0 60~ T] 1 T2

(70)

We take the transition dipole-matrix eletnent p to be real
so that Po may be considered real valued. The weak-field
solution shows that the exponential dependence of the
complex field amplitude on the propagation distance is
not affected by the injected atomic coherence. The ab-
sorption coefficient a is simply the standard single-mode
linear absorption coefficient ao. The injected coherence
A.,b can directly pump the field amplitude in this case
since it represents a polarization in the medium the same
as the electric-field mode 8 induces.

For purposes of demonstration let us choose a con-
venient set of parameter values and investigate how the
electric field is affected by changing particular values.
We choose the level-pumping properties so that we may
achieve the maximum available coherence. The max-
imum coherence for a single atom occurs when the
moduli of the probability amplitudes of the two levels are
equal. Expressing the pumping mechanisms in units of
the product of the number density and atomic injection
rate leads us to set k, =kb= —,'. There are actually two
ways of achieving these values for an ensemble of atoms:
(i) injecting an inhomogeneous collection of atoms, one-
half of which are in the upper energy eigenstate and the
other half in the lower eigenstate, and (ii) injecting a
homogeneous collection of atoms such that an energy
measurement for any given atom is equally likely to yield
the upper-state value as it is the lower-state value. We
are naturally interested in the latter case since the first
case, by definition, injects no atomic coherence into the
system. In addition to the strength of the coherence, it
also possesses a phase for each atom. The phases of the
atoms may range from completely uncorrelated (no net
coherence} to perfectly correlated for which all phases are
identical (maximum coherence). This information is con-
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FIG. 5. The modulus of the weak-electric-field amplitude 6
of Eq. (68) as a function of distance traveled in the medium z for
~)(.,&~ =0, 0.125, 0.25, and 0.5. We set 8=0, Pq=o, aud
8(0)=(0.005,0). The field is in units of the saturation ampli-
tude

~ @, ~
and z in units of (ao) '. Other values of interest are

listed in Eq. (70).

We now illustrate the effects of the injected atomic
coherence on the propagation of a weak single-mode elec-
tric field. The linearized relation of Eq. (68) implies that
the initial value of the field becomes less important as the
mode propagates and attains its limiting value given by

This effect is shown in Fig. 5 (for absorbers), which
plots the field modulus against distance for increasing
strengths of the injected coherence. The limiting value of
the field strength grows with ~A,,b ~. The field quickly ap-
proaches its final value which, for the maximum allowed
coherence, begins to violate the weak-field assumption.
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FIG. 6. The modulus of the weak-field amplitude 6 as a func-
tion of propagation distance z. The variation of the field
modulus with the phase Pz of the injected coherence is illustrat-
ed for /&=0', 45', 90', 225', and 270' (uppermost curve). The in-

itial field value 6(0)=(0.005,0) and the strength of the injected
coherence ~A, b ~

= 2. ,

For that case a better approximation can be obtained by
numerically integrating the nonlinear propagation equa-
tion. Since the detuning has vanished, the degenerate ab-
sorption coefficient is real. The field only experiences
phase shifts due to A,,b. For the case that k, b vanishes
the solid curve in this figure shows a simple Beer's law
decay of the field. Figure 6 demonstrates the effect of the
phase of the injected coherence on the modulus of the
electric field for fixed ~A,,b . The modulus shows an initial
variation for z ~ 1 that indicates whether the interference
between the injected field and the injected coherence is
constructive or destructive. The field phase again ap-
proaches the final value of /&+ 90'.

VIII. CONCLUSIONS

In this paper we examined the effects of an injected
atomic coherence on the polarization, propagation equa-
tion, and weak electric field for a medium consisting of a
homogeneous collection of two-level atoms with a
dipole-allowed transition. Some interesting results
emerge. The polarization of the medium acquires a
direct (field-independent) contribution and frequency-
symmetric sidebands about the field-induced polarization.
For the propagation problem we find that the standard

single-mode complex-absorption coefficient is not affected
by the injected coherence, but additional terms in the
slowly varying propagation equation indicate that the net
effect on the electric field behaves as a linear superposi-
tion of processes: one process arising from the phase-
independent part of the pumping (the standard result due
to the injected population difference), a contribution re-
sulting directly from the input coherence, and two
scattering processes which are nonlinear in the electric
field.

The coupling of the new polarization contributions to
the electric field depends on the phase mismatch in both
space and time between the electric field and the injected
coherence. For poorly phase-matched interactions, the
field and injected coherence are uncoupled. If the phase
mismatch is in time, the injected field does not couple
strongly, if at all, to the transition of interest. The inject-
ed coherence eventually gives rise to a resonant electric
field on its own, and its spatial variation is determined by
that of the injected coherence. For this mode to propa-
gate it must satisfy the dispersion relation imposed by the
Maxwell equations. In general, this leads to a spatial
phase mismatch and so the spatial structure of the inject-
ed coherence is crucial in determining whether an electric
field can develop. If the original injected-coherence-field
phase mismatch is only in space, the injected field couples
to the transition but not to the injected coherence. For
the completely phase-matched case the resulting electric
field in the weak-field limit is a linear superposition of the
exponential damping of the injected field and a constant
field driven directly by the injected coherence.

The presence of an injected atomic coherence provides
a means of studying phase matching in a simple context.
The freedom in the coherence we inject allows us to con-
trol the degree of phase matching, and so study its effects
in detail. In addition, the semiclassical treatment
presented in this work enables us to investigate the main
features of interactions of fields with atomic coherences,
without becoming overly involved with the demands of a
fully quantum-mechanical description. After becoming
familiar with the simpler semiclassical results, one may
further the study by quantizing the electric field.
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