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Analytic solutions for three-state systems with overlapping pulses
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Two classes of analytic solutions for three-state systems involving two overlapping laser pulses of
different shapes, or of similar shapes but with their centers displaced, are presented. We find a re-

markable connection between the order of arrival of the two overlapping pulses and the
effectiveness of transfer from the ground state to the third state, and we find remarkable results for
the maximum occupation probability of the intermediate state. The approach of these analytic solu-

tions to the adiabatic-following process is also demonstrated.

I. INTRODUCTION

The problem of efficient transfer of population to
thermally unpopulated atomic or molecular levels that
are not accessible by one-photon transitions is of crucial
importance in many atomic-physics projects. ' Even
though a three-state problem involving a two-photon
transition of population can be readily solved numerically
for any given condition, questions such as finding the op-
timum conditions for complete population transfer from
state 1 to state 3, or for complete return of population
from state 1 to state 1, are best analyzed and answered
from solving the problem analytically. We have previ-
ously derived a number of analytic solutions for the
three-state systems which are applicable to a variety of
pulse shapes. Of particular interest are the cases involv-

ing two delayed and overlapping incident laser pulses
whose laser frequencies are at resonance with the transi-
tion frequencies from state 1 to state 2 and from state 2 to
state 3, respectively.

In this paper, we present two additional analytic re-
sults for the three-state systems involving two overlap-
ping laser pulses. A remarkable and unexpected con-
clusion emerges from these analytic results. To achieve
an efficient transfer of population from state 1 to state 3
that would not be sensitively dependent on the input pa-
rameters such as the laser-pulse shapes and intensities,
the atoms or molecules should interact first with the laser
pulse for the 2~3 transition and then with the laser pulse
for the 1~2 transition, the pulses being overlapped in
time. We will refer to this procedure in which the laser
pulses arrive in the counterintuitive order as a counterin-
tuitive procedure. We will show that as the pulse
strengths are increased, (i) this procedure minimizes the
occupation probability of the intermediate state (state 2)
and thus makes the efficiency of population transfer from
state 1 to 3 relatively unafFected by radiative or collision-
al damping of the intermediate state 2, and (ii) this pro-
cedure approaches, in the limit of very large pulse
strengths, that of adiabatic rapid passage. '

Depending on the shapes of the pair of laser pulses
considered, three difFerent methods have been used by us
for getting the analytic solutions for the three-state prob-

II. THREE-STATE SYSTEMS

We consider an atomic or molecular system driven by
two laser beams in which the major atomic or molecular
transitions take place among only three of the many
available states. State 1 is assumed to be the ground
state, and states 2 and 3 are labeled in such a way that the
electric-dipole transitions between states 1 and 2 and be-
tween states 2 and 3 are permitted by the electric-dipole
selection rule, and that the transition between states 1

and 3 is forbidden. After a time-dependent unitary trans-
formation is used to remove optical-frequency terms from
the Hamiltonian and wave function, the time-dependent
Schrodinger equation in units of A'=1

i =H(t)g
c)t

(2.1)

is assumed to be expressible in the form for which the
Hamiltonian H(t) can be written as

H(t) = —
—,'Q, (t) —

—,'Sl, (t) (2.2)

lem. The three methods will be referred to as (i) the
direct method, (ii) the uvw method, and (iii) the SU(2)
method, respectively, for easy reference. The latter two
methods are generally useful because they enable one to
make use of a large number of analytic solutions available
for the two-state systems for getting the analytic solu-
tions for the three-state systems. They will be described
and presented in the Appendixes.

The analytic solutions giving the time-dependent and
final probability amplitudes of the three states will be ex-
pressed generally in terms of transcendental functions
many of whose properties are known and whose asymp-
totic properties are often expressible in terms of elemen-
tary functions. The points to be noted in every case are
(i) the order of incidence of the two overlapping pulses,
(ii) the final occupation probability of state 3 as a function
of increasing pulse strengths, and (iii) the maximum occu-
pation probability of state 2.
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where Q, (t) and Q2(t) are generally time-dependent real
quantities involving the slowly varying electric-field en-

velopes of the applied laser beams, and are referred to as
the Rabi frequencies corresponding to the 1~2 and 2~3
transitions, respectively. Each of Q, (t) and Q2(t) is pro-
portional to the amplitude of the applied oscillating elec-
tric field. Zeros appear on the diagonal of P(t) because
the frequencies of the lasers are assumed to be at reso-
nance with the frequencies of the atomic or molecular
transitions. If the 0's have the same time dependence
such that Qz/Q& is constant in time, then Eq. (2.1) can be
reduced to one with a time-independent Hamiltonian by
changing the time scale appropriately, and the solution
can be expressed in terms of the eigenva1ues and eigen-
vectors of the resulting time-independent Hamiltonian.
We shall not consider such a case in this paper. The
cases that are of interest to us and that we shall present in
this paper are those for which Q2/Q, is not constant in

time; either because Q, and Qz are not of the same shape,
or if they are of the similar shape, the incidence of one
pulse is delayed with respect to the other. We assume
that the two pulses overlap in time.

Following our previous paper, the Rabi frequencies
Q&(t) and Qz(t) of the two laser pulses will be expressed
in terms of an arbitrary monotonic function z(t) of the
time t This .allows Q, (t) and Qz(t) to have an infinite

variety of pulse shapes corresponding to the particular
class of functions considered. The analytic solutions for
f(t)=(l(~(t), $2(t), f&(t)), the probability amplitudes of
states 1, 2, and 3, of Eq. (2.1), for three specific classes of
functions representing the Rabi frequencies Q, (t) and

Qz(t) will be presented in the following sections.

III. ANALYTIC SOLUTION FOR CLASS 1
PULSES

The first class of laser pulses we shall consider consists
of a pair of pulses whose Rabi frequencies are given by

a,
Q, (t)= Q,(t)=

[z ( 1 z)]1/2
2

z(1 —z)'" (3.1)

where z(t) is an arbitrary monotonic function of the time
t, i its time derivative, and a& and a2 are arbitrary posi-
tive dimensionless constants. An example of 0, and 02 is
given by setting

1
z =—1+tanh—

2 'r
(3.2)

where ~ corresponds to an arbitrary pulse length, and
where t = —ac to + ac corresponds to z =0 to 1. It gives

1/2

1 —tanh—

(3.3)

which are plotted in Fig. 1 as functions of t. The plot ern-
phasizes that the two pulses are applied in the counterin-
tuitive order, since we assume that the entire population
is initially in state 1. The pair of pulses given by (3.1) was
considered in Ref. 6 and the analytic solution for g(t)

Rabi Frequency

-2.0
I

-1.0
I

1.0
I

20 t/v

FIG. 1. Optical pulse shapes given by Eq. (3.3).

a,
t/'i(t) =~F2— a] 1+ia2 1 —iap

2' 2
'

2

ia&
P,(t) = [z(1—z)]'"

1+a

3 a] a] 3+ iap 3 —ia2XF —1+ 1— 'z2' 2' 2' 2
'

2

a)a2 1/2

1+a

a] a] 3+ia2 3 —ia2XF —1+ 1— 'z
3 2 2' 2' 2' 2

'
2

(3.4)

The Clausen function &F2(a', P', y', 5', e', z) has many
known properties. In particular, it has a series represen-
tation given by

a' P' y' a'(a'+1) P'(P'+1) y'(y'+1) q+
1! 5' e' 2! 5'(5'+1) E'(e'+1)

(3.5)

It is seen that if a
&

is a nonzero even integer, the Clausen
series in (3.4) terminate. Complete transfer of the occu-
pation probability can be quite easily obtained, and it is
given, for several cases, in Table I, where, for each case,
the maximum occupation probability ~g~(t) ~,„ofstate 2
is also given.

was obtained by us by identifying the third-order
differential equation for g, (t), after eliminating $2(t) and

P&(t) from Eq. (2.1), with the known differential equation
satisfied by the Clausen function' &F2(a', p', y';5', e';z).
This is what we called the direct method and a brief
description of it is given in Appendix A. The probability
amplitudes of the three states at time t are found to be
given by
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TABLE I. Cases of complete transfer of the occupation prob-
ability from state 1 to state 3 for class 1 pulses.

i(,(t) ',„

Robi Frequency

2

6
10

1

1.393 889
1.612 837

0.250 000
0.139490
0.100605

It is to be noted that as the pulse amplitudes or
strengths a, and a2 are increased, the maximum occupa-
tion probability of state 2 decreases. In fact, the max-
imum occupation probability of state 2 is already small
even for a, and a2 that are not very large. This is the
case even though the laser frequencies are assumed to be
at resonance with the 1~2 as well as with the 2~3 tran-
sitions. The counterintuitive interaction order has the
effect of minimizing the maximum occupation probability
of state 2, and increasing the pulse amplitudes when the
pulse order is counterintuitive has the effect of further de-
creasing the maximum occupation probability of state 2.
This general feature will be further exemplified in the fol-
lowing sections.

IV. ANALYTIC SOLUTION FOR CLASS 2
PULSES

The second class of laser pulses we shall consider con-
sists of a pair of pulses whose Rabi frequencies are given
by

-3.0 -2.0 —1.0 10 2.0 t/T

1+ia2 1 —iQ2 —a1
P, (t) —,z 2, 2, 2, 4

z
L

ia1 1/2 3 3+ia2 3 —ia2
$2(t)=,z'~', F,

1+a2

&1&2 1/2 1 3+ & O'2

y (t)= z'" F 2' 2
'

2

2
1

7 Z

Q
1

4

FIG. 2. Optical pulse shapes given by Eq. (4.2) for a& =3.554
and a&= 1.193.

a1
Q, (t) = „,z, Q, (t) =

Z'"
CX2

Z (4.1)
or

(4.3)

For z(t) given by Eq. (3.2) for example, Qi and 02 be-
come

' 1/2

q, (t) = lal' —lbl',

gz(t) = a 'b ab ', —

$3(t)= —(a'b +ah'),
(4.4)

Q, (t)=
2r

t
1 —tanh—

7
sech —,

7
where

CX2

02(t) = 1 —tanh—
7

(4.2)
a=I 1+ia2 1/2

1 1 a z'"
( 1+]~ ) 2 1

(4.5)

and they are plotted in Fig. 2 as functions of t for the
specific values of F1=3.554 and +2=1.193. It should be
noted again that the two pulses will interact with the
atoms or molecules in the counterintuitive order.

The analytic solution for i'(t) for this case has been ob-
tained in two ways with the use of the direct method and
the uvre method which are described in Appendixes A
and B. Using the direct method, the third-order
differential equation satisfied by g„after eliminating $2
and 1t 3 from Eq. (2.1), is identified with the known
differential equation satisfied by', Fz(a'; p', y';z). Using
the uvw method, the solutions for gi, P2, and P3 are ex-
pressed in terms of the products of Bessel functions'" of
complex orders, J (z). We present both forms of solu-
tions in the following:

1+ia2
2

A Z1/2tX1Z 1/2
(1+]'~ ) 2 1

,F,(~',P', y', z)=1+, , zi

a'(a'+ 1)
2!P'(P'+ 1 )y'( y '+ 1 )

(4.6)

J (z)= g (
—1) ( —,'z) + /[m!I (m +v+1)] .

m=0

When a,z' is large, the asymptotic series

(4.7)

Notice that the solution depends on a,z ', not on a, and
z(t) separately. The functions, F2(a';p', y';z) and J,(z)
have series representations given by



42 ANALYTIC SOLUTIONS FOR THREE-STATE SYSTEMS WITH. . . 1525

1
Q

X eos

1+ia2

1/2a]z l 7Ta2

V. ANALYTIC SOLUTION FOR CLASS 3
PULSES

The third class of laser pulses we shall consider con-
sists of a pair of pulses whose Rabi frequencies are given
by

2l a2+ a2+ ] 2
Sln

4a]z '

1/2
a&z l Ka2 + ~ ~ ~

Q, (t) =(2a/p)[cos8(t)]8,

Q,(t) =(2a/p)[sin8(t)]8,
(5.1)

and

l
6

1+ia2
2

a]z ' i 7ra2
X sin

2 4

where a and /3 are arbitrary dimensionless constants and
8(t) is an arbitrary function of the time. This is a gen-
eralization of the case first considered by Gottlieb, '

Hioe, ' and Pegg. "
The analytic solution for tP(t) for this case has been ob-

tained with the use of the SU(2) method described in Ap-
pendix C. The probability amplitudes P, (t), gz(t), and
li 3( t ) of the three states are given by

2l a2 a2+
~ /2

COS
4aiz

az'
1

2

l Ka2 + ~ ~ ~

4
(4.8)

are useful. Complete transfer of the occupation probabil-
ity can be obtained, and it is given, for several cases, in
Table II, where for each case, the maximum occupation
probability, ~1(tz(t)~,„, of state 2 is also given. For large
values of a&, the asymptotic series give the approximate
conditions for complete transfer of population,

P, ( t ) = —,
' [ a z+ ( a' ) + b + ( b "

) ],
gz(t) =a 'b ab ', —

$3(t)= ,'i [a' ——(a*) +b (b") ],—

where

(5.2)

a, = (2n —1 )n., azsinh( —,
'

m a~ ) = (2n —1 )n. , (4.9) a(t)= cos—(8—8 + —'P)+ sin —(8—8 +—'P)tp. r

P 0 P 2r P
where n is a positive integer. The corresponding estimate
of the maximum occupation probability of state 2 is

X exp ——
( 8—80+ —,'P)

~g,(t)~,„=sech ( —,'mu, ) . (4.10)

It is to be noted again that as the pulse amplitudes a,
and a2 are increased, the maximum occupation probabili-
ty of state 2 decreases, and that the maximum occupation
probability is already small even for a, and a2 that are
not very large.

The solution given in the form of Eq. (4.3) may be corn-
pared with that given in Ref. 7 in terms' of
zFz(u', P';y', 5';z) for the case of the same Pair of Pulses
given by (4. 1) but for it a nonzero one-photon detuning is
assumed, a two-photon resonance condition being as-
sumed to be satisfied. The form of the solution given by
Eq. (4.3) also bears some resemblance to that given by Eq.
(3.4) for the previous case.

b (t) = sin —(8—80+ —,'P)exp ——(8+80—
—,'P)

2T

]
( 2+p2)1/2 (5.3)

a(T)= cosr+ sinr exp( iP/2)—
2r

and 80 is an arbitrary constant. We assume that laser
pulses are applied to the atom or molecule when t lies in
the interval from 0 to T, for which the range of 8(t) is be-
tween 80—

—,'P and 8o+ —,'P. The final values of a(t) and

b(t) are

TABLE II. Cases of complete transfer of the occupation
probability from state 1 to state 3 for class 2 pulses.

and

al

3.554 272
9.653 358

15.873 647

1.193434
1.598 851
1.824 197

0.199771
0.103 957
0.075 379

ia
b ( T) = sinr exp( —i 80),

2T

and the final probability amplitudes are

(5.4)
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tt'1(T)=cos2r cosp+ P .
T

Slllr COSr SlnP

2 2sin r 2 2

cosp
& sm r

tx +p2 2 2
cos2B(
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$2(T) =;
T

slnr cosr cos(B —I
)0

2ap
2

sill r sin(B 1p)
2

)=cos r sinp —p .
7"

—sinr cosr cosp

(s.s)

& sin2r

+ 2

'mple examPle of (5 1);
2Q

Q, (t}=
1

=
T

COSB(t) n (t)2
= sinB(t) (5.6)

for O~t ~ T, and fl (t)=
1 2 or t &T.

B(t)= t+B——
—,P .0 (5.7)
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teraction sequences. Thus it is seen that as the ampli-
tudes for both pulses are increased, while the maximum
occupation probability for state 2 approaches one for the
intuitive interaction order, it quickly diminishes and ap-
proaches zero for the counterintuitive interaction order.

VI. ADIABATIC FOLLO%'ING

Q, (t} Q,(t)
Q (t} '

Q (t)t —+ 00 [ E~+ oo

(6.1)

where t~ —~ and t~+ 00 correspond to times before
and after the interaction with the lasers, respectively. If
T denotes the pulse length or the interaction time, and
Q,tt denotes —,'(Q, +Qz)', it was pointed out' that the
adiabatic following process can be achieved if

Q,~T»1, (6.2)

that is, for given T, the process can be approached by in-
creasing Q,s. Equation (6.2) is the dimensionless cri-
terion for adiabatic following. ' Assuming that (6.1) and
(6.2) are satisfied, the probability amplitudes of states 1,
2, and 3 were shown' to be approximately given by

f,(t)

g&(t)

$3(t)

cosP(t)
0

—sing(t)

(6.3)

where cosP(t) denotes Qz(t)[Q, (t) +Qz(t) ] '~ and
sing(t) denotes Q&(t)[Q&(t) +Qz(t) ] '~, or

A remarkable common result that emerges from all the
preceding analytic solutions is that sending two overlap-
ping laser pulses in the counterintuitive interaction se-
quence with large pulse amplitudes provides an efficient
way for population transfer in a three-state system that is
quite independent of the laser-pulse shapes, and that min-
imizes the occupation probability of the intermediate
state 2, making the efficiency of population transfer from
state 1 to 3 relatively unaffected by radiative or collision-
al damping of the intermediate state. In the limit of very
large pulse amplitudes, the process described approaches
that of adiabatic rapid passage or adiabatic following for
which a simple analytic solution was recently given. '

Consider a three-state system interacting with a pair of
laser pulses of arbitrary shapes shown in Fig. 5 incident
in the counterintuitive interaction sequence such that

Q, (t)
tang(t) =

Q,(t)
(6.4)

VII. CONCLUSION

We have presented three classes of analytic solutions,
(3.4), (4.3) or (4.4}, and (5.4), that clearly demonstrate
efficient transfer of population from state 1 to state 3 with
minimum occupation probability of state 2 using the
counterintuitive interaction sequence with high intensity
laser pulses. They also give us a better understanding on
how the limiting case of the so-called adiabatic following
process is approached, for which the approximate solu-
tion is given by Eq. (6.3). Our conclusion is supported by
the experimental confirmation given by Gaubatz et al.

Using Eq. (6.1), it is seen that the adiabatic-following
solution (6.3) gives complete transfer of population from
state 1 to state 3 without populating state 2 to any
significant extent at any time, even though the laser fre-
quencies of the two incident laser pulses may be at reso-
nance with the 1~2 and 2~3 transitions, respectively.
Our exact analytic solutions given in the three preceding
sections clearly demonstrate how this process is ap-
proached in the limit of high laser intensity, where (6.2) is
satisfied, for the various specific pulse shapes. Conditions
(6.1) and (6.2) can be applied to each pulse shape con-
sidered above and to other pulse shapes. This reduction
in the population of state 2 by use of the counterintuitive
pulse order can be understood physically as the result of
mixing of states 2 and 3 by driving the 2~3 transition
strongly. The oscillating electric field gives an Autler-
Townes' splitting of state 2 into two components that
differ in energy by the Rabi frequency, and this changes
the effect of the resonant pulse that drives the 1~2 tran-
sition.

The high efficiency of population transfer using the
counterintuitive interaction sequence in a three-level sys-
tem was experimentally confirmed by Gaubatz et al. ' re-
cently. They performed experiments in which the laser
frequencies of the pump and stimulating lasers were
tuned to be on resonance with two specific transitions be-
tween the electronic states of sodium molecules which
were sent to cross the two laser beams at right angles.
The centers of the two beams could be shifted relative to
each other. The maximum population in level 3 was ob-
served when the two laser beams were partially over-
lapped in the counterintuitive interaction sequence.

Rabi
Frequency

FKJ. 5. Two overlapping pulses where pulse 2 precedes pulse
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APPENDIX A: THE DIRECT METHOD

0

i
'

Qi = fi(z)
dz

f, (z)

0

f, (z)

0

fq(z)
0

we get the following third-order differential equation for

fi fz

1 2 1

fi fz fi
fi fi

fi+ $,=0, (A2)

In this appendix, we outline the method and steps that
led us to the analytic solutions (3.4} and (4.3) for pulses of
the shapes given by (3.1) and (4.1), respectively.

If we eliminate g2 and g3 from the coupled differential

equations

d
pFq(a i, . . . , ap , b'i, . . . , b;z)d''

Q1 Qpf= — f=—
221/2 '

2z
(A7)

into (A2), giving the following differential equation for

a1 . a

b, . b

&&&Fq(ai+1, . . . , a +1;bi+1, . . . , b +1;z) .

(A6)

To find gi, we use the second equation of (Al) and write

$3 f2 (i d g2 /dz —f, it, ) and use the differentiation
formulas given by Rainville to simplify the resulting ex-
pression. A simpler method is to start from the third-
order differential equation for f& which can be derived
from (A2) by simply interchanging f, and f2 and substi-
tuting gs for 1b, . We then substitute gs=z' y and identi-
fy the equation satisfied by y with the equation satisfied
by 3F2. The appropriate constant factor for g3 can be
determined from id itj3/dz =f,P, .

Similarly, to find the analytic solution (4.3), we first
substitute (4.1) into (2.1) and (2.2), or substitute

where the prime denotes the derivative with respect to z.
Substituting (3.1) into (2. 1) and (2.2), or substituting z g'i" +2zf'i'+ [ ,'aiz + —,'(—a2+1)]pi+ Bai1( i

=0 . (A8)

fi=— 1

2[ ( 1 )]1/2 '
2z (1—z}'~

(A3)

By comparing (A8) with the equation satisfied by
F =,Fz(a';P', y', x):

into (A2) gives the following differential equation for g, :

2 3/2
dz z z —1 dz

x +(P'+y'+ l )x +(P'y' —x) a'F =0, —2dF, , dF, , dF
dx dx dx

(A9)

we find ij'j, given by Eq. (4.3) that satisfies the initial con-
dition. We then proceed in a similar way to find gz and

+ —(1+a&)—+ —(5—ai —az)
1 2 1 1 2 2 1

4 z~ 4 z(z —1)
dP,
dz

CK1

$, =0 .
z (z —1)

(A4)

By comparing Eq. (A4) with the equation satisfied by
F =iF, (a', P', y';5', e', z),

APPENDIX B: THE uuw METHOD

In this Appendix, we describe the method that led us
to the analytic solution (4.4) and (4.5) for pulses of the
shapes given by (4.1). The method is quite general and
can be applied to other pulse shapes.

If in Eq. (2.1), we let

d F (3+a'+P'+y')z —(1+5'+e') d F+
dz3 z(z —1) Gz

g, =u, $2=iv, (Bl}

+ ( 1+a'+ P'+ y'+ a'P'+ a' y'+ P'y' )z —b' e' dF
z'(z —1) dz

I +I
+ ' F =0, (A5)

z (z —1)

we find g, given by Eq. (3.4) that satisfies the initial con-
dition. To find $2, we use the first equation of (Al) and
write $2=f, i dpi, /dz, and use the differentiation for-
rnula for a generalized hypergeometric function

then the three-state time-dependent Schrodinger equation
at resonance is equivalent to the undamped Bloch equa-
tion ' given by

U

dt
—,
' Q, (t)

—,'Q, (t)

—-'Q, (t)2

W,
(B2)

Equation (B2) is equivalent to the two-state Schrodinger
equations if we set
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U
= i—( a ' b a—b * ),

w =a*b +ah*,
where a and b satisfy

(83)

d a
l

dt .&.

——'Q, (t) ——' fl)(t)4 2 4

—
—,'Q((t) —,'A, (t} b

(84)

Thus from Eq. (Bl), g„gz, and g, are given in terms of a

and b by Eq. (4.4), provided that the solutions a and b
from Eq. (84) are chosen so that they satisfy the initial
conditions for g), f~, and P3.

For 0) and fl& given by (4.1), the solutions of (84) that
satisfy the initial conditions for P„gz, and g3 can be
shown to be given by Eq. (4.5), and hence from Eqs. (Bl)
and (83) we arrive at the analytic solution (4.4).

It is interesting to note that by equating Eqs. (4.4) and
(4.5) with Eq. (4.3), we have the following three identities
between, Fz and the sum of products of the correspond-
ing Bessel functions of complex orders:

1 1+iv 1 —iv
1'2

2 2 2
[J) (z)J) (z) J) (z)J, (z)],

2 cosh( ) ~v) ~()+tv) ~i) —t )v —, (
—

1
—iv) 2( —1+ivj

2 2

(85)

and

3+i 3 t 2 )r(I+ ) [J ( )J ( )+J ( )J ( )]
4 cosh( ' ~v} &(1+iv) &(

—( —iv) &(( —iv) &(
—1+iv)

2

(86)

F I 3+ ( 2 t ( I+ } [J ( )J ( ) J ( )J ( )]
2

'
2

'
2

'
4v cosh( —'m'v} &((+tv) =( —) —iv) —() —Iv) &(

—1+&v)
2 2

The identities (86) and (87) can be independently shown to hold by using the following known identity:

(87)

(Fz( —,';v+ 1, —v+ 1; —z ) = . J„(z)J,, (z) .
sin( n.v)

(88)

Identity (85) requires a lengthier independent proof. We may first use the following known identity

F, ( —,'+ —,'p+ —,'v, l+ —,'p+ —,)v; I+(Lt, 1+v, I+p+v; —z )=(—,'z) " 'I l(u+1)l (v+I)J„(z)J,(z), (89)

[a,
l

dt ——'A(t)e'
2

——' fI( t)e
2 a]

ap

(810)

for the first product of Bessel functions in (85). For the
second product of Bessel functions in (85), on the other
hand, since the orders of the Bessel functions add up to—1, we need to first make use of a recurrence relation for
the Bessel functions to express one of the Bessel functions
in terms of Bessel functions of the contiguous orders, be-
fore using the identity (89). We then make use of the
contiguous function relations for the generalized hyper-
geometric functions given by Rainville that simplify the
results to the simple identity (85).

Three classes of analytic solutions for the two-state
Schrodinger equation were given previously by the au-
thors. ' Some of these solutions can be used through
Eqs. (81)—(83) for obtaining the corresponding solutions
for the three-state Schrodinger equation (2.1) at reso-
nance.

In Ref. 22, two classes of analytic solutions are given
for the two-state Schrodinger equation in the form

Let us restrict ourselves to the cases in which 8 is bound-
ed. Then we need to set y=0 for both classes of solu-
tions given in Ref. 22. Thus we have

Q(t) =
z for class 1

m [z (1—z)]'
a

z for class 2,
vr(z '+ I)- (811)

——ln(1 —z) for class 1
Ti

B(t)= '

—tan z for class 2,
(812)

where z (t) can be suitably chosen so that the time inter-
val may correspond to z =0 to —,

' for class 1 or z = —~ to
+ ~ for class 2.

However, class 2 can be simplified by using tan 'z as a
new independent variable, and this leads to (5.3). Then
we may relate the solutions and the parameters in Eq.
(84) to those in Eq. (810) by
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dB dz

dz dt

010
JI '= — 1 0 1

0 1 0

a =a&exp —,'i 02dt

& =a2exp
(813)

1

2

0 —i 0
0 —i

0

(C4)

where a
&

and az are the solutions for (810) given in Ref.
22 (with y set equal to 0}. The solutions of the corre-
sponding three-state problem, (2.1) and (2.2}, are then
given by Eqs. (Bl) and (83).

APPENDIX C: THE SU(2) METHOD

In this Appendix, we describe the method that led us
to the analytic solution (5.4) for pulses of the shapes given
by (5.1). The method was given in Ref. 6 but unfor-
tunately it contained some errors. Since it is quite a gen-
eral and useful method, we shall outline it here.

The first crucial point is the observation that the Ham-
iltonian H(t) given by Eq. (2.2) can be written as

(Cl)

where

0 1 0
J)= 1 0 0

0 0 0

1 0 0
J3'= 0 0 0

0 0 —1

We define

1/&2 0 1/&2
0 1 0

i /&2 0 i /—&2

1/&2 0 i l&—2

0 1 0
1/&2 0 i /&2

and

H'(t)=U H(t)U,

then Eq. (2.1) can be written as

i =H '(t)g',

through the unitary matrix U according to

Jk '=0 Jk U, k =1,2, 3

where

(C5)

(C6)

(C7)

(C8)

(C9)

0 0 0
J~= 0 0 1

0 1 0

0 0 —i

J3= 0 0 0
i 0 0

(C2)

where the transformed Hamiltonian

(C 10)

is now expressed in terms of the generators of the SU(2}
algebra in the standard form.

The corresponding Hamiltonian for the two-state prob-
lem when it is expressed in terms of the generators of the
SU(2) algebra in the standard form is

satisfy the commutation relations

[J„J~]=tJ3, [J~,J3]=tJ„[J3,J, ]=tJ2 . (C3)
where

—
—,'(Q, +iQ~) (C 1 1)

When the generally time-dependent Hamiltonian H(t)
can be expressed in terms of the generators of the SU(2)
algebra, it is said to belong to the SU(2) model, and the
solutions of the time-dependent Schrodinger equation
were shown to be expressible in terms of sums of prod-
ucts of the solutions of the corresponding two-state prob-
lem. In order to make use of the "standard" representa-
tion of the SU(2) group, we transform J&, J2, and J3
given in (C2) into the "standard" representation J& ', Jz ',
and J3

'
given by

0 1 0 —i

0 ' 2 & r 0
1

83 2 0

be given by

Let the solutions P' of the two-state problem

(C12)

(C13)
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a b

b—' a ' Pz(0)
(C14)

or more explicitly,

a'
&2a—b *

(b')'

v'2ab b2

I
a

I

' —
Ib I

' &2a 'b
—&2a "b* (a')

i.e., a (t) and b—*(t) denote the solutions for P', and Pz,
the two components of P'. Then according to the result
obtained for the SU(2) model, the solution of Eq. (C9) for
our three-state problem can be expressed in terms of a (t)
and b (t}obtained from Eq. (C13) as

(C15)

f(t)=OD "'(a,b)U g(0), (C17)

where Pand 0 are given by Eq. (C6). We find that (5.2)
is the solution of the three-state problem. The equation
corresponding to (5.2) is given correctly in Ref. 6, but
(2.18) is a superfluous transformation. This causes errors
in Sec. 3 of Ref. 6. If the initial condition is g, (0)=1
and gz(0)=$3(0)=0, we use $&(0)=1 and Pz(0)=0 as
the initial condition in (C13}. Solution of (C13) gives a
and b as functions of t or z; (4.5) and (5.3) are two specific
examples.

The solutions and the parameters of Eq. (C13), where
&'(t) is given by (Cl1), can be related to those given in
Ref. 22 by

—,'(n', +n', )'"=n(t),

QI(0)

X 1(2(0)

1(3(0)

(C16}

, Q2
tan ' =80+B(t),

1

a=a
1

—i'b= —a2e

(C18)

where D"'(a, b), shown explicitly in (C16), is the three-
dimensional representation of the SU(2) group. Using
Eq. (C8), we finally obtain the solution f in terms of its
initial value f(0}and in terms of the solutions a(t) and
b (t) of the corresponding two-state problem as

where 80 is any arbitrary constant, and a, and ai are the
solutions given in Ref. 22. The parameter 80 appears in
b, and we set y =0, as noted in Appendix B; Sec. 3 of Ref.
6 should be corrected accordingly. Finally, the solution
of the three-state problem is given by (5.2) and (5.3).
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