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Spectrum of second-harmonic generation for multimode fields
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We calculate the spectrum of second-harmonic generation (SHG) for multimode input fields. We
show that SHG cannot be described as the degenerate limit of sum-frequency generation (SFG) for
multimode fields, because the dynamical equations describing SFG do not properly account for this
degeneracy. We consider SHG for amplitude-modulated as well as frequency-modulated fundamen-

tal fields. The bandwidth of the second harmonic generated from an amplitude-modulated funda-

mental field depends on the fundamental input intensity and the conversion strength of the non-
linear medium. Additional frequencies that are not contained in the set of frequencies co&, +~» will

be created at intermediate conversion strengths. However, the growth of the spectral bandwidth is
much less pronounced than in SFG. For very high conversion, the spectrum of the second harmon-
ic narrows with increased conversion strength. For frequency-modulated input fields, the second-
harmonic spectrum is independent of both the fundamental input intensity and the conversion
strength.

I. INTRODUCTION

The theory of three-wave mixing for single-mode fields
was formulated in a classic paper by Armstrong et al.
over 25 years ago. ' Modern descriptions of these pro-
cesses [sum-frequency generation (SFG), difference-
frequency generation (DFG), second-harmonic genera-
tion (SHG), parametric oscillation (PO)] are available in
many textbooks on nonlinear optics and quantum elec-
tronics and are essentially identical to that of the orig-
inal article. Recently, a theoretical description of three-
wave mixing for multimode time-dependent input fields
(as opposed to cw single-frequency time-independent in-
put fields) was presented, and analytic solutions were
developed for the time-dependent intenseties of the out-
put fields. These solutions differ dramatically from those
for single-mode fields. New frequencies in the sum-
frequency output spectrum and in the input-field output
spectrum are created and grow in magnitude as the input
intensities are increased. The output spectrum broadens
under conditions of strong nonlinear coupling, ultimately
reaching the phase-matched bandwidth limit.

Reference 5 deals with SFG of multimode input fields.
In this paper, we shall explicitly consider second-
harmonic generation. We shall show that SHG cannot be
described as a limit of the SFG formalism for multimode
fields. The SFG formulation for the interaction of pho-
tons close to frequency co& with photons close to frequen-
cy co2 producing photons close to frequency cu3 co/+N2

does not allow co, (co2) photons to interact with each oth-
er to produce photons close to frequency 2', (2co2). This
self-interaction is crucial for SHG and must be incor-
porated. Therefore, a separate formulation is used to de-
scribe SHG with multimode input fields. Figure 1

schematizes the frequencies obtained in SFG and SHG to
lowest order in the weak conversion limit. The different
interactions considered in SFG and SHG are explicitly
shown. Specifically, the SFG formalism treats only the
mixing of fields with central frequency co, and co&, i.e.,
those processes that are assumed to be phase matched, as
described in the bottom of Fig. 1, and does not allow for
generation of frequencies outside the phase-matched
bandwidth region shown in the bottom of the figure. It
should be stressed, however, that the output spectra for
both SHG and SFG can be much wider than the lowest-
order perturbation theory scheme shown in the figure.

We shall calculate the spectrum of SHG for multimode
input fields. One important quantity associated with the
spectrum is its bandwidth. In previous studies, many au-
thors have considered the bandwidth of SHG and have
assumed that the bandwidth of the output is twice the
bandwidth of the fundamental. This estimate was based
upon the bandwidth as obtained in the perturbation-
theory limit as shown in Fig. 1. However, as we shall see,
the bandwidth depends on the intensity of the input and
the conversion strength of the nonlinear medium. Addi-
tional frequencies that are not contained in the set of fre-
quencies co„-+co, , where co„- are the cavity mode fre-
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FIG. 1. Schematic of the frequencies obtained in SFG and

SHG to lowest order in the weak conversion limit. The
different interactions considered in SFG and SHG are explicitly
described. The SFG formalism assumes that only the processes

occurring in the phase-matched frequency region occur.

quencies of the fundamental laser, co&& =co&+hj, and 6 is
the mode frequency spacing of the laser cavity, are creat-
ed at sufficiently high conservation strengths as depletion
of the fundamental occurs. However, the growth of the
bandwidth with increasing input intensity of the funda-
mental and with increasing nonlinear coupling strength is
very much reduced compared with the SFG case. More-
over, at the highest conservation strengths the spectrum
of the second harmonic actually shrinks.

We shall study SHG for both amplitude- and
frequency-modulated fields. In Ref. 5 we studied SFG for
amplitude-modulated time-dependent input fields because
an analytic solution exists in that case. This is also true

I

II. DIFFERENCES OF SHG AND SFG FORMALISMS

The dynamical equations governing SFG of phase-
matched plane waves are given in the slowly varying en-
velope approximation by

BE,(z, r)
Bz

BE (z, r)
Bz

BE3(z,r)
Bz

l QPI+E3E2

i co~E3E—i'

= —
l, co3gE I E2,

where E, , E2, and E3 are the complex interacting
electric-field envelopes, e&, e2, and e3 are their frequen-
cies, r is the local pulse time (r=t —z/c), z is the dis-
tance in the medium, and y is the nonlinear polarization
coefficient for three-wave mixing. Analytic solutions for
the intensities, defined here as the absolute square of the
electric fields, for real y and real input fields are

for SHG, but no analytic solution is known for the
frequency-modulated case. Therefore, we have found us-
ing numerical integration that for the frequency-
modulated case, the second-harmonic spectrum is in-

dependent of both the fundamental input intensity and
the conversion strength.

There are interesting differences in the nature of the
spectrum of SHG and SFG. For example, consider SHG
with an input field consisting of three modes of equal am-

plitude at frequencies ~», co&2=co»+6, and co&3 N]]
The output spectrum consists of a discrete non-

dense spectrum with frequencies 2'»+mA, where m is

an integer, with m =0,+1,k2 being the largest amplitude
components. For SFG with input fields each containing
three modes, cd„(CO2, ),N, 2=N„+b, , (c0~2=cozi+b2),
and co,3=co» —b, , (co&3=co~, —hz) in the first (second)
field, the output spectrum can be dense if 4& and h2 are
incommensurate (i.e., b, , /b, z is not rational) and will con-
sist of components at frequencies co»+co2, +m42+n4„
where m and n are all positive and negative integers.
Thus the nature of the spectra can be completely
different. As we shall see, many other differences also ex-
ist.

In Sec. II we describe the differences in the formula-
tions for SHG and SFG and discuss the reasons for these
differences. In Sec. III we calculate the spectrum of SHG
for multimode input fields in the weak, intermediate, and
strong conversion regimes for amplitude- and frequency-
modulated input fields, and compare these results with
SFG. Section IV contains a conclusion and summary.

I3(z, r) = I;„(0,~)sn [I,„(0,r)]'~ co,~z,
Cumin

co,„I;„(0,~)

co;„I,„(0,~)
(2)

CO I CO2

I, (z, r)=I, (0,r) — I3(z,~), I2(z, r)=I&(0,r) — I3(z, r) .
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BE,(z, ~)

Bz

BE (z, r)
Bz

=icoigEiE i

tco gE i
2

(4)

Analytic solutions for the electric fields for real y and
real input field envelope E, (0,r }are

Here sn(, ) is the doubly periodic Jacobi elliptic func-
tion, E;(0,~) and I,.(O, r) are the electric field and the in-

tensity incident, respectively, upon the sample at time
r, I;„(0,~) [I,„(0,r)] is the smaller [larger] of the in-

put fields I, (O, r} and Iz(0, ~}. These solutions are ap-
propriate even when fields 1 and 2 are multifrequency
beams. The Manley-Rowe relationship,

a [Ii(z, r)/coi+I&(z, r)/coz+2I3(z, r)/co3]=0, (3)
z

ensures conservation of photon numbers {N;=I; / cAco; )

and is a direct consequence of Eqs. (1).
The plane-wave equations governing SHG if we assume

phase matching are given in the slowly varying envelope
approximation by

B [I,(z, r)/co, +2I3(z ~ )/co3]=0,
Bz

(8)

BA, (x, r)
Bz

BA3(z, r)
Bz

B8i(z,7.)

= —co,y A 3 A, cos(83 —28, ),

col+A icos(8i —28, ),

= —co,g A 3 sin( 83—28, ),

correctly describes SHG, since for every two photons
converted from field I„we obtain one photon from field

I3. Obviously the Manley-Rowe condition that one ob-
tains from Eq. (7) or, equivalently, from Eq. (3) with
co&=A@2 and I& =I2 is incorrect in that it predices a one-
to-one photon conversion.

When the slowly varying envelope of the input field is
not purely real, the phase of the envelope plays a role in
the dynamics. This is evident by rewritting Eq. (4) in
terms of the amplitudes and phases of the enve-
lopes, E, (z, ~)= A, (z, r) exp[i8, (z, r)] and E3(z,~)
= —iA3(z, r) exp[i83(z, r)]. Equation (4) then becomes

E&(z, r) = —iEi(O, r)tanh[Ei(O, w)coiyz],

E, (z, r) =E,(0, r)sech[E i (0, v. )cogz ],
and therefore intensities are

I3(z,~)=I, (0,~)tanh [QI,(0,~)co,gz],
I, (z,~)=I, (0,~)sech [QI,(0,r)coiyz] .

(5)

B8,(z, r) = —co iy A i /A 3 sin(83 —28i ) .

Thus the phases of the electric-field envelopes dynamical
evolve only if sin(83 —28i) is initially nonzero, which is
trivially satisfied for 83=8&=0.

III. SPECTRUM OF MULTIMODK SHG

These solutions are appropriate even when the fundamen-
tal field has multifrequency components, as long as the
input field is real and provided the fundamental field
remains within the phase-matching bandwidth through-
out the propagation in the crystal. When the envelope
E,(0,~) is not real, Eqs. (4) must be numerically solved.

Equation {4) for SHG cannot be obtained as a limiting
case of Eqs. (1} for SFG when co, =coz =co3/2 and
E& =E2. A straightforward calculation using these rela-
tionships in Eqs. (1) gives

BEi(z,w)
icoi+E3E i

We shall now present the spectra of the second-
harmonic output and the fundamental output upon SHG
of a multimode fundamental field in the weak, intermedi-
ate, and strong conversion regimes. We consider the case
where the fundamental field originates from a laser emit-
ting light at several cavity mode frequencies. The tem-
poral dependence of the input electric field, F, (0,~},can
then be written as

F&(O, r) =exp(icoir)E&(0, r)+c.c.

=exp(i rco) g E, exp[i(b j~+P, )]=c.c. ,

BE3(z,r)
l 2coi+E i

which obviously disagrees with Eq. (4}by a factor of 2 in
the frequency in the second equation. The reason for this
surprising result is that in the SFG formalism as it is
presently derived which describes production of an co3

photon from one co, photon and one co2 photon, the fre-
quencies co& and co2 are required to be nondegenerate.
For SHG this degeneracy is not only allowed, but is the
essence of the process. Thus the SFG formalism in reali-
ty is not compatible with the SHG process. A complete
formalism encompassing both phenomena simultaneously
is possible, but will not be developed here.

It is easy to verify that the Manley-Rowe relationship
obtained from Eqs. (4},

(10)

where we can define the cavity mode frequencies as
m& J. =co&+hj, 5 is the mode frequency spacing of the
cavity, and P, are the phase shifts for the different
mode. The SHG solution, Eq. (5) is valid provided that
the spectrum of the fundamental field is entirely within
the phase-matching bandwidth of the crystal. As we
shall see, the output spectrum can be much wider than
the set of frequencies co3 '=co, +co, '=2co, +b(j +j'),
where j,j' = —n, n.

We define the (dimensionless) coupling strength param-
eter u as u = [sup,[I,(r)] j

' coiyL, where L is the length
of nonlinear crystal through which the light propagates.
Note that u is the maximum argument of the hyperbolic
functions in the analytic solutions, Eqs. (5} and (6}. In
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what follows, we designate very low, low, medium, and
high coupling strengths as follows: u =5 X 10
5X10, 0.5, and 5, respectively.

%'e first consider the case of SHG when the input beam
contains three equal intensity modes, i.e., n = 1 in Eq. (3),
with Ei i=E, O=E, ,

=
—,, and $, , =$, 0=/, i=0.

The slowly varying envelope is given by Ei (0,r )

=[1+2cos(b,r)/3]. This field is amplitude modulated
and is similar to the fields considered in Ref. 5 in the
studies of SFG. For comparison, we shall also consider
the case of an amplitude-modulated field with seven
modes but identical values of u, E i (0,r )
=[1+2 cos( b r)+ 2 cos(2b r) +2 cos(3b 7 )]/7.

Figures 2 and 3 show the temporal dependence of the
fundamental and SHG output at frequencies around co&

and co3=2~&, respectively, for the three-mode input case.
The output after propagation through a nonlinear mixing
crystal, is plotted in these figures for input fields with
very low, medium, and high coupling strengths. The
temporal dependence is periodic, with one period shown
in the figures. The intensity at ~3 rejects the fact that
I,(r) must be large for I3(r) to be large; in the very low

conversion limit, I&(I.,r) ~ [I,(0,r)] . Depletion of the
input is clear in the medium and high coupling strength
cases. At very low coupling strengths, almost none of the
fundamental is converted, and therefore the input funda-
mental intensity is almost identical to the output funda-
mental intensity, and a separate figure showing the input
field is not necessary.

Figures 4 and 5 are similar to Figs. 2 and 3, respective-
ly, except for the seven-mode input case. For high cou-
pling strengths, almost all the fundamental is converted
into the second harmonic, such that the intensity profile
of the second harmonic looks like the input fundamental
for both the three- and seven-mode input field cases.
Only about l%%uo remains in the fundamental for the high
coupling strength cases.

In the study of SFG, sharp temporal features originate
from reconversion of I3(~) back into I, (r) and Iz(r), and
vice versa. When the weaker of I, (~) and Iz(~) is fully
depleted, I3(~) and the remaining intensity mix and re-
form the weaker input field. This property can be under-
stood in terms of the analytic solution to the SFG dynam-
ics, which involves the double periodic Jacobi elliptic
function, sn(x(~), y(r) ). The first argument of the an(, )

function is proportional to the magnitude of the larger of
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FIG. 2. Temporal dependence of the fundamental output at
frequencies around co& for an input fundamental field with three
modes. The output after propagation through a nonlinear mix-

ing crystal is plotted in these figures for input fields with very
low, medium, and high coupling strengths, corresponding to
u =5X10 ', 0.5, and 5, respectively. In the very low frequency
case, the input pulse is virtually identical to the output pulse,
and so there is no need for a separate figure of the input pulse
shape. The temporal dependence of the field is periodic and
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2.8

w 2.4
~W

g 2.Q
4k

g 1.6
~ 1.2

8.Q
Ce

V 4.Q
CC

X 1Q

X 1Q

X iQ &

-5
X 1Q

X 1Q
-6

X 1Q

X1Q~
0

SHG (very 1

0:1 0:2 (;3 0:$ 0:5 0;6 0.7

~A
tA

4k

C

0.24

0.2
0.16—
0.12—
0.08
0.04—

'v

SHG (medium)

0:1 0:2 Q;3 0:& 0:5 0:6 0.7
time (ns)

1

0.8

0.6—
04
0.2

0
0

SHG (high)

0:i 0:2 $;3 0:&
ime (ns, I

0:5 0;6 0.7

FIG. 3. Temporal dependence of the second-harmonic out-

put at frequencies around 2'& for the input fundamental field

with three modes shown in Fig. 2. The output after propagation
through a nonlinear mixing crystal is plotted in these figures for
input fields with very low, medium, and high coupling strengths,
corresponding to u =5 X 10,0.5, and 5, respectively.



&51942 ONIC GENERATIONSPECTRUM OF SECOND-HARMONIC

~ Pg

OJ

C

4l
~ W

CCi

4l

0.8

0.6—
0.4—
0.2—

0

Fundamental (very low)

:5 0'.6 0.7

~W
CA

C
4J

4P

~W

CCi

4J

0.8
0.7
0.6
0.5
04
0.3
0.2—
0.1

0

Fundamental (m

(ime (ns
;3

~ y4
VJ

OJ

4J
~W

Cit

CJ

0.016

0.012

0.008

0.004—

0
0.'1

igh)

;3 0.' 0.'5 0'.6 0.7
rime (ns)

-52.8 X 10
-5-

w 2.4 X 10
-5.

M 2 ~ 0 X 10
-5.1.6 X 10

S.1.2 X 10
CP -6-

8.0 X 10
-64.0 X 10—

0

SHG (very low)

;3 0. 0:5
mme (n's

0;6 0.7

ldin ut fundamental fieFi . 2, except for an inpu uFIG. 4. Same as ig.
with seven modes.

alument is proportiona

d'n' f

SHG, tanh(x ), is
ou y

Thx 1)=tanh(x .
Fx . Il ig.

ith z,

he Fourier tra sform
'

* ""fthe s fewer reqSHG field contains fewer req

t uts the Fourier t"n'f
G case.

orm of the ou p
ff nt "u 1y

t e - ut case. Note
in en-

' p
th Fourier tra

Ii
Figure r o . , ce

t frequency 2" anthe output a
+ 'b. In ig.u t f equencles 2N Jut ut a r

are a
corresponds to ou p

the spectrumonents in
ut even

t e
b td2A, as is to

s areths other componentsl oup g g
. Add oa eq yp

ths these additionale, hi h coupling strengt s,
h knents become mquency compone

1.0 "

0.8

~ W
Ch

4J

CJ

~ r\

CO

0.24

0.2
0.16—
0.12—
0.08
0.04—

0

SHG (medium)

05 06 07
)ime (ns
.3 0;

0.6

0.4

~M
Q2

C

C

0.8

0.6—
0.4
0.2

0

SHG (high)

0.6 0.7.3 0: 0:5
Lme (ns

0.2

0.0
0

in ut fundamental fieldi . 3, except for an input un aFIG. 5. Same as Fig. , ex
with seven modes. F . . ', vs x for several values ofy.FIG. 6. sn (x,y ) vs x or se



1520 BAND, HELLER, ACKERHALT, AND KRASINSKI 42

~W

C
4P

4l 1
~ W

CO

3

1~

0.01

X 10

-6.'
X 10

very low

I
I
f'

10
aha II»» i, , iiII aha

-5 0 5
Frequency

10
~~

0.1

CP

0.001
CI

"ixio"
-10

II

-5 0
Frequency

low

r

I, iIIIII II JI

5 10

4P

~ W

CJ

1X10
1

1X10 i
3

0. 1

0.001

1 X 10

1 X 103 '=

C

1X10
3

etj

0.1

1

f

lI lI
-5 0

Frequency

0
Frequency

medium

r
r
f

5 10

I
High

E

f

f
I

10

FIG. 7. Fourier transform of the output field near frequency
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pling strengths correspond to u =5 X 10, 5 X 10,0.5, and 5,
respectively.

components at —2b and 25 decrease substantiallyI This
is due to the fact that the second harmonic takes on the
temporal shape of the fundamental at very high conver-
sion, and the fundamental only contains the components—6, 0, and 6 for the three-mode case. From the simple
analysis described in Fig. 1, we expect the ratio of the fre-
quency components of the intensities ~E3(L,2ro+b, )~ /
IE3(L,2')l and lE3(L, 2co+2b, )l /lE3(L, 2')l to be
( —', ) (=0.444) and ( —,') (=0.111),respectively. This is be-
cause there are three ways of forming frequency 2', two
ways of forming frequency 2co+b„and only one way of
forming frequency 2~+26. The actual ratios obtained in
the three-mode case are very close to these values for the
very low conversion strength case. The ratio
~E3(L,2ro+3h)~ / ~E&(L,2')~ is calculated to be 0.013
for the very low conversion strength case, whereas per-
turbation theory yields zero. Similar behavior occurs for
the seven-mode input case.
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FIG. 8. Same as Fig. 7, except the input field has seven
modes.

IV. FREQUENCY-MODULATED FUNCTIONAL FIELDS

We now consider the case of an input field which is fre-
quency modulated. An analytic solution for this case is
not available, so we integrate Eqs. (4) from z=0 to L.
We take L =1 cm and choose coly such that u takes on
the values of u =5X10, 5X10, 0.5, and 5, respec-
tively. We consider a frequency-modulated field of the
form E, (0,r)=exp[icos(hr)56~). The output is con-
stant with time and with second-harmonic output intensi-
ties of the very low, low, medium, and high cases given
by 2.58X10, 2.58X10, 0.220 and 0.9998, respec-
tively. Even though the intensity is temporally constant,
there are multiple frequencies contained in the spectrum.
Figure 9 shows the Fourier transform of the output field
around central frequency co3=2u& for different coupling
strengths. Amazingly, there is no change in the spectrum
with coupling strength. The magnitude of the second-
harmonic frequency components naturally changes with
increased coupling strength, but the ratio of the ampli-
tudes of the different frequency components remains un-
changed. Thus, the spectral content for second-harmonic
generation is independent of both the fundamental input
intensity and the coupling strength for frequency-
modulated input fields.
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V. SUMMARY AND CONCLUSION

We showed that SHG cannot be described as a limit of
the SFG formalism. In SHG, the interaction of a photon
with another photon of the same frequency is crucial and
must be incorporated, but the SFG formalism does not
allow for this type of interaction. Therefore, a separate
formalism is necessary to describe SHG with multimode

X 10 I

X 10

a

X 10

-80 -60 -40 -20 0 20 40 60 80

Frequency

FIG. 9. Same as Fig. 7, except the input field is frequency
modulated.

input fields. We discussed the similarities and differences
in the nature of the spectrum of SHG and $FG. We
used the analytic and numerical solutions for the dynami-
cal equations describing SHG to study the generated
spectrum. We considered SHG for amplitude-modulated
as well as frequency-modulated input fields. We showed
that the spectrum of the second harmonic depends on the
intensity of the fundamental input and the conversion
strength of the nonlinear medium for amplitude-
modulated input fields. However, the growth of the
bandwidth with increased fundamental input intensity
and the conversion strength of the nonlinear medium i.s
much less pronounced than in SFG. In the very high
coupling strength case, almost all the fundamental is con-
verted into second harmonic. Therefore the temporal
dependence of the intensity of the second harmonic looks
like that of the fundamental input intensity, and the spec-
trum of the second harmonic actually narrows relative to
the lower coupling strength cases. In addition, we found
that the spectrum for frequency-modulated input fields is
independent of both the intensity of the fundamental in-

put and the coupling strength.
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