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Quantum-noise suppression in lasers via memory-correlation effects
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We discuss the influence of atomic memory effects on the field fluctuations of a laser in a general
context. We derive a Fokker-Planck equation for the field that takes into account the long lifetime
of the lasing atoms. Using this equation, we discuss two consequences of atomic memory. First, we

find that even in the pres.-.nce of saturation, memory effects can lead to a reduction of spontaneous-
emission noise for short measurement times. Second, we quite generally show that atomic memory
effects lead to time-dependent diffusion coefficients.

I. INTRODUCTION

The search for new ways of quantum-noise reduction
in lasers has been of particular interest over the last few
years. It has been demonstrated, both theoretically and
experimentally, that a suppression of fluctuations in the
field beyond the standard limits is possible. Examples in-
clude the pump-noise-suppressed laser, ' the correlated-
spontaneous-emission laser (CEL), the two-photon
CEL, and the polarization CEL. Recently, a different
schem for the reduction of spontaneous emission noise
has been proposed in which atomic memory effects play
a significant role. In this type of laser, atoms with long
lifetimes are used as the lasing material. It was found
that for short measurement times it is possible to reduce
the spontaneous-emission noise below the limit of ordi-
nary lasers. This can be intuitively understood in the fol-
lowing way. In an ordinary laser the decay of an atom
due to spontaneous emission happens on a far shorter
time scale than the overall evolution of the field. There-
fore one can take a spontaneous-emission event as an in-
stantaneous event, which has a 5-like impact on the elec-
tromagnetic field. These random "kicks" gradually lead
to a diffusion of the phase of the radiation field over the
whole angle of 2m. If, however, the atomic lifetime is
comparable to the time over which the field is measured,
the approximation of 5-like impulses of spontaneous-
emission events no longer holds. Instead, one has to ac-
count for the fact that an excited atom can only partially
contribute to spontaneous-emission noise because it did
not have enough time to decay. A detailed analysis
showed that the diffusion of the phase in a laser with
long-lived atoms is given by

Here a is the linear gain coefFicient of the laser and n the
mean number of photons inside the cavity. From Eq. (1)

we see that for times which are long compared to the
atomic lifetime I ' the phase variance grows linearly
with time:

This is the famous Schawlow-Townes result for the
phase diffusion in a laser. However, for times which are
of the order of I ' or even shorter, the uncertainty of
the phase is smaller than the one given by Eq. (2). Ex-
panding the exponential in Eq. (1) we find

Thus the spontaneous-emission noise is reduced below
the usual Schawlow-Townes limit due to atomic memory
effects. However, the result in Eq. (1) is based on an
analysis which is linear in the electromagnetic field. One
could now raise the question of whether the saturation
terms in a nonlinear analysis diminish or even eliminate
the atomic memory effect. The importance of this ques-
tion becomes particularly clear on recalling the nonlinear
result for the phase diffusion in an ordinary laser (i.e., one
with no memory effects). As is well known, the result in
Eq. (2) is modified to

(4)

in which y is the cavity damping rate of the radiation
field. For lasers around threshold the parameters o. and

y are nearly identical so that there is no quantitative
difference between the two results in that operation re-
gime. In contrast, the physical interpretation of the re-
sults could be very different. If one would interprete the
phase noise in Eq. (4) to originate in equal parts from
spontaneous emission and from the damping of the cavi-
ty, the atomic memory effect would be significantly re-
duced. While the spontaneous-emission noise is directly
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affected by a long lifetime of the lasing atoms, the cavity
damping of the electromagnetic field is completely in-

dependent of it. Therefore one could argue that atomic
memory effects could at most reduce the phase diffusion

by a factor of 2. On the other hand, Eq. (2) suggests that
the phase diffusion of the field is completely due to spon-
taneous emission. Thus the effect of atomic memory
could make the diffusion coefficient arbitrarily small in

the limit of short measurement times. We will show in

this paper that the second interpretation is the correct
one. We derive a master equation for the reduced density
operator of the field which accounts for both, nonlinear
saturation terms and atomic memory effects. The master
equation is then converted into a Fokker-Planck equation
for the quasiprobability distribution of the radiation field.
This allows us to directly discuss phase diffusion in a
laser with atomic memory. We demonstrate that the
diffusion of the phase is indeed completely governed by
the interaction between field and atoms. Thus atomic
memory effects can make the phase diffusion arbitrarily
small for short measurement times. This is the content of
Sec. II of this paper.

An additional feature emerging from our analysis of
atomic memory effects in Sec. II is that, in contrast with
the usual, no-memory effects, situation, the diffusion
coefficients in the Fokker-Planck equation turn out to be
time dependent. To understand the origin of this time
dependence, we look in Sec. III at a simple but physically
relevant case where the Langevin equation for the phase
is governed by a damped-driven equation with colored
noise. Under the assumption of Gaussian phase fluctua-
tion, we obtain a Fokker-Planck equation whose
coefficients turn out to be time dependent. We next show
that this result is not specific to our example but is indeed
a general feature. Thus the origin of time dependence of
the diffusion coefficient lies in the colored noise leading us

to conclude that memory effects, among other features,
will necessarily result in a time-dependent diffusion.

II. ATOMIC MEMORY EFFECTS
IN NONLINEAR ORDER

In this section we discuss atomic memory effects in the
scope of a nonlinear laser theory. Our laser model con-
sists of three-level atoms which are injected into a laser
cavity, as depicted in Fig. 1. The upper two atomic levels
constitute the lasing transition which interacts with one
mode of the radiation. The lowest atomic level is an inert
ground state to which an atomic excitation decays with a
rate I . Before the atoms are injected into the cavity they
are initially prepared in their upper excited state through
some excitation mechanism. The Hamiltonian for such
system can be written as

H =@cga a +g ( c,, I
a ) ( a

I
+ Eb I

b ) ( b
I
+E, I

c ) ( c
I )1

J

+fig+ e(t t, ) V, ,
—

with

V =a o'+o' a .J

la)
Ib&

FIG. 1. Laser model. Three-level atoms are initially

prepared in the upper atomic level a and are injected into the
laser cavity. The two atomic levels a and b constitute the lasing
transition while the lower level c is an inert ground state to
which an atomic excitation decays.

Here a and a are the usual creation and annihilation
operators for the electromagnetic field while o.J is the
atomic polarization operator ( ~a ) ( b

~ ), for the jth atom.
The parameter g specifies the amount of coupling be-
tween atoms and field and e(t) is the step function. The
evolution of our physical system is then given by the
equation of motion for the density operator:

Here Ho is the Hamiltonian for the field and atoms
without an interaction and is given by the first two terms
in Eq. (5). For simplicity we will assume resonance be-
tween the electromagnetic field mode of the cavity and
the lasing atomic transition, i.e., co=(e, —sb)/A'. Then
the equation of motion for the density operator pz be-
comes particularly simple

p (t) = —igg 8(t —t )[V,p (t)] .
J

(9)

In the following discussion we will drop the index I
from the density matrix and the interaction matrix, keep-
ing in mind that all the quantities are specified in the in-
teraction picture. We can now obtain an equation of
motion for the reduced density matrix for the field p by
tracing Eq. (9) over all atoms. The result is

p (t)= ig+6(t——t, )Tr„,[V, ,p, (t)]+Xp, (10)
J

in which p is the reduced density operator, in which all
atoms apart from the jth atom have been traced out. We
have also added a term Xpf which accounts for the
damping of the field through cavity losses. This term is
derived in the standard way by coupling the radiation
field to a heat bath and by tracing over the variables of

It is convenient to change from the Schrodinger pic-
ture to an interaction picture. We define the new density
operator

pt(t) =exp(iH„t/fi)p(t)exp( iHot/fi) —.
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the reservoir. If the reservoir is assumed to be at zero
temperatures, the explicit form of the loss contribution is

given by

(pf)„„=Xp = —~(a apf+p a a —2ap a ) . (11)

The parameter y is the damping rate of the electromag-

netic field inside the cavity.
We next derive an equation of motion for the reduced

density operator pf(t) T. his equation has to take into ac-
count the decay of an atomic excitation to the inert
ground state. Such decay can again be achieved by cou-
pling the atoms to a heat reservoir. ' We then obtain the
following equation of motion for the reduced density
operator pf(t):

p~(t)= ig—B(t tj )[—V~,p~(t)]

——( a ) (a [pf+pPa ) (a (+ )b }(b (p +p )b ) (b )

—2(c ) (a (p. (a ) (c I

—2)c ) (b (p (b ) (c )
r (12)

pf(t) = —t'gB(t —t )[V,pf(t)] —I pf(t) . (13)

We can now eliminate the explicit contribution of atomic
decay by defining a new operator p f(t):

pf(t)=e ' pf(t) . (14)

Substituting this into Eqs. (10) and (13) we obtain

p(t) = igg f(t, t—,—)Tr„[V&,p)(t))+Xp, (15)d
J

The first term on the right-hand side of Eq. (12) arises
from the coupling between the jth atom and the field.
The remaining terms are the standard' decay terms,
which are due to the interaction of the atom with a heat
bath. The parameter I is the atomic decay rate which
we assume to be the same for the two atomic levels a and
b.

Two approximations have been made to obtain Eq.
(12). First, we have assumed that the atomic decay rate
I is much larger than the cavity damping rate y, as is

typically the case. We note that such an assumption does
not rule out the possibility of measuring memory-
correlation effects in a time shorter than the atomic life-
time. We can then neglect the influence of cavity losses
during the interaction of the field with a single atom.
Therefore the loss contribution frotn Eq. (11) has been
omitted in the Eq. (12). Second, we have assumed that
the evolution of an atom is independent of all other
atoms, thus neglecting atom-atom correlation effects.
Such effects have been shown" to be very small in ordi-
nary laser operation and become important only if the
laser is operated at very high intensities. For our applica-
tion it is therefore an excellent approximation to neglect
the influence of other atoms in the equation of motion for

p . We can simplify this equation even further. As is
clear from Eq. (10), only matrix elements of the density
matrix p, which involve the upper atomic levels a and b,
are necessary to determine the evolution of the field.
This is due to the form of interaction between atoms and
field [see Eq. (6}] in which only the atomic dipole opera-
tor o = ~a ) (b

~
is coupled to the electromagnetic field. It

is therefore possible to use an effective equation for the
density operator pf, which yields the same matrix ele-

ments for the atomic states ~a ) and ~b ) as Eq. (12):

with

„pf(t)—= ig B(—t t, )[ V,
—,p f(t)],d- (16)

—1(t —f j

f(t, t, )=8(t t, )e— (17)

p (t)= igg f(t, t,—}Tr„,[V, ,p (to)]
J

g'f dt'g f(t, t, —)8(t' —t, )

J

XTr„,[V, , [V, ,pf(t'))]+zopf .

(19)

Hence we have replaced the density operator p at time t
by the known initial condition plus a term which is of
higher orders in the coupling constant g. One could now
use Eq. (19) to derive a linear theory of a laser with atom-

It is interesting to notice that the expression (16) for the
reduced density operator p f is the same as for a single,
nondecaying atom. Hence all the effects of the atomic
decay process have been absorbed into the interaction
function f(t, t, ).

We can now start to solve the above set of equations
and derive an equation for the electromagnetic field
alone. We assume that the laser started its operation at
some time in the past so that all transient effects have al-
ready decayed. At t =0 we than start our observation by
measuring the state of the radiation field. It is therefore
useful to integrate Eq. (16) from the beginning of the
measurement at t =0:

p f(t) =p f(0) ig J d—t'B(t —t )[ V,p f(t')] .

For atoms with injection times larger than zero we
should let t. be the lower integration limit. However, the
8 function in Eq. (16) guarantees that both expressions
are identical. Simultaneously, it is understood that p (0)
is equal to pf(t ) for all t ~0. To avoid confusion, we

will therefore denote the initial state of the density opera-
tor by pf(to) and choose the value of to as 0 or t, de-

pending on whether the atoms are injected before or after
the start of the measurement at t =0. Substituting Eq.
(18) into Eq. (15}yields
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ic memory effects in the density-matrix approach. How-
ever, our main interest in this paper is to study the
influence of saturation terms. Hence an expansion to
higher orders in the coupling constant g is necessary.
This is obtained by iterating Eq. (19), i.e., by substituting

the formal integral of p~, as given by Eq. (18), into the ex-
pression for p . As is well known from the ordinary
quantum theory of the laser, ' it is sufFicient to stop the
expansion in the fourth order of g, provided the laser is
operated not too high above threshold. The result is

p~(t)= —igg f(t, t )Tr„,[V,p~(to)] —g j dt'g f(t, t )B(t' t, )T—r„,[V/, [V, ,p/~(to)]]
J J

+ig j''dt' j'dt"g f(t, r, )B(r' &, )B—(&" &&)T—r„/[Vi [V, , [~, ,p, (&o)]]]
0 0

+g4 j'dr j'dr" j dr"'gf(t, t )B(t' t )B—(t" t )B(t—"' t )T—r„,[V, , [V, , [V, , [V„p~(ro)]]]]+&p .
0 0 0

(20)

P/( )o=P (/o)p ( o) . (21)

Such a factorization of the combined density operator at
the time t0 also holds for atoms with t &0. This is due to
the measurement of the field at t =0, which exactly deter-
mines the initial state of the electromagnetic field.

We next note that all the terms in Eq. (20), apart from
the damping contribution of the cavity, involve the in-
teraction function f(t, t, ). This function has its max-
imum value at time t and decays on a time scale I
which was assumed to be much shorter than the photon
decay time y '. One can then make the approximation
that the field does not change much during the decay
time I ' and substitute p (to) by p (t). In fact, one
finds that such an approximation becomes exact if one
assumes a Poissonian distribution over the injection
times. Such a fluctuation in the pump mechanism, for ex-
ample, arises naturally when the atoms are pumped
through an external light source.

We now turn to the discussion of the initial value of
the density operator p~~. For atoms which are injected
after the start of the measurement, i.e., with t ~0, the
electromagnetic field at time t0 is uncorrelated with the
initial atomic preparation. Therefore we can write

For the discussion of the atomic density operator at
time t =t0 we have to distinguish two different cases.
For atoms, which enter the cavity after the start of the
measurement, the density operator is determined by their
initial preparation. Thus only the upper atomic level is
occupied and P (to) can be written in a matrix notation
as

1 0
p, (&o)= () 0 (&, 0) . (22)

In contrast, atoms with injection times smaller than zero
have already interacted with the radiation field for some
time so that p/(0) is not given by Eq. (22). However, it is
still possible to find an explicit expression for the density
matrix for these atoms. For this we recall that the equa-
tion of motion for p, , as given by Eq. (16), is identical to
the one in which a single, nondecaying two-level atom in-
teracts with a radiation field. Such a problem, known as
the Jaynes-Cummings model, has been extensively stud-
ied, ' In the case that the atom is initially in the upper
atomic state and the radiation field is given by a classical
electromagnetic field 6, the density operator for the atom
alone is found to be'

p„, (t)=
cos [g(@8')'/ (t t,)]—

2( g@» )1/2
sin[2g(66')' (t —t, )]

sin [g(@C» )'/2(t —t, )]
»

2( gg» )1/2
sin[2g(M')' (t t,)]— (23}

Here the time t, denotes the start of the interaction between the field and the atom. We can now use Eq. (23) to obtain
an expression for p (0}by setting t, =t and t =0. The result is

p, (0)=
cos [g(88')'/ t, ]

i@*
p( gge )1/2

si [2ng(A'6*)' t ]J

—i6
2(@g» }1/2

si [2gn(CB*)' t/]
J

sin [g ( M'* )
'

t, ]
(for t, &0) . (24)

The field variable N, which appears in Eq. (24), is to be determined self-consistently from the final equation for the elec-
tromagnetic field.

In order to simplify our notation for the two different cases of the initial atomic density operator, we make the
definition
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p, (0)=
8

C D (25}

The parameters A. , B , C. , and D are given by either Eq. (22) or (24), depending on whether the injection time t is b. e-
fore or after t =0. We can now substitute Eq. (25) together with Eq. (21) into Eq. (20) and obtain a master equation for
the reduced density matrix of the field. The commutators, which appear in Eq. (20), have been evaluated in Appendix
A. The final result for the reduced density operator of the field is then found to be

p (t)= —igg f(t, t )[C (ap —
p a)+B (a p

—
p a )]

J

g
—f dt'g f(t, t )B(t' t )—[A (aa p +pfaa 2—a p a)+D, (a ap +p a a —2ap a )]

J

+ig'f dt'f dt"gf(t, t )8(t' t )8—(t"—t )[C (aa ap —3a'ap a+3apfaa paa —)

J

+B,(a aa p 3aa p
—a +3a p a a —

p a aa )]

+g f dt'f dt" f dt"'gf(t, t )8(t' t, )B(t—"—t, )8(t'"—t )

J

X[aa aa p
—4a aa p a+6aa p aa —4a pfaa a+p aa aa ]+zopf . (26)

pf(t) = f d 0 P(8, @ t)l & &( @I, (27)

in which
~
8 ) is a coherent state of the radiation field and

P(8, 6', t ) a quasiprobability distribution. Substituting
I

In the above equation we have suppressed the explicit
time dependence of the operators. However, it is impor-
tant to remember that all the operators are specified at
time t. The master equation can now be transformed into
an equivalent Fokker-Planck equation by using the
Glauber-Sudarshan' P representation. This representa-
tion identifies the density operator for the radiation field
with a corresponding quasiprobability distribution. It is
defined by

I

Eq. (27} into (26) and converting the creation and annihi-
lation operators into partial derivatives of the function
P, we obtain the Fokker-Planck equation

P( 8, 6—",t ) = — (d @P )
—

(d, P )
a * = a a
at ' '

a@

+ (2D@@~P)
a~a@'

a2 a2+ (Dt;gP)+ (D@e@eP) . (28)ah' ' aN"

The drift coefficients in Eq. (28) are found to be

d = — 6' igg f—(t, t, )B,+g f dt'g f(t, t, )8(t' —t, )(A, D, }6'—
J J

+ig' f dt' f dt "gf(t, t, )8(t' —t, )8(t"—t, )[B,(1+2~@')—2C, t".']
J

g f 'd—t' j'dt" f ' dt" yf(t, t, )8(t t, )8(t" —t, )8(t'" —t, )(4~@~' —6+78),
J

together with its complex conjugate. The diffusion coefficients are given by

2D«+ =2g2 f dt'g f(t, t )B(t' t )A +3igi—f dt' f dt"g f(t, t, )8(t' t, )8(t"—t —)(B 6*—C A')
0 0 0

g"f 'dt—' f 'dt" f dt'"g f(t, t )B(t' t )B(t" —t )8(t"' t )(10—~8 +8)—
J

and

D~~=ig'f dt'f dt"g f(t, t, )8(t' —t, )8(t"—t, )B,A

J

—3g'f dt' f dt" f dt"'g f(t, t, )B(t' t, )8(t"—t, )8(t'" t,—)D' . —
J

(29)

(30)

(31)

In Eqs. (29)—(31), A, , D are now to be considered as
functions of the coherent state variables 6 and @*. In
Appendix 8 we have evaluated the sums and integrals in
these expressions up to the fourth order in the coupling d~ =

—,'[(a —y) —
f3~ 8~']6 . (32)

constant g. The final result for the drift coefficient ac-
quires the simple form
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This result is the same as the one for an ordinary laser
without atomic memory effects. ' The parameter a is the
linear gain coefficient, defined by

2g Ra=
p2

(33)

while the nonlinear saturation terms are proportional to
P, with

8g R
r' (34)

We therefore see that the evolution of the mean elec-
tromagnetic field, as determined by the drift coefficient, is
time independent and unaffected by atomic memory
effects.

In contrast, the diffusion coefficients have the form

2D, =ag, (t) —p[ —,'g2(t)+g, (t)+3g, (t)]~@',

2D@g = p[—,'g2(—t)+g~(t)]6

(35)

(36)

gg (t)

The functions g&(t), /= 1 —4, which appear in Eq. (35) and
(36) are defined and evaluated in Appendix B. A sketch
of their time dependence is given in Fig. 2. We see that
for measurement times long compared to the atomic life-
time I, the contributions from g3(t) and g4(t) vanish
while gi(t) and g2(t) approach the value 1. In this limit,
the resulting expressions for the diffusion coefficients are
the ones for an ordinary laser without atomic memory
effect, as expected. However, for short times, i.e.,
0~ t =I, the diffusion coefficients differ from these re-
sults. Indeed, we find a reduction of spontaneous-
emission noise due to the long lifetime of the atoms as we
now will show.

Our main point of interest in this analysis is the
influence of atomic memory effects on the diffusion of the

phase. Therefore we make a change of variables and
move into a polar coordinate system by defining
6'=&I e'~. Here I is the intensity and g the phase of the
electromagnetic field. The Fokker-Planck equation in
(28) then acquires the form

P—(I,y, t)=-a
at

(d P) —(dIP)+ (2DI/)

QZ Q2+ (DIIP)+ (D~ P) .aI' " aq'
(37)

The drift and diffusion coefficients in the above equation
are given by the coefficients of the original Fokker-Planck
equation (28). For example, for the phase y we find the
expressions

d = [6"'d& —8d, (D@@—e '~ D@,@—, e '~)],
2iI

(38)

d =0 (40)

and

D = jag, (t) —p[ —,'g2(t)+g3(t)+2g4(t)]I I

1

(a —'PI)(1 —e —') .
4I 2 (41)

In the last step we have used the explicit expressions for
the functions g&(t), which were calculated in the Appen-
dix B. We can now use the coefficients d and D „ to
discuss the mean motion and the fluctuations of the
phase. We immediately see from the Fokker-Planck
equation that

—&~)=&d )=0.d
dt

(42)

Therefore the phase of the laser is not locked but can
freely diffuse over the entire angle of 2m. . For the vari-
ance we find

—&~') =&2D„,)d

D = [2D&,+ (D&&—e '++D&, &, e '~)] . (39)
4I

On substituting the results from the Eqs. (32), (35), and
(36) into the above expressions, we obtain

g (t)

0.18-
g, (t)

0.07-

( a ,'PIO )( 1 —e "'), —— (43)

in which Io is the steady-state intensity of the laser. This
value can be obtained, for example, by setting the
diffusion coefficient d& in Eq. (32) equal to zero. The re-
sult is the familiar expression

Io= a —
y (44)

FIG. 2. Plot of the functions gI{t), l=1-4, which appear in
the expressions (35) and (36) for the diffusion coefficients of the
electromagnetic field.

We can now obtain an expression for the contribution of
spontaneous-emission noise to the phase diffusion by in-
tegrating Eq. (43) from the start of the measurement at
t=0:
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(45)
P(tp, t)=(5((P(t) —tt())) = f dy(e '~'")e1

2'

We first note that if we neglect the saturation term PIO,
this result becomes equal to Eq. (1), which we discussed
in the Introduction. The effect of saturation can now be
seen by substituting Eq. (44) into Eq. (45):

Using the solution

tP(t)= tpoe '+ f dt'e " ' 'e(t'}

(49)

(50}

(y'(t)) = (a+y) t+ —(e ' —1)
4I0 I

(46)

Thus the time dependence of the phase diffusion, which
reveals the atomic memory effects, remains unchanged by
the saturation terms. For measurement times which are
short compared to the atomic lifetime we again find that
the phase variance increases quadratically in time. On
the other hand, for long measurement times the increase
becomes linear as in the Schawlow-Townes result. There-
fore the interpretation of Eq. (4), that the phase noise
originates in equal parts from spontaneous emission and
the damping of the cavity, proved to be incorrect. The
diffusion of the phase is completely driven by
spontaneous-emission events and can thus be significantly
reduced by atomic memory effects.

exp[ —(y —qoe ')'/2((p'(t) ) ]
P((P, t ) =

[2m.(y'(t) ) ]'" (51)

where

(tp (t)&= f dt'f dt"e '+ "+'" (e(t')e(t")&
0 0

—2A, t
1+e2At 2 (Av —1)(t/z)

(t(r+1)(Ar —1)

of Eq. (47), where tt()0 is the constant of integration, along
with Eq. (48) in Eq. (49) and under the assumption of a
zero-mean Gaussian phase fiuctuation for tP(t), we find,
after a little algebra indicated in Appendix C, the result

(e 22 t
1 )

(52)

III. TIME-DEPENDENT DIFFUSION
AS A RESULT OF COLORED NOISE

j&(t)= Atp(t)+e(t), — (47)

where A, is the phase-damping constant and the driving
term e(t) is a Gaussian noise with zero mean and ex-
ponential correlation function

An unusual feature of the calculations in Sec. II is the
explicit time dependence of the diffusion coefficients.
From the explicit forms of the coefficients gt(t) derived in
the Appendix B, we recognize that the time dependence
of various diffusion coefficients disappears in the limit of
large atomic decay rate I, that is, for I t ))1. Thus in
the "no-memory" limit the diffusion coefficients become
time independent. In this section we show that it is the
presence of noise color that leads to time-dependent
diffusion coefficients. This result can be brought out in a
relatively simple yet physically relevant example and ern-

ploying the language of the more conventional formula-
tion of Fokker-Planck equation.

We consider the phase tP(t) to satisfy the damped-
driven equation

aP=A a
( P)+ma'P

Q+2
(53)

with a time-dependent diffusion coefficient

[ 1 e
—(2 t + 1)(t l~)

]
(A,r+1) (54)

In the limit X~O, that is, for the case of no damping but
in the presence of colored noise, we find from Eq. (54)
that

The Gaussian nature of the probability P(tP, t) is of
course a direct consequence of our assumption of the
Gaussian nature of phase fluctuations.

It is now easy to show (see Appendix C) that P(tP, t ) in
Eq. (51) satisfies the Fokker-Planck equation

(e(t)) =0, (e(t)e(s)) =—exp (48) 2)(t) =D(1—e ' ') .

We first obtain the probability P(t)t), t) for the phase as-
suming Gaussian phase fluctuations and then construct
an appropriate Fokker-Planck equation for P(g, t ). This
example is indeed relevant to the present atomic memory
problem when formulated in terms of the Langevin ap-
proach, and it was this approach that was used in our
earlier discussion of the linear theory.

This probability, by definition, is given by

On the other hand, we find from Eq. (54) that in the
white noise limit ~~0, the diffusion coefficient is

(56)

and is time independent. We thus conclude that for a
Gaussian fluctuating phase colored noise gives rise to a
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time-dependent diffusion coefficient.
One may think that these results may be specific to the

above simple case. For this purpose it is instructive to
compare the above results with the exact results of
Hanggi' and others. ' According to Hanggi, the single-
event probability P(tp, t ) for a stochastic variable q& whose
motion is described by the Langevin equation

j=f(q&)+e(t),

where the colored additive Gaussian noise obeys
(e(t))=0 and (E(t)E(s))=C2(t, s), satisfies the exact
master equation

APPENDIX A

V=a o. +o. a . (A 1)

Here o. is the atomic dipole operator b ) (a ~. It is useful
to apply a matrix notation for the atomic operators. In
this notation V acquires the form

T

0 a
V=

a 0
(A2)

In this appendix we evaluate the commutators and
traces that appear in Eq. (20). Let V be the interaction
part of the Hamiltonian as given by Eq. (6), i.e.,

aP
at

[f(V»I']
a

Btp

+
2 f ds C2(t, s) 5(ttt&(t) —g) 5'(t)

0 5e s
(57a) p(t, )=pf(t)ep„, (t, ), (A3)

Furthermore, let the density operator for the field and the
atom be given by [c.f. Eq. (21)]

where

=e(t —s)exp f du
5e(s) s By(u)

(57b)

in which p„, is the density operator for the atom alone.
This density operator specifies the state of the atom at
time to and is taken to be [Eq. (25)]

(tpP )
Bt Bp

~

+ — ds exp — —
A, (t —s)

r ft —si

0 7

a p
ag

In our problem, f(tp) = —Atp and C2 = (D /
r)exp( —

~~t
—s

~
lr) Thes. e yield 5tp(t)/5e(s) =B(t

—s)exp[ —
A,(t —s)], a result independent of t)tt. Conse-

quently, the above master equation, Eq. (57), reduces to
the Fokker-Planck equation

A B
Patom( to ) C D (A4)

We can then readily calculate

[V p(to)]=[V p p to ]

Cap —Bp a Dap —Ap a

Aa p
—Dpa Ba p

—Cpa (A5)

Taking the trace of both sides of Eq. (A5), we obtain

Trz[V, p(to)]=C(ap —
p a)+B(atp —pfat) . (A6)

with the diffusion coefficient

D
2)(t) =— ds exp

7 0

/t
—s[ —A, (t —s)

(58)

(59)

The index A indicates that the trace is taken with respect
to the atomic variables. Analogously we find

Tr„[V,[V,P(to)]]=A(aa p +pfaa —2a pfa)

+D(a ap +p ata —2ap a ) (A7)

The diffusion coefficient in Eq. (59) is the same as that
in Eq. (54), thereby making the two Fokker-Planck equa-
tions, Eqs. (53) and (58), identical. If instead of colored
noise, we had white noise so that C2(t, s)=2D5(t —s),
then the second term on the right-hand side of Eq. (57a)
would go over into D(B P/Btp ), resulting in a Fokker-
Planck equation with time-independent diffusion
coefficient; a result inferred from our simple example.
Thus we conclude that the presence of atomic memory
will necessarily result in a time-dependent diffusion.
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and

Tr „[V, [ V, [ V,p( to ) ]

=C(aa ap —3a ap a+3apfaa —pfaata)

+Bia a

+3a pa a —pa aa"). (A8)

Patom( 0

1 0
+O(g) . (A9)

For the trace which involves four commutators we can
make a significant simplification. As mentioned before, it
is sufficient to restrict our analysis to terms up to fourth
order in the coupling constant g. The term proportional
to the four commutators in Eq. (20) is already multiplied
by a factor of order g". Thus the trace only needs to be
calculated in lowest order of g. It is easy to see by expan-
sion of Eq. (24) that the atomic density operator has the
form
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Therefore the term of interest is A, =cos [g(@8')'~ t, ]=1 —g t, ~@ +O(g ), (81)

1 0
Tr~ V, V, V, V p~@

=aa aa pI—4a aa p~a+6aa p aa

—4a p aa a+p aa aa (A 10)

ig—r, @+i ', g —t, ~@ 6" +O(g ),
C =8'

J J

D, =sin [g(@6')' t, ]=g tj ~A~ +O(g ) .

(82}

(83)

(84)

For atoms with injection times t. larger than zero we im-
mediately obtain from Eq. (22)

APPENDIX B A =1, BJ=O, C)=0, D =0 . (85)

In this appendix we evaluate the sums and integrals
which appear in the drift and diffusion coefficients of the
electromagnetic field. %e start our analysis by expanding
the coeScients A, B&, C, and D , as give. n by Eq. (24) in
powers of the coupling constant g. For atoms with injec-
tion times t smaller than zero we then find

%e can now substitute these expressions into the different
terms of the drift and diffusion coefficients and evaluate
their contributions up to fourth order in the coupling
constant g.

The drift coefficient for the electromagnetic field is
given by [c.f. Eq. (29}]

d@= — 6 r'gg f—(t, t )8 +g f dt'g f(t, t )6(t' t )(A —D)6—
J J

+ig'f dt'f dt"g f(t, t, }8(t' t, )6(t"——t, ) 2(8, ~8~' —C, 8')
J

g'f dt' f—dt" f d"'g f(t, t, )6(t' t, )8(t" —t, )8(—t'" —t, )4~@'8 .
J

(86)

rgb f(t, t, )B,+g f dt'gf(t, t, )8(t' —t, )( A, D, )8—
J J

ig g f—(t, t, )( igt, @+i—', g't, '~8~'-6')+g'f dt'g f(r, t, )8(t' t, )6—
J J

r &0
J

+g'f dr' g f(t, t, )B(r' t, )( —2 'gt,'~8—~'8)
J

r &0
J

= —g'g f(t, t, )r, C+g'f dt'g f(t, t, )B(t' t,)8—
J J

r &0

+ ',g'g f(t, t, )t,-'~@~'6" 2g4f dt' —g f(t, t, )B(t' r, )t,'~@~'8 . —
J J

r &0
J

r &0
J

The two terms of order g can be combined into one expression by noting that

—g g f(t, t, )t 6'+g f dt'g f(t, t, )8(t' t, )C=g —g f(t, t, ) f dt'8(t' —t, )+ f dt'B(t' t,)—
1 J

(87)

Here we have neglected terms of order 1 compared to terms proportional to the intensity ~8~ of the radiation field.
The second and third term in Eq. (86) are the only ones which make contribution in the second order in g. We find

r &0
J

r. &0
J

+g'f dt' g f(t, t, )B(t' t,)N—
r &0
J

=g f ' dt'g f(t, t, )6(t' t, )A' . —
J

(88)

We next transform the sum over all atoms into an integration over the injection times t, , i.e., g ~R f dt, , in which

R is the mean atomic rate. Substituting the definition (17) for the interaction function f(t, t, ), we obtain our final ex-
pression for the terms of order g,
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g f ' dt'g f(t, t )8(t' —t )C=g f ' dt'R f dt.8(t —t )8(t' —t, )e
J

2 2
g R f dt

—i(t —t )g'gr p2

e
2

Here a is the linear gain coefficient for the laser which is defined by

2g R
p2

The terms of order g in the drift coefficient are given by the last two terms in Eq. (B7}and Eq. (B6):

Terms of order g =—', g g f(t, t )t ~@ 6' 2g—f dt' g f(t, t&)8(t' t }t —~8~ 8
J J

i &0 &0

+4g f dt'f 'dt" Q f(t, t )8(t' t))6(t"—tj)—tj~@~ 8
J

t. &0
J

4g—'f dt' f dt" f dt"'g f(t, t, )8(t' —t, )8(t"—t, )6(t"' t, )~@—' t.
J

(B9)

(B10)

(Bl 1)

If one groups the atoms according to their injection times and uses similar arguments as in Eq. (B8), it is easy to see that
all fourth-order terms combine to the simple expression

—4g'f dt'f dt" f dt"'g f(t, t, )8(t' —t, )8(t"—t, )6(t"'—t, )~8~'6 .
J

This can be evaluated by again transforming the sum over atoms into an intergration over the injection times

4g —f
' dt'f ' dt" f dt"'R f dt, 8(t t, )8(t' t, )8—(t"—t, )8(—t"' t, )e—

= —4 f dt' f dt" f dt"'e
F 00 00 QO

4R= —4gr'
(B13)

The parameter P is the saturation coefficient for the laser and is defined by

Sg R
r' (B14)

Combining the results of Eqs. (B9) and (B13) we obtain our final result for the drift coefficient in a laser with atomic
memory effects

dt =
—,'(a —y)@—

—,'P~@ 8 . (B15)

We now turn to the evaluation of the diff'usion coefficients. From Eqs. (30) and (31) we obtain, after substituting the
expansions of the parameters A, 8, C, and D,

and

2D .=2g'f dt'g f(t, t, )8(r' t, ) 2g'f dt'g —f(t,—t, )6(t' t, )t,'~C~'—
0 0

s. &0
J

+6g dt' dt" t t e t' —t e t"—t
J

t. &0
J

—10g'f 'dt' f '«"f ' «"'g f(t, t, )6(t' —t, )8(t" t, )6(t"'——t, )l@l'
J

(B16)
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2D =2g'f dt' f dt" g f(t, t, )8(t' —t, )B(t"—t, )t, @'

I (0

6—g'f 'dt'f 'dt" f dt"'g f(t, t, )8(t' t,—)B(t" t,—)B(t'"—t, )( '.
J

We next define four time-dependent functions by

2

g, (t)= f dt'g f(t, t, )B(t' t, )—,
J

g, (t)= f dt' f dt" f dt'"g f(t, t, )B(t' t, )—8(t"—t )8(t'" t )—,
J

4

g3(t) = f dt' g f(t, t, )8(t' t, )t—,',0
t (0
J

g (t)= —2 f dt' f dt" g f(t, t )8(t' t )8(t—" t )t—
J

(817)

(818)

(819)

(820)

(821)

Then the diffusion coefficients take on the simple forms &g(t))= f dt'e " ''(e(t'))=0,
0»„*=~g1(t) —P[-.'g2(t)+g3(t)+3g4(t)]i@i'

and

(822) and if we assume Gaussian phase fluctuation of (P(t), we
find that

»~~ = &[.'g&(t)—+g4-(t)]@' (823)
2

&e""")=exp—
2

(C4)

It remains to evaluate the explicit form of the functions
g((t) For thi.s we transform the sums over atoms into
corresponding integrals over the injection times and per-
form the integration. A straightforward calculation
yields

Substituting Eq. (C4) into Eq. (C2), we arrive at
T

P((P, t }= f dy exp — &(p'(t) )
1

g, (t)= 1 —e

g, (t)=1—e r'(1+I t+ ,'I' t' ), —

g, (t)= ,' I'te-
(t)—( I'2t2e rt

8

AppENDIx c

(824)

(825)

(826}

(827) p(+, t ) = 1
exp

[2 &g'(t))]'"
(~ ~ e =1| }2(

2(q '(t))
(C5)

We are now left with calculating the average ((p (t)).
With the help of Eq. (48), we find that

—iy(q —
((( e ')

which on completing the square in the exponent of the in-

tegrand yields, after some minor algebra,
r

P((p, t)= dy(e' P'")e1

2' (Cl)

When we substitute the solution for ((p, Eq. (50), into Eq.
(Cl), we arrive at

In this appendix we derive the single-event probability
of the stochastic process, Eq. (47), starting from the
definition in Eq. (49):

( (t)) =—e 1(f dt' f dt e1" +' ' '" ' ' ~)

T 0 0

which on evaluating the integrals gives
—2A. I

(
—2(t) )

re
1 2 (iLv 11(tie)—

(Ar+ 1)(Ar—1 }

p((p, t)= f ™
dy(e'~)pexp[ —iy(q& yoe ')], —

277

(C2)

where

+e
jlET

In the limit of white noise, T~O, this reduces to

(((('{t))=—(1—e ' ') .

(C6)

(C7)

y(t)= f dt'exp[ —k(t —t')] (te') .
0

On recalling Eq. (48), we have

(C3) To obtain the Fokker-Planck equation corresponding
to the distribution in Eq. (C5), we calculate the expres-
sion
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a BPI:—I, (tpP )+2)
zBtp Btp

(C8)

with

a(t)=&&q '(t))+ ——
&q '(t) & .

2 dt
When we substitute Eq. (C5) into Eq. (C8), we obtain

1 d/dt&tp (t))P J"I'o (V' tpo

&q '(t)) &g'(t))
')'d /dt & ~'(t) )+- P.

& ~'(t) )'

(C9)

(C10)

If we evaluate r)P/dt, we find that it is precisely the same
as the right-hand side of Eq. (C10). This establishes the
Fokker-Planck equation (53) for the probability distribu-
tion in Eq. (51).

We conclude by noting that in the limit r=0, Eq. (C9)
with the help of Eq. (C7) reduces to the time-independent
diffusion

/(t)=D(1 —e "')+L)e ~'=D .

'Permanent address: Center for Advanced Studies and Depart-
ment of Physics and Astronomy, University of New Mexico,
Albuquerque, NM 87131.

tPermanent address: Department of Physics, University of
Bombay, Bombay, 400098, India.

'Y. Yamamoto, S. Machida, and O. Nilsson, Phys. Rev. A 34,
4025 (1986); S. Machida, Y. Yamamoto, and Y. Itaya, Phys.
Rev. Lett. 58, 1000 (1987); Y. Yamamoto and S. Machida,
Phys. Rev. A 35, 5114 (1987);M. A. Marte, H. Ritsch, and D.
F. Walls, Phys. Rev. Lett. 61, 1093 (1988).

J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hillery,
and M. O. Scully, Phys. Rev. A 40, 5073 (1989); C. Benkert,
M. O. Scully, J. Bergou, L. Davidovich, M. Hillery, and M.
Orszag, ibid. 41, 2756 (1990).

M. O. Scully, Phys. Rev. Lett. 55, 2802 (1985); W. Schleich and
M. O. Scully, Phys. Rev. A 37, 1261 (1988).

4M. O. Scully, K. Wodkiewicz, M. S. Zubairy, J. Bergou, N. Lu,
and J. Meyer ter Vehn, Phys. Rev. Lett. 60, 1832 (1988)~

sC. Benkert and M. O. Scully, Proceedings of the Fifth Interna
tional Symposium on Quantum Optics, City, 1989, edited by
D. Walls (Springer-Verlag, New York, 1989); C. Benkert, M.
O. Scully, and M. Orszag, Phys. Rev. A 42, 1487 (1990).

M. O. Scully, G. Sussmann, and C. Benkert, Phys. Rev. Lett.
11, 1014 (1988); C. Benkert, M. O. Scully, and G. Sussmann,
Phys. Rev. A 41, 6119 (1990).

7A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940
(1958); J. P. Gordon, H. J. Zeiger, and C. H. Townes, ibid.
99, 1264 (1955).

See, for example, M. Sargent III, M. O. Scully, and W. E.
Lamb, Jr., Laser Physics (Addison Wesley, Reading, MA,
1974).

See, for example, C. Cohen-Tannoudji, B. Diu, and F. Laloe,
Quantum Mechanics (Wiley, New York, 1977), Vol. I, p. 347.

~oW. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, (1973).

"M. S. Zubairy, Phys. Rev. A 20, 2464 (1974); S, Mahmood and
M. S. Zubairy, ibid. 35, 425 (1987); S. Mahmood, K. Zaleer,
and M. S. Zubairy, ibid. 37, 1634 (1988).

~2See Ref. 8 and M. Scully, The Quantum Theory of a Laser. A

Problem in Nonequilibrium Statistical Mechanics, in Proceed-
ings of the International School of Physics, "Enrico Fermi, "
Course XLII, 1963, edited by R. J. Glauber (Academic, New
York, 1969).

' S. Stenholm, Phys. Rep. 6, 1 (1973); see also R. Loudon, The
Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983);
or L. Allen and J. H. Eberly, Optical Resonance and Tmo-

Leuel Atoms (Wiley, New York, 1975).
~4R. J. Glauber, Phys. Rev. 131, 2766 (1963); E. C. G. Su-

darshan, Phys. Rev. Lett. 10, 277 (1963).
~5P. Hanggi, Z. Phys. 8 31, 407 (1978).

See, for instance, Noise in Nonlinear Dynamical Systems, Vol.

I: Theory of Continuous Fokker Planck Syste-ms, edited by F.
Moss and P. V. E. McClintock (Cambridge University Press,
New York, 1989); particularly the articles by K. Lindenberg,
B. J. West, and J. Masoliver, especially Eq. (4.3.5), p. 115 and
J. M. Sancho and M. San Miguel, especially Eq. (3.2.7), p. 76.


