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A systematic procedure to construct approximants to the solution of the Thomas-Fermi equation
for isolated neutral atoms is presented. The method takes into account the power-series expansions
of the solution of the Thomas-Fermi equation for small and large values of the coordinate and
matches them. The initial slope is accurately calculated and the approximants are shown to
represent the solution for all values of the coordinate with reasonable accuracy. The method is
presented in a general way so that it can be applied to other problems of physical interest.

I. INTRODUCTION

The Thomas-Fermi (TF) model provides a semiclassi-
cal description of atoms having numerous electrons?
and has also proved to be useful in the study of molecules
and crystals.! Although it was proposed long ago, it is
still a popular model and has been recently applied to
atoms in external fields® and dense plasmas.4 Moreover,
the TF model has motivated the development of several
density-functional theories.” There is at least one further
reason to study the TF equation: because it is a nonlinear
differential equation, the methods used to solve it, either
numerically or in an approximate analytic way, may be
useful in other fields of theoretical physics in which such
equations are commonly found.

Besides accurate numerical calculations,®™® there have
been proposed several analytic approaches to the solution
of the TF equation which exhibit many and various
forms.? Of these, some are merely guesses in order to find
expressions that agree with the numerical results as accu-
rately as possible, but only a few of them take into ac-
count the analytic properties of the solution of the TF
equation, although not in a systematic way.

Nonlinear differential equations can rarely be solved
exactly; even numerical solutions are commonly difficult
to obtain. Furthermore, in many cases approximate ana-
lytic solutions provide a deeper insight into the physical
properties of the system.”®>%®  Perturbation theory is
one of the general approaches proposed to this end.'”
However, as the perturbation equations are commonly
complicated, one requires a good deal of ingenuity to
solve them. The purpose of this paper is to present a gen-
eral method to obtain systematic approximants to func-
tions that can be expanded as asymptotic power series;
the solutions to many nonlinear differential equations can
be treated in this way. The TF equation poses an in-
teresting test problem both because it cannot be solved
exactly and because many numerical and approximate
analytic results are available.

After the TF equation is briefly discussed in Sec. II, the
method is developed in Sec. III in a general way. Results
and discussion are found in Sec. IV.

II. THE THOMAS-FERMI EQUATION

According to the TF model, the number of electrons
per unit volume in an isolated neutral atom is given by

p(r)=(87/3h*)(2me)* [V (r) =V, 1/,

in which r is the distance from the nucleus, V' (7) is the
electrostatic potential, and V|, is a reference value of the
potential. The electrostatic potential can be expressed in
SI units as

V—Vy=—Ze®(x)/(4me,) ,
in which x =yr,
y(32m2/3)**me?Z' 3 /(2me,h?)

and ®(x) is a solution to the dimensionless equation'?

@ (x)=x "2®(x)}?, 0<x<w (1)
in which ®(0)=1. The initial slope ®'(0) is to be deter-
mined so that $( w0 )=0. Let ®, be the exact value of the
initial slope corresponding to ®( e )=0 and ®'(0) its es-
timated value. If ®'(0)> &, then ®(x) has a pole of or-
der 4 on the real axis.”® Some of these solutions are used
to describe the electronic density of crystals when the
sphere approximation is made, and of molecules with
high symmetry. On the other hand, if ®'(0) <®,, the
solution ®(x) vanishes at a finite value of x that is con-
sidered to be the radius of the ion.!" We consider here
only the case of neutral atoms and apply a systematic
method to generate approximate solutions to Eq. (1). In
order to make this paper self-contained and the discus-
sion of the results clearer, we first consider some known
properties of the solution of the TF equation.

Introducting the new variable t =x /2, we rewrite the
TF equation:

éig._ié: 2£3/2
tdtz o 4r°g>% (2)

in which &(1)=®(¢?). The solution to this equation is ex-
panded in a Taylor series around ¢t =0, !
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n=3 at’, &
j =0

the initial slope a, according to this recurrence relation.
In order to obtain the asymptotic behavior of @ for
large values of x one finds it convenient to use the vari-

—_T . — 1/2 .
in which ag=1,a, =0, a, =%, a,= =9 ables s=x’", with r=(7—73"79)/2, and to write
Wi do= L 4 3= 5,340, a5=24a,/5, and ®(x)=144x 3v(s)."*@ 12 The function v(s) satis-
a, a=(n+1)""[(n+32—1]" fies the differential equation

d% dv

247V — 19,372

2 tes+ 1
X |23 G0l +2— 2 —1]a; 410, 5, ge2 gy Tl =1 5)
]—-I
s Therefore, v(s) can be expanded in a Taylor series
n— —0 1L%a),12
-3 G+1I J+3 1]a1+4an il around s =0,
j=0 ©
v= v;s/, (6)
n=23.... (@ EO /
All the coefficients a; can be calculated easily in terms of  in which vy=1, and
J
vy ={n(n+D[rn+1+6]} 7! 2 (j+1w J+,v,,_j{—§-[r2(n —j)n—j—1)+6(n—j)+12]
j=0
—rfj(j+1)—6(j+1)—12}, n=1,2,.... 7

It follows directly from the differential equation (5), that
vj=cjv{, v, being unknown. The coefficients c; can be
obtained easily and exactly from (7).

Both a, and v, are global properties of the TF equa-
tion and cannot be obtained from a local analysis of the
solution like the expansions (3) and (6). These parameters
have been accurately calculated by means of an iterative
method based on the series (3) and (6).>!* For this pur-
pose these series were modified in order to improve their
convergence properties and then matched at x =1 under
the requirement of analytic continuation. Because the
original work!! is practically inaccessible, we have per-
force to refer to its discussion in Ref. 2.

By the method of dominant balance,” ¢’ one can easily
prove that v(s) has at least one singular point around
which it is asymptotic to (2)r*s¢(s —so)~* From the
most accurate coefficients of series (6) available in the
literature® '3 together with the ratio method and its vari-
ants,'* we have estimated sy= —0.30051. As the ratio
method determines the singular point closest to the ori-
gin, it follows that series (6) is convergent for all
x >4.7462; the value quoted in Ref. 2 is 4.75. This infor-
mation is not required to apply our procedure but proves
useful to explain the convergence properties of the ap-
proximants.

By a simple systematic method developed in Sec. III,
we obtain increasingly accurate approximants to the solu-
tions of the TF equation. Although this procedure
resembles that discussed above,”!3 there are important
differences. First, in the present method only one series
and the first term of the other are used to construct the
approximants. To succeed in this goal, we require a
greatly improved local representation of the solution.
Second, our procedure is presented in a general way so
that it can be applied to other problems in theoretical
physics and chemistry. In fact, previous and future ap-
plications are discussed below. We show here how to ap-

9c)

r

ply the method to the TF equation, which is a suitable ex-
ample of nonlinear differential equations for the reasons
given in the introduction.

III. METHOD

In what follows we develop a systematic procedure to
obtain approximants to a function f (x) that satisfies two
asymptotic expansions. For small values of x it is given
approximately by

(x)=3 f;x/; (8)
j=0

here it is assumed that a sufficiently large number of
coefficients f; can be calculated. For large values of x
the function f is known to be asymptotic to

=x*3 Fix —Bi 9)
j=0

f(x)

in which 8>0. Our objective is to match Eq. (8) and the
first term in Eq. (9).
The method is based on the properties of the nonlinear
mapping
x=Ku/(1—u)"?, (10)

in which K is an arbitrary real positive number. The new
variable u can be expanded in a power series of either x,
u=x/K+x2/(BK>)+ ---, or x B u=1—-K By =B
+ - -+ . for small or large values of x, respectively. The
transformation (10) maps 0 <x < o onto 0=<u <1. Be-
cause

K*(1—u)"B=(x/u)®

is asymptotic to x * as x — o, the approximant

N
K*(1—u)"*" 3 g, (K’ (1
j=0

g(N,u)=
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satisfies power-series expansions similar to those in Egs.
(8) and (9). Therefore, it is supposed to be a good approx-
imation to f provided that the coefficients g; and the ar-
bitrary parameter K are properly chosen. For instance, if
the first N coefficients of the series (8) are known, then
the first N coefficients of the approximant are determined
according to the formula

— K« < n—j (a_-'])/B j
g=K “3 (=D nej KU (12)
j=0
in which
j|Fe =1 b=/t

The purpose of the adjustable parameter K is either to
improve the convergence of the sequence of approxi-
mants or to lead to simpler expressions. One can use for
convergence several criteria which apply to different
cases.!> We choose here a procedure that is useful when
F, is known and when the coefficients f; depend on an
unknown parameter a which has to be calculated in order
to obtain the desired approximation to f.

When x — «,

x “g(Nu)—>(gy+g,+ - +gn),

and x ~*f (x)—F,. Therefore, for g to be a good approx-

imation to f, at least (g, +g,+ - +gy)=F,. As K is
arbitrary, we can set its value so that
M
> §=F,, M<N (13)
j=0
in which case
N
> g=0. (14)

j=M+1

If physically acceptable solutions to Egs. (13) and (14)
exist, then both K and a can be determined from them.
The roots of Eq. (14) form a set of sequences, one member
for every value of M: a,(M,N), M=0,1,...,
N=M+1,M+2,... . It is desirable that all these se-
quences converge to the same limit. Even when the se-
quences are divergent, the method still applies provided
that they can be truncated in a proper way, as shown in
Sec. IV.

In closing, it is worth mentioning that this method
could be easily modified to include series for large values
of x of the form

fX)=F(x)(Fy+Fx P+ +Fx P+ ..0),

provided that F (x) is analytic at x =K.

IV. RESULTS AND CONCLUSIONS

We now apply the method discussed above to the TF
equation. We have written programs in REDUCE in order
to calculate the coefficients of the series (3) and (6) analyt-
ically up to order 35, thus augmenting the set of such
coefficients that have been published.®® The series (11)

has been treated in the same way. Furthermore, in order
to avoid roundoff errors, the roots of Eq. (14) have been
computed through a standard Newton-Raphson method
written in REDUCE with a precision of 16, 20, or 24 digits.

On comparing the series (3) and (6) with the general re-
sults of Sec. III, we conclude that the method there de-
scribed can be applied to the TF equation when a=—6
and B= —2r. As the first two coefficients of the modified
series for small values of x are K® and —3K®/r, Egs. (13)
and (14) are clearly simpler when M =0 or 1, because the
value of the arbitrary parameter K is immediately found
to be K =144'% or K =[144r /(r —3)]'/%, respectively.
When M > 1, one has to solve a nonlinear system of two
equations with two unknowns, namely, K and a,. For
the sake of simplicity, such cases are not considered here.

When 3= —2r, it is impossible to solve Eq. (10) for u in
terms of x; therefore, the approximants are implicit ana-
lytic expressions of x. As we do not use the entire series
(6) but only its first term, the results may be almost in-
sensitive to the value of B considered in the mapping (10).
Therefore, one can choose a value of B that leads to
simpler approximants. The choice f=1 seems appropri-
ate for two reasons. First, it leads to a parametrized
Euler transformation which is known to be useful to im-
prove the convergence properties of power-series expan-
sions.'® Second, the value S=1 is not too far from
—2r=1.54. In this case the appropriate values of K are
K =144'¢ and (#)”6 for M =0 and M =1, respective-
ly. Hereafter, the four approaches with f=—2r, M =0,
M =1,and =1, M =0, M =1 are designated (A1), (A2),
(A3), and (A4), respectively. Because the approximants
are chosen to satisfy the Taylor expansion about ¢ =0
and to be asymptotic to 144x ~3 as x — 0, it is expected
that the roots of Eq. (14) converge towards the exact ini-
tial slope as N — .

The roots of Eq. (14) for these four cases have been cal-
culated for increasing values of N. We monitor the con-
vergence properties of the sequence of values of a, by
means of the logarithm of the consecutive differences

Ly=logglay(N)—a,(N —1)| ,

which are shown in Fig. 1 for increasing values of N. The
cases Al and A2 tend at first to converge more rapidly
than A3 and A4, but Al shows a strongly divergent be-
havior after N =16. (Use of varied precision in the calcu-

FIG. 1. Ly_logyla,(N)—a,(N —1)| vs the number N of
terms in the approximants for cases A1, A2, A3, and A4.
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lations proves that such divergence is not a numerical ar-
tifact.) The value of Ly for A2 decreases more rapidly
than the others but diverges slowly after N =18. In con-
trast, the behavior of A3 and A4 are remarkably similar;
although they converge more slowly than Al and A2
when N <16, their tendencies to converge remain up to
N =30 and 34, respectively. It is reasonable to assume
that the best value of the initial slope that can be ob-
tained from these divergent series is given by a,(J —1) in
which J is the value of N corresponding to the smallest
value of Ly. According to this criterion, we obtain the
following values of a,: —1.588070 322, —1.588 070 854,
—1.588070279, and —1.588070947 for cases Al, A2,
A3, and A4, respectively. The agreement with the nomi-
nally accurate result attributed to Rijnierse,”!3 namely,

a,=—1.588071022 60000 ,

is remarkable.

Another interesting feature of the method is that the
roots of Eq. (14) approach the correct limit even when K
is not exactly given by Eq. (13). This fact suggest that the
method may still be used even though the first term of the
series for large values of x is unknown. This result is not
surprising because in summing strongly divergent pertur-
bation series!*?>1%(¢) and in calculating dissociation ener-
gies of diatomic molecules from the Dunham
coefficients,!” one obtains the first term of the series for
large values of x from the series for small values of x. In
these cases the parameter K is determined according to
appropriate criteria for convergence.

The approximants with N =1, 3, and 5, and N =3, 4,
and 5 for cases Al and A2 are shown in Figs. 2 and 3, re-
spectively. Because those approximants with N =0 and 1
are independent of a,, Eq. (14) does not apply to them.
When M =1 and N =2, Eq. (14) reduces to g, =0; for
this reason this approximant equals that with N =1. Fig-
ures 2 and 3 show that the approximants developed here
are acceptable approximations to the solution of the TF
equation for 0=<x <10. The accuracy decreases for
larger values of x but the approximants behave in the
same way as the exact solution and vanish as 144x ~3 as
X —> 0.

All these results can be markedly improved for small

—

-~
— e LT
L

el ]
— e T
L 1 1 -4

I

2 3 4 5 6 7 8 9 10
X

FIG. 2. Approximants to ®(x) depending on the number N
of terms for N =1 ( ), N=3( .. .),and N=5(—— —)
for case A1 [exact values (l)].
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FIG. 3. Approximants to ®(x) depending on the number N
of terms for N =3 ( L, N=4( ...),and N=5(—— —)
for case A2 [exact values (H)].

values of x by using in all the cases the best value of a,
that can be obtained from the roots of Eq. (14) as dis-
cussed above. However, we have preferred to use in
every case the root of Eq. (14) that corresponds to the or-
der of the approximant. The approximants for the cases
A3 and A4 lead to results that are similar to those just
discussed. However, as noted before, these approximants
are preferable if one is interested in simple analytic ap-
proximations to the solution of the TF equation. For in-
stance, when N =2, we have

O(x)=(K +x'2) YK +8K"x 2+ 144x) , (15)

in which 28K ®+a,K®=144. This expression is a reason-
ably accurate approximation to the solution of the TF
equation when the best value of a, is used. The electron
density for an atom with Z electrons given, for instance,
by the approximate screening function (15) is

p(r)=—(8me*/3n3)[mZ /(2me)) P dlyr) /PP . (16)

One should keep in mind that the approximants dis-
cussed here have been obtained by taking into account
only the analytic properties of the solution of the TF
equation without making reference to numerical results,
as is commonly the case in other approximation
schemes.? For this reason we deem that the procedure
developed above may be of general utility in making
fruitful use of power-series expansions.

One can in principle apply the method discussed in
Sec. III to the series (6) by rewriting Eq. (3) as

x’6(1)/144=(s>""/144) 3 a;s//" (17
j=0
This relation shows that a=3/r and B= —1/(2r) in this
case. However, the roots of Eq. (14) fail to converge as N
increases; the reason is probably the singularity at s,
which, as shown before, is close to the origin. This
difficulty could in principle be overcome if one matches
at an intermediate point both modified series each con-
taining many terms. However, this procedure, which is
expected to lead to more accurate results, would be simi-
lar to that of Rijnierse;>!* we therefore do not pursue it
here.
The parametrized Euler transformation (3=1) appears
to be more promising because the singularity is mapped
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into uy=s,/(sy+K). Therefore, if according to the pro-
cedure discussed above,

K =144"3=0.278 34 ,

then |uy| > 1; thus the singularity is mapped outside the
disk |u|<1. As a result, the modified series converges
for all values of x provided that no other singularity is
mapped into the specified region.

Because of the form of the coefficients v; discussed in
Sec. II, the simplest case is that with M =0; therefore,
K =144"73. As shown in Table I, the roots of Eq. (14)
converge slowly and monotonically from below towards
the correct value

v, =—13.270973 848

(Refs. 2 and 13). However, the root for N =18 deviates
from the sequence and no roots are found for larger
values of N. On assuming that the sequence behaves ap-
proximately as

v (N)=v(0)+c/(N+p),

we have found that v,(o0)=—13.2707, ¢ =—2.0281,
and p =1.0785 for 10 =N <17, therefore, v,( ) is an ac-
ceptable estimate of the actual value of v,.

From the point of view of convergence, at least with
respect to the singularity at s,, the most favorable choice
appears to be K = —s,, because in this case |ug| = o. Al-
though this choice leads exactly to the parametrized
Euler transformation that Rijnierse®'’ used, numerical
calculations shows that the sequence for v, converges to-
wards an incorrect limit; the reason may be that the first
term of series (16) is not taken exactly into account.

In summary, we have developed a systematic method
to obtain approximants to functions that can be expanded
in power series. Application to the TF equation shows
clearly both the advantages of the procedure and some
difficulties. The present results and those obtained previ-
ously for other examples by means of variants of this

TABLE I. Sequence of values of v,.

N v, (N)

2 —13.807 742 840090 32
3 —13.705956 14423976
4 —13.635937 82525653
5 —13.585043 690434 95
6 —13.546 290 300 304 49
7 —13.515731429442 14
8 —13.490988 474 405 61
9 —13.47053641141231
10 —13.453 34751529708
11 —13.438701 347 31091
12 —13.426 076 599913 60
13 —13.415086 08077045
14 —13.405435842 69271
15 —13.396 898 524 831 58
16 —13.389295404 83721
17 —13.382492 145467 69
18 —10.021 795 868 349 70

15(a),15(b), 17

technique suggest that it may be a useful tool
for the study many other physical problems. For in-
stance, the approximants prove to be powerful to fit ex-
perimental data when there is a theory for the local be-
havior of the physical property for small and large values
of the variable.'

As a rigorous and general mathematical proof of the
convergence properties of the approximants may prove
difficult, further applications will be necessary to estab-
lish the general validity of the method. One possible ap-
plication is the calculation of eigenvalues from the Ricca-
ti equation satisfied by the logarithmic derivative of the
wave function.!”
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