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We investigate different kinds of polarization-correlated-emission schemes, including a maser and

a laser concept. In these systems, coherently prepared atoms drive the electromagnetic field. We
demonstrate that the atomic coherence can lead to a reduction of noise fluctuations within a linear

theory. In the homogeneously broadened case the amplitude noise is strongly affected by the atomic

coherence, leading to noise quenching in the laser and even squeezing in the maser. On the other
hand, the phase fluctuations are unaffected by the coherence between the lasing levels. We then

study the effect of inhomogeneous broadening of the atomic transition frequency. We find the in-

teresting result that the noise reduction due to the atomic coherence is not destroyed but redistri-

buted between the phase and amplitude of the electromagnetic field.

I. INTRODUCTION

The reduction of the quantum noise in various atomic
systems has been the subject of extensive work over the
last decade. For example, the generation and utilization
of squeezed states, in which the noise fluctuations of one
of the quadratures of the electromagnetic field is be1ow
the vacuum noise level, has attracted a great deal of in-
terest, both experimentally' and theoretically. Further-
more, a big effort has been devoted to the reduction of
spontaneous emission noise in the correlated emission
laser (CEL), where the quantum noise can be substantial-
ly reduced below the Schawlow-Townes limit.

Most of the previous CEL schemes involve correlations
between photon pairs, having different frequencies (quan-
tum beat laser), ' different polarizations (Hanle laser),
different wave vectors (holographic laser), ' or a cascade
emission (two-photon CEL). Recently a new type of
correlated spontaneous emission device has been pro-
posed, the polarization CEL, which can produce noise
reduced light in a single photon transition. In this type
of laser the atoms are excited into a coherent superposi-
tion between the two atomic levels which drive the elec-
tromagnetic field. It has been shown that such a laser
model exhibits a reduction of noise fluctuations in the
amplitude and phase of the radiated field. In this paper
we want to elaborate on this idea and develop different
kinds of polarization-correlated-emission concepts. We
show that there is an important, qualitative difference be-
tween the maser and laser concept. These analyses are
carried out in a linear theory of the electromagnetic field,
thus we restrict ourselves to low intensities. It has been
shown that in such an operation regime the noise-
reducing coherence terms are strongly affected by the sta-
tistical properties of the pump mechanism. In fact, an in-
crease of the pump fluctuations reduces the effect of

atomic coherence on the noise characteristic of the radi-
ated field. Therefore in this paper we restrict ourselves to
the case of a noise-free pump source to analyze the maxi-
mal influence of the atomic coherence on the radiated
electromagnetic field.

We discuss two different concepts of single photon
correlated emission. In the case of the polarization-
correlated-emission maser [Fig. 1(a)] we consider two-
level atoms which are injected into a microwave cavity in
a regular way. This could be feasible in micromaser ex-
periments in which an atomic beam of Rydberg atoms
drives the field of a microwave cavity. In our model the
atoms enter the cavity in a coherent superposition of
upper and lower atomic level and start to interact with
one mode of the radiation field for a well-defined interac-
tion time ~. We assume that during the whole interaction
time the atoms do not lose their excitation or coherence
through any decay process.

In the case of the polarization-correlated-emission laser
[Fig. 1(b)] we consider three-level atoms in which the
upper two levels constitute the lasing transition. Again,
the atoms are regularly injected into the cavity in a
coherent superposition of the two excited levels and start
to interact with a resonant mode of the radiation field.
Instead of removing the atoms from the cavity after an
interaction time ~ as in the maser case, the interaction is
now limited by a decay of the atomic excitation to a
lower-lying, inert ground state. In both the maser and
laser case we find that the atomic coherence leads to a
significant noise reduction in the amplitude of the radia-
tion field.

In Sec. II, we perform a Langevin analysis of the
polarization-correlated-emission maser and laser. In a
linear analysis in the electromagnetic field (i.e., second or-
der in the coupling constant), we find that the phase of
the field locks with respect to the phase of the injected
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atomic dipoles. Furthermore, we derive an expression for
the steady-state value of the field amplitude under the
condition that a(p„—p» ) (y. An analysis of the noise

properties of the polarization-correlated-emission maser
then shows that the phase diffusion coefficient is the same
as for an incoherently pumped maser. In contrast, the
amplitude fluctuations are strongly affected by the atomic
coherence, leading to a total suppression of the spontane-
ous emission noise in the case of p&&

=—.
' and even squeez-

ing when p&& & —,'. In the laser case, we again find that the

phase diffusion is not altered with respect to an in-

coherent pumped case. The atomic coherence only
affects the amplitude nose of the electromagnetic field.
However, the noise reduction is smaller than in the maser
case. We find no squeezing in the laser case and the max-
imum we can achieve is total noise quieting.

In Sec. III, we follow an alternative approach to the
polarization-correlated-emission schemes by performing
a density operator analysis. We again restrict ourselves
to a linear theory and derive a master equation for the re-
duced density operator for the radiation field. We then
convert this equation into a corresponding Fokker-
Planck equation. This enables a direct discussion of the
amplitude and phase diffusion coefficients and we fully re-
cover the results from Sec. II.

Both of the above analyses assume that the atoms are
homogeneously broadened, with a center frequency
which is resonant with the cavity frequency. In Sec. IV,

(a)

these constraints are relaxed and we study the effects of
inhomogeneous broadening. We find that for a broad-
band distribution over the atomic transition frequencies
the noise reduction is now partially shifted from the am-
plitude to the phase.

Finally, in Sec. V we summarize our results.

II. LANGEVIN ANALYSIS

We start the analysis of the polarization-correlated-
emission maser and laser with the Hamiltonian for our
physical mode&s. As described before, we consider
coherently prepared atoms which are regularly injected
into a radiation cavity (see Fig. 1). The regular atomic
injection corresponds to a noise-free pump source' so
that we do not have to consider any fluctuations due to
the pumping mechanism. After entering the cavity the
atoms start to interact with one mode of the radiation
field. In the maser case the atoms are removed from the
cavity after a time interval ~, while in the laser case the
atoms leave the interaction through a decay process to a
lower-lying ground state. The basic Hamiltonian for
both systems can be written as

a=a~a'a+ g(E. la) &al+e~ b) &b )t
J

+gag f(t, t, )V, ,
J

with

V =a to'+(o')ta .J

Here c, and cb are the energies of the upper and lower
atomic levels of the lasing transition. The parameter g
denotes the coupling strength between the electromagnet-
ic field and the atoms. The function f(t, t, ) in Eq. (1)
specifies the particular interaction of each individual
atom and accounts for the difference between our maser
and laser model. We will discuss these two cases sepa-
rately.

A. Maser

In this case, the jth atom enters the cavity at time t
and is removed at a later time t +~. The time ~ is the
time of flight through the cavity, which we assume to be
the same for all atoms. Therefore the interaction func-
tion f in Eq. (1) is given by the notch function

FIG. 1. Physical models for the polarization-correlated-
emission devices. (a) Maser case: Two-level atoms are prepared
in a coherent superposition between their lasing levels and are
passed through a radiation cavity. Each atom interacts with the
field for a given time interval ~ before it leaves the cavity. (b)
Laser case: The lasing material consists of three-level atoms of
which the upper two levels constitute the lasing transition. The
lower-lying level is an inert ground state to which an atomic ex-
citation can decay with a rate I . The atoms are again prepared
in a coherent superposition between the upper two atomic levels
and are then injected into the cavity. However, the atoms are
not removed from the cavity but interact with the field until
they decay to the ground state.

1 ift &t&t+~
f(t, t, )=N(t, t, )= .

0 otherwise .

We can now derive the Heisenberg equations of motion
for the field and the atomic dipole operator

a = icosa — a ——ig g N(t, t~ )o ~+Fr,
J

o J= irido'+igN—(t, t& )o',a,

(4)

in which cr', is the operator cr', =(~a ) &a
~

—~b) &b~), .
For simplicity we have assumed exact resonance between
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the radiation field and the atomic a~b transition, i.e.,
(e, —eb)/R=~. In Eq. (4) we have also accounted for
the cavity-induced losses. The parameter y is the cavity
damping rate and F~ the corresponding Langevin noise
force. Note that in the maser case we can neglect any
atomic decay during the passing time through the rni-

crowave cavity.
We next eliminate the quickly time varying terms in

Eqs. (4) and (5) by changing into a rotating frame. For
this we define the new operators

a el ~ta o '=e' 'ej (6)

The corresponding equations of motion for a and 0 ~ are
easily found to be

d-
dt 2

a = — a ig—QN(t, t )o ~+F
J

d—o =igN(t, t )a~a .
dt

For convenience we will drop the tilde in the following
discussion, keeping in mind that all operators are
specified in a rotating frame. We can now formally in-

tegrate Eq. (8} and substitute the result into Eq. (7). We
then find

restrict ourselves to an analysis up to second order in the
coupling constant g which corresponds to a linear theory
in the electromagnetic field. We can then substitute
cr, (t') in Eq. (9) by its expectation value at t, i.e.,
(o J(t, ))=p„p—» W. ith these assumptions Eq. (9) be-
comes

a = — a ig—p, b QN(t, tj )

J

+g dt' N t, t X t', t p„—pbb a t
J

ig—QN(t, t, )[cr'(t)) —(cr'(t, ))]+Fr .
J

We now perform the sum over the atoms by integrating
over the injection times, i.e.,

in which R is the atomic injection rate. This is possible
because we assumed a regular injection of the atoms.
Such an injection can be achieved, for example, by pre-
paring the lasing atoms through a train of narrow and
equally spaced laser pulses. The evaluation of the sums
in Eq. (11) is performed in Appendix A and we obtain the
result

a = — a ig Q—N(t, t )oj(t )
2

J

+g f dt'QN(t, t )N(t', t )o', (t')a(t')+F . (9)
J

+M
a = iSMp. b

———a+ (p.. pb, )+F. —
,

with

(12)

(o J(t, ) ) =Tr[o'p(t, )]=p„. (10}

Furthermore, let us assume that the radiation field is
slowly varying on the time scale of the atomic evolution
so that we can approximate a(t') by a(t) inside the in-

tegral. This means that we are considering a high-q cavi-
ty in which the photons have a long lifetime. Finally we

The second term on the right-hand side of Eq. (9) con-
tributes to the drift of the electromagnetic field as well as
to its noise. In order to separate these contributions we
add and subtract the average value of the second term in
Eq. (9). For this we note that the initial value of the
atomic dipole operator is given by the prepared atomic
coherence

F.=Fr —tg yN(t, tJ )[tr'(tJ ) (0'(tJ—) ) ] . (13)

The parameters in Eq. (12) are defined by

SM=Rgr, aM=Rg r (14)

We note that the first term in Eq. (12) is a klystron-type
contribution which drives the electromagnetic field. Its
strength is specified by the initial atomic coherence and
the parameter SM. The third term in Eq. (12) is the linear
gain of the system due to stimulated emission with o.'M
being the familiar gain coeScient for a maser. ' We next
turn to the evaluation of the noise correlation functions
for F, . From the definition (13) we obtain

(F,(t)F.(t')) =(F', (t)F,,(t'))+g'QN(t, t, )N(t', t„)[(o '(t, )o "(t„))—(a '(t, )) (o "(t, ))]
j, k

=g QN(t, t )N(t', t }(p„—lp, bl )

=aM(p..—Ip.bl')T(t, t') . (15)

Here we have assumed that the damping reservoir for the
field is at zero temperatures so that the normally ordered
product of F is equal to zero. Furthermore, we have
used the fact that the atoms are independent of each oth-
er so that ((o~) (t )o "(t&))=((o~) (t )) (cr"(t&)) for
jWk. The function T(t, t'} is the triangularly shaped

(F,(t )F.(t') ) =aM p'., T(t, t'),

(F.(t)F,(t')) =aMp'„T(t, t') . (17)

correlation function which we evaluated in Appendix A.
In a similar way we find
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If we restrict ourselves to averages of normally ordered
products of a and a, we can identify Eq. (12) with a cor-
responding c-number stochastic differential equation.
Equations (15)—(17) then specify the correlation functions
of the classical stochastic noise sources. Therefore we
make the identification a~6'=re'~, which is a con-
venient choice, since we are interested in the phase and
amplitude of the electromagnetic field. Furthermore, we
define the amplitude and phase of the atomic coherence
by

p.b
= lp.hie'.

In an analogous way, the noise correlation function for
the phase is calculated as

(F (t)F„(t'))= [p„—2lp, bl cos (y —8)]T(t,t') .
2n

(27)

Here we have substituted r by the mean number of pho-
tons n inside the cavity. Since we assumed that the field
is slowly varying on the atomic time scale, we can ap-
proximate the triangularly shaped correlation function by
the 5 function

We then find from Eq. (12) the following stochastic
differential equations for r and y: T(t, t ') —fi(t t '—) . (28)

r =S'M
Ip, b I

cos q
— 8——

+ [trM(p.. pbb )
——y ]r +F, (19)

Such an approximation neglects atomic memory effects'
which are not relevant in this context. If we define the
diffusion coefficient for the phase by (F~(t)F~(t'))
=2D 5(t t') a—nd use the steady-state values yo and ro
we obtain, from Eq. (27),

with

Ip,blsin y — 8——+F (20) D (q)0) = [p„—2lp, b I
cos (q&0

—8)]
4n

&M
paa . (29)

F„=,'(Ff e '~+—Ff+e'~), (21)

F = (Ff, e '~ F,e'~) —.
2ir

(22)

(23)

The function F& is the c-number noise force which corre-
sponds to the noise operator F, . The moments of F& are
given by the corresponding relations for the noise opera-
tor F, .

If we neglect the small noise-induced drift terms, " we
find from Eqs. (19) and (20) the steady-state values for
phase and amplitude to be

This is the same result as for an ordinary, incoherently
pumped maser. We therefore see that the phase diffusion
of the polarization-correlated-emission maser is un-
affected by the atomic coherence.

The diffusion coefficient of the amplitude at the
steady-state operation is found to be

+M
D„„(yo)= [p„—2lp, b I

sin (yo —8)]
4

(30)

and

2~M Ip.b I

ro=
~M(P.. Pb»— (24)

+ (F,(t )F,(t') )e "~],
and making use of the relations (15)—(17), we find

(25)

W'e note that in contrast to the ordinary maser case, we
here find a steady-state value for the amplitude in a linear
theory, provided aM(p„—pbb ) & y. If the last inequality
is not fulfilled the steady-state value for the amplitude has
to be determined from a nonlinear analysis. We next
evaluate the correlation functions for r and y. From Eq.
(21) we obtain

(F„(t)F„(t') ) =
—,'[2(Ff (t )F,(t') )

+ (Ff (t )Ff (t') ) e

Equation (30) clearly demonstrates the noise-reducing
feature of the atomic coherence. Remarking that the
atomic coherence can be written as Ip, b I =Qp«pbb the
expression for the phase diffusion can be cast into the
form

D;(to) = p..(1 2p» ) . —
4

(31)

We can now see that for an equal, coherent population of
the two lasing levels, i.e., p„=pb&= —,', the diffusion

coefficient for the amplitude vanishes. This corresponds
to a complete quieting of spontaneous emission noise. In
the case of p&& & —,', the diffusion coefficient even becomes
negative, indicating squeezing of the amplitude fluctua-
tions below the shot-noise limit. For this we recall that
the diffusion coefficients are related to the phase and am-
plitude fluctuations of the field by'

(F„(t)F„(t'))= [p„—2lp, bl sin (g —8)]T(t,t') .
2

(26)

(tb.r) =
—,'+
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(bcp) = +1

4n c}

rO, VO

(33}

Here d, and d„are the drift coefficients which can be
taken from Eqs. (19} and (20}, respectively. The terms
1/4 and 1/4n are the contributions from the vacuum
fluctuations. They arise from the commutation relation
between the operators a and a and account for the fact
that our equations for r and y correspond to normally or-
dered products of the operators. ' We finally conclude
that the phase Auctuations in the polarization-
correlated-emission maser are the same as for an ordinary
phase-locked maser. Thus there is no phase noise reduc-
tion due to the injected atomic coherence. On the other
hand, the amplitude noise caused by spontaneous emis-
sion can be totally suppressed. For p» & —,', the ampli-

tude Auctuations for the polarization-correlated-emission
maser can be made even smaller than the vacuum limit.

a = ——a —ig +8(t —t )cr'+F~ — y
2

J

o '= —I o'+ige(t t —)cr~a+F',

o ~ = —ro,'+O(g)+A,

(35)

(36)

(37)

o' (t)= cr(it )eJ

+ dtet' —t eJ

where A' represents noise. Our restriction to an analysis
up to second order in the coupling constant allows us to
keep only the lowest-order term in Eq. (37). The parame-
ter I is the atomic decay rate and FJ the corresponding
Langevin noise force. The noise correlation function for
F, which is relevant in this context, is given by'

((F') (t)F'(t'})=r(cT„)5(t—t') . (38)

As a first step to the solution of the above equations we
formally integrate Eqs. (36) and (37) and obtain

B. Laser X [igo,'(t')a(t')+FJ(t')], (39)

We again start with the Hamiltonian in Eq. (1), but
now include the atomic decay by coupling the atoms to a
heat reservoir. The interaction function f(t, tj ) then
specifies only the start of the interaction for the jth atom
and is given by

', (t)=e ' c',r(t, ) +O(g) +JV, (40)

We next substitute these results into Eq. (35}for the elec-
tromagnetic field operator and find

1, t~t
0 otherwise .(t, t )=e(t —t )= (34)

—Pt —t )

a = —+a igp„—g 8(t t, )e—
J

We can now write down the Heisenberg equations of
motion for the field and the atomic operators. We again
chose a rotating coordinate system in which all operators
are slowly time varying with

+g'f' dr'ye(t —t, )e(t' —t, ).
J

X cr', (t, )a (t ')+F, , (41)

F, =F ig +8—(t —t )e ' [oj(t )
—(,oj(t ))] ig f —dt'+8(t' —t )8(t t )e " ' 'F~—(t') .

J J

(42)

O.L
a = —iSLp, t,

—~a + (p„—pbb )a +F, , (43)

in which we made the definition

In Eqs. (41) and (42) we have also added and subtracted
the average value of the driving term which involves the
atomic dipole operators cr~(t, ). This enables us to
separate the drift from the noise contributions. We now
follow a similar procedure as in the maser case. We as-
sume that the radiation field is slowly varying during the
lifetime of an atom and approximate a ( t '

) and a ( t ).
Furthermore, we again substitute o ~ ( t, ) by p„—p„b
which neglects the correction terms of higher order in the
coupling constant. The remaining sums over all atoms
are then carried out in Appendix B. The final result is

L p L (44)

The parameter SI again specifies the strength of the driv-
ing term, while aL is the linear gain coefficient for the
laser. When comparing Eq. (43) with the corresponding
result for the maser case [Eq. (12)] we see that the drift
terms for the electromagnetic field are the same. There-
fore the maser analysis of the steady-state values for
phase and amplitude, as given by Eqs. (19},(20) and
(23),(24), is also valid for the laser case. The only
difference is the definition of the driving and linear gain
parameters S and e which we denoted with the subscripts
M and L for the maser and laser, respectively. We now
turn to the evaluation of the noise correlation function
for F„
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(F,(t)F, (t')) =(F (t)F (t'))+g +8(t t—, )B(t' t—k)e ' e " (((o') o")—((cr ) ) (cr"))
j,k

I

+g f ds f ds' g 8(t —t )8(s —t )8(t' —tk)8(s' t&
—)e "+' ' ' '(F t(s)F"(s'))

j, k
I

=g Q B(t t —)B(t' t —)e ' (p„—Ip, bI )

J
I

+g f ds f ds'+8(s t )8—(s. ' t —)e "+' ' ' 'I (a„(s))5(s—s') .
J

(45)

(F.(t)F.(t') ) = p.',E(t, t'),
2 ab (47)

In the last step we have again made use of the fact that
different atoms are independent of each other. We re-
mark that the operator cr„has an equation of motion
similar to that of the operator o, in Eq. (40). Therefore—Ps —t j

we can make the substitution (o„(s))=p„e
+O(g). The remaining sums over the atoms and the
time integrations in Eq. (45) are then carried out in Ap-
pendix B. The result is

(Ft(t)F.(t )) =~,(p..—
—,'Ip.bI')z(t, t') .

The function E(t, t') is an exponential time correlation
function which we defined in Appendix B.

We see that the main difference between this result and
the corresponding maser result [Eq. (15)] is a reduction of
the atomic coherence term by a factor of —,'. This effect is
caused by the additional noise contribution introduced by
the atomic decay.

In a similar way, we find

D Paa ~

4n

D-= 4'(p- Ip bl'-)

(52)

(53)

We observe that the phase diffusion constant is the
same as the one for an ordinary laser. Therefore we
again find no noise reduction in the phase due to the
atomic coherence. In contrast, the amplitude diffusion is
affected by the atomic coherence, however the reduction
is less than in the maser case. Comparing the above re-
sults to the corresponding maser equations (29) and (30)
we see that the term proportional to Ip, bI is reduced by
a factor of 2. This constitutes an important difference be-
tween the polarization-correlated-emission maser and
laser. The maximum noise reduction one can achieve in
the polarization-correlated-emission laser is a total elim-
ination of the spontaneous emission noise in the ampli-
tude. A squeezing of the fluctuations beyond the shot-
noise limit, which was found in the maser case, is not
present in the case of a laser.

(F,(t )F,(t') ) = p2b, E(t, t') . (48) III. DENSITY-MATRIX ANALYSIS

We now want to discuss the phase and amplitude
diffusion in the polarization-correlated-emission laser.
This is done in an analogous way as in the maser case.
We identify the operator a with the classical variables
re'" and obtain the relations (21) and (22) for the noise
forces F„and F„. Then we approximate the time-
correlation function by a 5 function

In this section we present an alternative approach to
the polarization-correlated-emission maser and laser
which offers a different point of view for these radiation
devices. Again, we discuss the maser and laser case sepa-
rately.

A. Maser

E(t, t') —5(t t '), —

and find the diffusion coefficients to be

(49) We start with the Hamiltonian given in Eq. (1). The
equation of motion for the density operator in the in-
teraction picture then obeys the equation

CtL
2 1+cos2(y —8)

Paa Pah 24n

p= ig QN(—t, t, )[V,p] .
J

(54)

[p..—Ip.b I'«(qs—~ )]
4n

(50)
As we are mainly interested in the electromagnetic field
of the system, we trace over the atoms and find the equa-
tion for the reduced density operator for the field:

z 1 —cos2(q& —0)
p.. I p.b

I'—
[p„—Ip,„I sin (y —0)] . (51)

We can now substitute the steady-state value for the
phase and obtain our final expressions for the diffusion
coefficients:

pf= ig QN(—t, ti)Tr„,[V, ,pj~] . (55)
J

Here pf is the density operator traced over all atoms but
the jth one. For p, we find from Eq. (54)

J

p)~= igN(t, ti )[ Vj,pj ] ig g—N(t—, tk )Tr q k[ Vk, pj k ],
kWj

(56)
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in which p k is the density matrix which has been traced
over all atoms except for the jth and kth one. Note that
in the above equation we explicitly accounted for possible
correlations between difterent atoms. This enables us to
demonstrate that the noise-reducing coherence terms,
proportional to ~p, & ~, are single-atom effects and do not
originate from a correlation among atoms. Integrating
Eq. (56) yields

p, (t ) =p, (t, )
—ig f dt'N(t', t, )[ V, ,p, (t')]

ig dt g N(t tk )T rgk[V kpj, k(t')]
k

kWj

If we substitute this result into Eq. (55), we get

(57}

p~= ig—QN(t, t )Tr,[V~,p~~(t~)] —g f dt'QN(t, t )N(t', tJ)Tr„,[V~, [V, ,p~~(t')]]
J

—g QN(t, t, ) f dt' g N(t', tk)Tr„,[V,Tr„k[Vk,pJ k(t')]] .
k

kWj

(58)

We next use the fact that at the initial injection time t the atomic and field density operator for the jth atom factorizes

p, (t, ) = p~(t~ )8p (t~ ) .

As a further step we express p~(t ) in terms of p (t ). For this we integrate Eq. (55), solve for p (t ), and obtain

p~(tJ ) =p~(t )+ig f dt' g N(t', tk )Trq k[Vk, p~(t')] .
k

Substituting Eq. (59) together with Eq. (60) into the expression (58) leads to

p~(t)= ig Q—N(t, t )Tr„,[V,p (t )gp~(t)] —g f dt'QN(t, t )N(t', t, )Tr„,[V, [V,p~(t'))]
J J

—g g N(t, t~) f dt' g N(t', tk)Tr„,[VJ,Tr„k[Vk,p, „(t')]]
j j k

kWj

+g QN(t, t, )f dt'QN(t', t„)Tr„,[V, ,p, (t, )Tr„k[V„, p„(t')]] .
I k

(59)

(60)

(61)

If we again restrict ourselves to terms in second order in the coupling constant g, this expression can be greatly
simplified. We note that for jAk

p, (t, )STr„k[Vk, pk(t')]= Tr„k[ Vk, pJ(tJ )pk(t')] =Tr„k[ Vk, p, k(t')]+0(g ) . (62)

Substituting this relation into Eq. (61) we find that the double sums, which involve pairs of atoms j,k with jWk, cancel
in second order in the coupling constant. Thus the correlations between atoms do not contribute in a linear analysis for
the electromagnetic field.

If we further use the relation

pJ~(t') =p, (t, )ep~(t, )+O(g ) =p, (t, )p~(t )+O(g ),
we find for Eq. (61) the simpler expression

p~(t)= ig QN(t, t —)Tr„,[ Vp, (t, ) p(it)] g f —dt'QN(t, t, )N(t', t, )Tr„,[V, , [V,p, (t )p~(t)]]
J J

+g f dt'QN(t, t )N(t', t, )Tr„,[V, ,p (t, )Tr„, [V.,p, (t )8 p(t)]] +O(g ) .
J

(63)

(64)

The traces over the atomic variables appearing in Eq. (64) have been evaluated in Appendix C and the remaining sums
are found in Appendix A. We then obtain the following master equation for the field:

p = i~M[p.~(a p
— pa )+p~. (a—p p'a))—

[(p„—~p, z~ )(aa "p +p aa —2a p a)+(p&& —
~p, &~ }(a"ap +p a a —2ap at)

—p,&(a a p +p a a —2a p a ) p&, (aap +ptaa 2—apnea)] . — (65)

So far we have only considered the change in the radiation field due to the atomic gain. In order to take the cavity
losses into account we have to add the loss contribution'
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p(„=—+(a ap +pfata —2ap a ) . (66)

We now want to convert the master equation for the reduced density operator into a corresponding Fokker-Planck
equation. This enables us to make easy comparison with the results of Sec. II. We again choose the normal ordering of
the operators a and a and use the Glauber P representation' defined by

pf(t)= f d BP(6,6'*,t)I@& &@ . (67)

Substituting Eq. (67) into the master equation for the field density operator we arrive after a straightforward calculation
at the following Fokker-Planck equation:

aP(@,e*,t) a
at a~ t~Mpab @+ (p«pbb)@ +c c + AM(p Ipat

2 2 ae, a@'

+ p b+ pb, P(C, 6' t) .
/@2 2 A@42

Changing to polar coordinates by defining 6 = re'~ we obtain the equivalent Fokker-Planck equation

BP(r yt) 1 8 8 1 8 1 8
(rd„)— d + — (2rD„„)+— (rD„„)+ D P(r, rp, t) .

Bt r Br "
Bg) ~ r rdrp "" r gr'

(6g)

(69)

d„=SMlp, b Icos q
— 8—— T

2

+M l+ (p« —
pbb )r + D~z, —

2
(70)

d& = — Ip,b I
sin y — 8—— 2——Dr~ &

(71)

The drift and diffusion coefficients which appear in Eq.
(69) are given by

B. Laser

We start from the Hamiltonian (1), in which f(t, t ) is
the step function e(t t ), a—nd derive an equation of
motion for the total density operator. Here we also have
to take into account the atomic decay from the levels a
and b to some ground-state level c. This is done in the
standard way by coupling the atoms to a heat reservoir.
If we make the simplifying assumption that the decay
rates for the two upper levels are equal, the equation of
motion for the density operator in the interaction picture
is given by'

p= —igg e(t —t, )[v„p]

[p 2lp bl sin (y —6))],

~ [p„—2lp, b I
cos (y —8)],

4~2

+MD„=—
Ip, b sin2(y —8) .

(72)

(73)

(74)

——(Ia & &alp+p a & &a I+lb &

r
2

&& && Ip+plb & &bl —2lc & &a Ipla &

X&cl —2lc& &blplb& &cl)i, (75)

in which c denotes the inert ground state of the atoms.
Tracing Eq. (75) over all atoms results in an equation for
the reduced density operator for the field

If we again neglect in Eqs. (70) and (71) the small, noise-
induced drift terms we find perfect agreement with the
results of our previous Langevin analysis.

pf= ig + e(t —t, )Tr—„,[ V, ,pf] .
j

For p- we find

(76)

p, = t'ge(t t, )[V),p&]
—ig y—e(t —t„)Tr—„,[V„,P, „]

k
kXj

——( la & & a Ip+pla & & a I+ Ib & & b Ip+plb & & b
I

—2lc & & a Ipla & & c
I

—2lc & & b Ipl& & & c
I ), .

r
(77)

The matrix elements of pf that we need for Eq. (76) only involve the atomic levels a and b. Therefore we can restrict
ourselves to those two levels and simplify the contributions of the radiative decay in Eq. {77) by writing the effective
equation
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pf= —igB(t —t )[ V,pf] —lg'g 8(t —
tk )Tr„„[Vk, pfk ]—I pf .

k
kWj

It is useful in the following analysis to define the new operators

(78)

(79}

The equations of motion (76) and (78) then become

p = ig—+6(t t )e — ' Tr„,[V,p, ],
J

—pf= —igB(t —t )[V,pf] —!gg '8(t —t„)Tr„[V„,p, k] .
k

kWj

(80)

(81)

These equations are very similar to the Eqs. (55) and (56) in the maser case. Therefore we can follow analogous steps
and arguments as for the maser and find the expression

p = ig g—B(t—t~)e ' Tr„,[Vi,pj(t, )pf(t)]
J

—g J dt'+6(t —t )B(t' t )—e ' Tr„,[V,[V,p (t )8 pf(t)]]
J

+g f dt'+8(t t )8—(t' t~)e — ' Tr„,[V,p (t )8Tr„,[V„p (t )gp (t)]]+O(g') .
J

(82)

If we compare Eq. (82) for the laser with the corresponding maser result (64), we notice that the commutator expres-
sions are identical. However, the integral kernels are different. Using the results from Appendixes B and C, we find
from eq. (82) the master equation for the reduced density matrix to be

p = tSL[p.b(a —"p p'a )+p»—.(ap' p'a)]—
[(p„,'~p, b~ }(aa p +p aa —2a p a)+(pbb —

—,'~p, b~ )(a apf+pfa a —2apfa )

—
—,'p, b(a "a p +p a a 2a pfa )

—,'pb, (aap—f+—paa —2apfa)] .

The coeIIlcients SL and aL are the ones defined by Eq. (44). If we again add the cavity losses to the master Eq. (83) and
convert it into a Fokker-Planck equation we readily get

as, a(8,8*,t)=
dt

CXL 2—iSLp.b
— @+ (p.. pbb)@ +c c—+ [ctL(p..—

—,
' p.bl')]0 2 2 QQ a~~

1 8+—
2 BC' 2 p, b +c.c. P(@,6', t) . (84)

Comparing these drift and diffusion coeScients with the
corresponding Eqs. (43) and (46)—(48) of the Langevin
theory in Sec. III, we find a perfect agreement. Further-
more, we note again that the terms proportional to the
square of the atomic coherence differ by a factor of 2 in
the maser and laser case.

IV. INHOMOGENKOUS BROADEMNG

So far, we only considered the case in which the radia-
tion frequency is resonant with the center of the homo-
geneously broadened atomic line. We now want to relax
these constraints and investigate the case of inhomogene-
ous broadening. Because of the similarities between the
laser and the maser results we will only discuss the laser

a = —i Qa ——a —ig g 8(t —t )o~+F, ,y
2

J

(86}o J= ice cr' —I o'+ig6—(t t )o'a+F—
J 1 Z

Next, we eliminate the quickly time varying contribu-
tions by moving into a rotating frame. We define

a(t)=e 'a(t), oj(t}=e 'o J(t), (87)

in which coo is the frequency of the laser field. Substitut-

in detail and quote the corresponding maser results.
We start with the general Heisenberg equations of

motion for the laser
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ing these expressions into the Eqs. (85}and (86}we obtain
the following equations:

—cr'= —[I +i(co —co }]cr +igB(t —t )cr a+F
dt 0 J Z J

—ct = —i(& —co )a —~a i—g g B(t t —)cr '+F
dt ' 2

J

(88)

(89)

For convenience we will drop the tilde on the operators
in the following discussion. We next integrate Eq. (89)
and substitute the result into Eq. (88). We then obtain

—[I +i(a) —coo)](t —t ) ~a= i(—Q co—)a —~a ig—QB(t t —)e ' ' ' crj(t )0 J Jj
r

+g t' t —t t' —t e ' ' cr, t'a t'
J

I

+F —ig f dt'QB(t —t, )B(t' —t, ) ' ' F,(t') .
J

(90)

We can now make analogous simplifications as in the homogeneously broadened case. Neglecting terms of higher order
2

—I(t —t )
than g we can substitute a(t') by a(t) and o, (t') by (p„—p» }e ' [see the discussion following Eq. (42)]. We
then find

—[I +i(co —coo)](t —t )
a = —(0—c00)a —+a ig —gB(t tJ )e —' ' ' p, g

J

with

+g' t et tj et tj e 'e ' ' p„—p„«+I t
J

(91)

I

F,(t)=F ig f —dt'QB(t' —t )B(t—t )e ' F&(t')
J

ig +—B(t t )e —' ' ' [cr'(t, )
—(crj(ti))] .

J

(92)

r„f dt
J k

atoms frequencies

(93)

Here rk is the injection rate of the kth frequency group.
If pk is the probability of an atom to have the frequency
coj„ it is easy to see that r& =Rpk with R being the total
atomic injection rate.

In Eqs. (91}and (92) we have again added and subtracted
the average value of the driving term.

We proceed to evaluate he sum over all the atoms. We
note that every atom has two characteristic features: the
injection time t and the frequency co . Therefore we first
group the atoms according to different frequencies cok

which corresponds, for example, to grouping the atoms
into various velocity groups in the case of Doppler
broadening. Then we integrate over the different injec-
tion times in each subgroup. Thus the sum over the
atoms is substituted by

We have placed the detailed evaluation of the sums in
Eq. (91) over all atoms in Appendix D. The final result is

a = i (0 coo)a—— —a iSLp,b( W—,
—i'�)-

aL+ ( W, —iW, )(p.. p»)a+F.—, (94)

W = 1 1

1+ 2 1+ 2)1+xI, X

2 XPk 2 ( 2)

(95)

(96)

We next calculate the noise correlation functions. Fol-
lowing the same procedure as for the homogeneously
broadened laser, we find

in which 8'& and 8'2 denote different weight factors. If
we define xk =(cok —coo)/I, these weight factors are
given by

—[I —i(a) —coo)](t —t ) [I +i(co —coo)](t' —t )

&F.'(t)F.(t')) =g'(p..—
~p., ~') yB(t —t, )B(t —t, )e ' e

J

+g p„f ds f ds'+ B(s t )B(s' tj )e— —
J

[I +t'(co ~ ctpo)](t' —s') —I (s —t }
Xe ' ' Ie '(i(s —s') . (97)
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The remaining sums and integrals are again evaluated in

Appendix D. The result is

(F.(t)F.(t')) =at (p..—
—,'Ip.~I')W, 6(t —t') . (98)

In a similar way, we find the other correlation functions
to be

This is the same as in the homogeneously broadened case,
except for the weight factor 8'I. Therefore the locking
phase of the laser is still given by go=0 —m/2. Substitut-
ing this angle into the diffusion coefficients for phase and
amplitude, we get

and

(F.(t)F.(t')) = p„( W, iw—, )5(t t')—,
0,'L

(99)
Dq, q,

= [paaw& p pabl (W, —W, )],
4n

D„„= [p„W, —
—,'Ip, bI (W, + W3)] .

4

(107)

(108)

(F,(t)F, (t') ) = p'„( W, +iW, )5(t t') .—ba (100)

The weight functions 8'3 and W4 are defined by

1 —x
(1+ 2)2

2x

(1+x )

(101}

(102)

The detailed calculation of the last two correlation func-
tions is also presented in Appendix D. Comparing the re-
sults given by Eqs. (98)—(100) with the corresponding
equations for the homogeneously broadened laser
(46) —(48), we notice that the only difference are the
weight factors 8'„8'3, and 8'4 which are due to the fre-

quency distribution over the atoms.
We can now use the above results to find expressions

for the phase and amplitude diffusion in an inhomogene-
ously broadened polarization CEL. Proceeding in the
same way as for the homogeneous case we find

D„„= Ip„W, —
—,'Ip, bI [W, —W3cos2(8 —y)

D„= [p„W, —
—,
' p, b I [ W, + W3cos2(8 —g)

4n

+ Wzsin2(8 —
q&)] I, (103)

W, = =P 0 dx =mP(01 oo

1+x -~ 1+x

=P 0 dx 22=0.1 —x 1 —x
(1+x ) (1+x )

(109}

(110)

Substituting these results into Eqs. (107) and (108) yields

w)(p..—
—,
' Ip.b I'},

4n

We see that the inhomogeneous broadening of the
atoms does not destroy the noise-reducing effects of the
atomic coherence. In fact, it leads to a redistribution of
the Ip,„I

terms between the phase and the amplitude.
To illustrate this effect let us discuss the following two
cases.

(a) Narrow distribution (o((.1). In this limit, we can
approximate P(x ) by 5(x ), which corresponds to the
homogeneously broadened case. As expected, we find

S 3 1 and we recover the results of the homogene-
ously broadened laser given by Eqs. (52) and (53).

(b) Broad distribution (ct ))1). In this case, the distri-
bution function P(x ) does not vary much over the range
over which the functions 1/(1+x ) and (1 —x )/(1+x )

are appreciably different from zero. We can therefore
make the approximation

—W~sin2(8 —(p)]] . (104) p (112)

In order to obtain specific results for the diffusion
coefficients let us assume that the frequency distribution
of the atoms is a Gaussian, centered around an atomic
frequency co, . For simplicity we assume this frequency to
be equal to the cavity frequency 0,. It is easy to see that
in such a case the laser frequency co& also coincides with

Q. If we again use the notation x =(co—coo)/I, the fre-

quency distribution P(x ) acquires the form

P(x }= 1 —x /20.

(2 2)1/2
(105)

in which o. is the characteristic variance of the distribu-
tion. Note that cr is essentially the ratio of the inhomo-
geneous to the homogeneous linewidth. We immediately
see that because of the symmetry of P(x ) around the fre-

quency coo the weight factors 8'2 and 8'4 are equal to
zero. The drift term for the electromagnetic field in Eq.
(94) then simplifies to

We find the unexpected result that we have equal noise
reduction in phase and amplitude due to the atomic
coherence. This can be most easily understood by recal-
ling the results for the homogeneously broadened laser in

Eqs. (50) and (51). The broadband distribution over the
atomic frequencies has essentially the effect of eliminating
the phase-dependent contribution of the Ip, bI terms,
which enter the expressions for phase and amplitude
diffusion coefficients with opposite signs. The remaining,
phase insensitive part of the atomic coherence then leads
to equal noise reduction in both quadratures.

We finally quote the results for the inhomogeneously
broadened polarization-correlated-emission maser. Fol-
lowing analogous steps as in the laser case, we find the
equation of motion for the field operator a to be

a = —i(fl too)a ——a— iSMp, b( W&
—i WM2—)

O.I
d, = —isl p, I, 8'I —~a+ 8'](p„—pbI, )a . (106)

M
( ~ M -~M)( )+F

2
(113)
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with

and

sinx M 1 —cosx

1 —cosx —M x —sinx

(114)

(115)

TABLE I. Diffusion coefficients for phase and amplitude of
the electromagnetic field. The specified cases are as follows: the
ordinary, incoherently pumped maser and laser, the resonant
polarization-correlated-emission maser and laser and the inho-
mogeneously broadened polarization-correlated-emission maser
and laser. The results for the second and third case are valid for
the low-intensity regime and for a regular injection of the
atoms.

The noise correlation functions are found to be

(F,(t )F,(t') ) =aM(p„—Ip„I')W, 5(t t')—,

(F,(t)F, (t')) =aMp, b(Wq iW—~ )5(t t'),—

and

(F,(t)F, (t')) =ajitpb, ( W3 +i W~ )5(t t'),—

(116)

(117)

(118)

Diffusion
coefficients

Ordinary

Resonant

D„,

Maser

a
paa

4n
a
4 paa

a
paa

4n

Laser

a
paa

4n
a
4 paa

a
paa

4n

M COSX —COS X2

3— (119)

in which the weight functions 8'& and W4 are defined
by

polarization

Broadened

polarization

D„„

D„„

—(p..-21p.b I')

Paa Pab I
( —

I

")
4n
—(p..—

I p.&
I')

—(p..—
I p.b I')

paa 2 ~pab(
1 f I2)

—(p.. ,' I p.-& I'-)

2 sinx —sin2x
4

X
(120)

—W~ sin2(8 —y)] j . (122)

Comparing these expressions with the corresponding
ones in the laser case [Eqs. (103) and (104)], we find that
both results are completely analogous, apart from a fac-
tor of 2 in front of the Ip, b I terms. This factor is a
significant difference between the coherently pumped
laser and maser and was also observed in the homogene-
ously broadened case.

The discussion of the diffusion coefficients (121) and
(122) is completely analogous to the laser case. In partic-
ular, for a broadband distribution we find

From the correlation functions (116)—(118), we can calcu-
late the phase and amplitude diffusion coefficients for the
inhomogeneously broadened maser case. The result is

&M
D„~= [p„W, —Ip, b I [ W, + W& cos2(8 —q)

4n

+ W~ sin2(6 —p)]], (121)

+M
D —

[
WM I2[WM WM 2(g )

diffusion coefficient of the homogeneously broadened
laser or maser is unaffected by the injected atomic coher-
ence. In fact, its value corresponds to that of an ordi-
nary, incoherently pumped laser or maser. On the other
hand, the injected atomic coherence can lead to a reduc-
tion of the amplitude diffusion coefficient. We can
achieve a complete elimination of the spontaneous emis-
sion noise in the field amplitude for the laser. In the
maser case this noise reduction is twice as large as in the
laser case. In fact, we can get negative values for the
diffusion coefficient D„, which corresponds to a squeezing
of the amplitude fluctuations.

Furthermore, we have considered the effects of inho-
mogeneous broadening. We find that for a broad atomic
linewidth the noise reduction in the diffusion coefficients,
which in the homogeneously broadened medium was only
effective for the amplitude coefficient, is now distributed
between the phase and the amplitude. All of these results
are summarized in Table I.

APPENDIX A

Dqq Wi (p Ip
4n

(123) In this appendix we evaluate the sums over the notch
function N(t, t ) which appear in Eq. (11) of the maser
case:

D„„= W i (p„ lp, & I4
(124)

V. SUMMARY AND DISCUSSIGN

which corresponds to equal noise reduction in both the
amplitude and the phase of the electromagnetic field.

QN(t, t, )=R f dt, N(t, t, )=R f dt, =Rr .
Qo

J

Furthermore,

QN(t, t )V(t', t )=R f dt N(t, t )N(t', t )

(Al)

We have analyzed in detail the effect of atomic coher-
ence for the polarization-correlated-emission maser and
laser in the low-intensity regime. We find through a
Langevin and master equation analysis that the phase

=Rr'T(t, t') . (A2)

Here T(t, t') is a triangularly shaped time correlation
function which we defined as
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N(t, t, ) & E ( t, t')

I"

2

t-r
T I ME

TllVIE

T(t, l') i&

FIG. 3. Exponential noise correlation function E(t, t').

TIME
t+~ t

(B3)

(b)

FIG. 2. Integration over the overlap between N(t, t, ) and
N(t', t, ), as shown in (a), yields the triangularly shaped correla-
tion function (b) T(t, t').

E(t, t')= e—
2

(B4)

The function E(t, t ) is an exponential time correlation
function, defined by

t+7.—t', t ~ t' ~ t+~ .
(A3)

We have again normalized the time correlation function
such that its integral is equal to l. A sketch of E(t, t') is
shown in Fig. 3.

Note that T(t, t ) is normalized such that its integral is
equal to 1. A sketch of this function is given in Fig. 2.

APPENDIX B

In this appendix we evaluate the sums which appear in
Eqs. (41), (42), and (45):

APPENDIX C

Here we calculate the commutators of Eqs. (64) and
(82). For this we use a matrix representation for the
atomic operators. If we choose the two atomic levels a
and b as a basis, the atomic dipole operator o.J can be
written as

+B(t t )e ' =R—f dt B(t t )e—
J

0 0
1 0 (C 1)

R
r (Bl) The interaction part V, of the Hamiltonian then acquires

the form

Furthermore,

—1(t—t )g B(t —t )B(t' —t )e
J

=R f dt, B(t t, )B(t' —t,.)e—
0 a

a 0, '

The initial condition for the jth atom is given by

Paa Pab

(C2)

(B2)
p(t )=

Pha Pbb
(C3)

Finally
Using Eqs. (C2) and (C3) the commutators and traces can
be easily evaluated
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T „,[V, ( )apf]
fpb, ap p bp a pbbap p p a

Paaa P PbbP a Paba P PbaP a

p (a p p )+p ( p p (C4)

dence of the field operator p .
In a similar way, we find

Tr„,[ V, , [ V, ,p, (t, )g pf]]

=p,„(aa p +p aat —2atpfa)

+pbb(a ap +p a a —2ap a ) (C5)
in which we have suppressed the explicit time depen- and

Tr, [VJ,PJ(~z )STrz, [VJ,P&(ti )pf]]= Ip, (, I
(aa pf+pfaa —2a p~a+a apf+pfata —2apfat)

+p, (, (a a pf+p a a —2a p a )+p2b, (aap +p aa —2ap a) . (C6)

APPENDIX D
1

W) = Xpk1 k (D5)

In this appendix we evaluate the various sums and in-
tegral appearing in the calculations for the inhomogene-
ously broadened polarization CEL. For this we again
note that we can group the atoms according to their fre-
quency and their injection time. Assuming a regular in-
jection of the atoms, we can then make the substitution

x
2 (D6)

in which ( ) denotes an average over the variable x. For
the expression of the linear gain term in Eq. (91) we ob-
tain

«„J dt, .

J k
atoms frequencies

(Dl)

Xe
—[I +t(cu —

cu )](t —t')

Here the integration over the injection times t is per-
formed in each frequency subgroup. %e can now evalu-
ate the sums and integrals in Eqs. (91) and (97):

t, —[I + t(co~ —coo)](t —t')=R p& dt'e
k

X I dt, +B(t t, )B(t' t, —)—
J

J

—I(t' —t )

Xe

k

1=R p( I +i (t)2&
—coo)

R
(W, —iW, ) .

p2
(D7)

h (t, t') ji

The weight functions W, and W2 are defined by

(D2)
e-r/t-t'/

I 2

8'] = T.Pk r2+( )2
(D3)

I (~1, —coo)
W2= YPk I'+(co —co )'

(D4)

If we adopt the shorthand notation xk =cok —coo/I, then
Eqs. (D3) and (D4) can be written as FIG. 4. Correlation function h(t —t') as defined by Eq. (D9).
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For the noise correlation functions we have to evaluate the following sums:

[r i ( ~—,)](t t—, )
—[r+ (,—~, )](i —i, )Bt t—Bt' —t e ' ' 'e

J

=R g pke
" ' I dt B(.t t —)B(t' —t )e

k

R ~ —rjt —t l

I ~k coP)(t t )

2r zpk
k

gpk [cos[(~i,—a)0)(t t'—)]e ' ' '+i sin[(a)„—coo)(t —t')]e
k

(D8)

Let us discuss the time dependence of the frat terms in the last expression of Eq. (D8). The frat term is given by the
function

h(t t') =—e ' ' 'cos[(cok —coo)(t t')]—, (D9)

which is sketched in Fig. 4.
If the atomic lifetime I is very short as compared with the time scale of interest, we can make the Markov approx-

irnation:

h(t t')= I— drh(r) 5(t t')=—, , 5(t t') . —(X) 2r
cc I +(cok —coo)

Under the same approximation we 6nd

e "' ' 'sin[(tok coo)(t t—')]=0 .—

Substituting Eqs. (D10) and (Dl 1) into (D8) yields

(D 10)

(D 1 1)

R
1

W 5(t —t') . (D12)

Finally we have to evaluate the integrals and sums which appear in the coherence terms of the noise correlation func-
tions (F,F, ), (F,F, ), and (F,F, ) [c.f. Eq. (97)]:(, ,

—[r—i(~ —~,)](i—s) [r+i(~—-~, )](i —s ) r(s t, )— —

J

k MO)( t—t') min( t, t'), , —P(t+ t' —2s

k

R W' 5(t —t') . (D13)

Furthermore,

[r+i(~ ——~, )](r —i ) [r+i(~ ——~, )](i' —i )Bt t Bt' t e— ' ' — 'e
1

R

k

k O
r —[I +i(cu —co )]jt—t'j

" I'+i(cok —mo)

R g pk . cos[(co& coo)(t t')]e ' —' ' i si—n[(co& —coo)—(t t')]e-2r „r+i~„—~,
R
2I

r 2r . 2(~k —~o)
Pk r+$(~„—~Q) r2+(~ ~ )~ r~+(~ ~ )~
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(D14)

In the last step we have defined the weight function 8 3 and 8'4 as

1 —x
(1+x )

2X

(1+ 2)2

(D15)

(D16)
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