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An investigation of the foundations of strong-field theories of the Keldysh type is undertaken. It
is found first that the Volkov solution, upon which the Keldysh approximation depends, exists

unambiguously only in the relativistic case. Accordingly, a fully relativistic theory of atomic photo-
ionization is formulated from first principles. A strong-field approximation (SFA) is expressed,
based only on the proposition that the photoionizing field dominates the atomic potential in the

final state. The nonrelativistic limit of the SFA gives exactly one of the known Keldysh-type
theories, but the original Keldysh theory itself is found to neglect some fraction of the strong-field

effects. It is shown on a variety of grounds that A' terms must be fully retained in Keldysh-type
theories. Important in this matter are the proper application of asymptotic conditions, the inter-

changeability of A p and A terms, and the consistent reduction to the nonrelativistic limit.

I. INTRODUCTION

Atomic photoionization in strong fields is treated from
first principles. The theory developed here is based solely
on the dominance of the applied field over the atomic po-
tential in the final state in photoionization. It is referred
to as the strong-field approximation (SFA). The formal
structure is suggestive of the well-known Keldysh' ap-
proximation, in which the transition amplitude is approx-
imated by treating the effect of the atomic binding poten-
tial on the detached electron as an infI. uence small with
respect to external field effects. The full development
given here shows, however, that some field-dependent
terms are lost in the original Keldysh formulation be-
cause they cross-couple to atomic potential terms. This
is not necessary, and the SFA given here does not have
that limitation. Upon reduction to the nonrelativistic
limit, the SFA reduces exactly to one of the published
versions of a Keldysh-like theory.

The physical problem is formulated from an S-matrix
approach, since this permits a clear statement of the all-
important boundary conditions, and it lends itself to both
nonperturbative and perturbative methods. It is found
that one is led to the Volkov solution, an exact solution
for an electron in a packet of unidirectional electromag-
netic plane waves. It is important to observe that there is
no such thing as a nonrelativistic Volkov solution despite
the reliance formerly placed on such putative solutions.
The point is that a free-particle solution must be valid
over many wavelengths of the field or it is not a free-
particle solution at all. The dipole approximation can be
invoked only when there is justification for it, as when a
true Volkov solution is incorporated into a transition rna-
trix element with a bound-state solution, which
effectively limits the range of the spatial coordinate.
Without the dipole approximation, the only solutions for
a free particle in a plane-wave field are relativistic, and
one must enter the transition matrix element with such a
solution.

To be consonant with the introduction of relativistic
Volkov solutions, it is necessary for the entire formalism
to be relativistic. Furthermore, it is known that
sufficiently strong fields in themselves will induce relativ-
istic motions in free electrons. A theory which under-
takes to be a truly strong-field theory must then be rela-
tivistic in its foundations. The theory formulated here is
a theory of a scalar (or spinless) electron, based on solu-
tions of the Klein-Gordon equation. This is done because
reduction to the nonrelativistic limit can be effected quite
simply and generally. A Dirac theory, fully inclusive of
spin effects, can also be developed. '

The present investigation provides a valuable frame-
work for the clear examination of an issue which is cen-
tral for strong-field photoionization, but which has not
been addressed definitively. That issue is the proper
treatment of the A term. When the dipole approxima-
tion is introduced, this term appears in the Volkov solu-
tion as a purely time-dependent phase factor, and so
there is a temptation to remove it by a contact transfor-
mation. That is shown from three distinct sets of
reasons not to be a proper procedure. This matter is
given prominence here because an examination of this is-
sue serves to clarify the reasons underlying persistent
misinterpretations of the structure of Keldysh-like
theories, and it also serves to emphasize some of the dis-
tinctions between a field-dominated theory such as the
SPA or the Keldysh approximation, and the more famil-
iar atomic-potential-dominated theories. Each of the
three bases on which it is shown that A must be re-
tained is "robust" in itself, and is sufficient cause to retain
that all-important contribution. Taken together, these
three arguments are very powerful.

The first basis for recognizing the need for full reten-
tion of the A term comes directly from the S-matrix for-
malism, which allows one to be very clear about the ap-
plication of proper boundary conditions. The standard
boundary conditions in the S-matrix formalism are
designed to recognize that measurements to assess the
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effects of the field are done in the asymptotic region,
where the field causing the photoionization is not itself
present. Hence the S matrix contains both a fully in-
teracting state and a "reference state" which has no field
interaction at all. Removal of the A term from the in-
teracting state corresponds to a shift in the energy of that
state which can be substantial. Unless the reference state
is also so shifted (which cancels the contact transforma-
tion) there will be a wholly unphysical alteration in the
energy of the system introduced thereby.

A second view of the A problem comes from the rela-
tivistic formulation of the SFA. This negates any possi-
bility of the contact transformation generally invoked to
manipulate the A term, since it is now dependent on the
position coordinate r. When the nonrelativistic, dipole-
approximation limit is taken, very large contributions of
A remain, whose arbitrary removal radically alters
physical predictions. The form of the result before taking
limits must be correct when any seeming ambiguity can
arise. Hence A removal cannot be correct.

A further reason to preserve fully the A term at every
stage of the calculation comes from basic field-interaction
considerations. In a rnultiphoton process, there is no true
distinction between A p and A contributions. At any
order above the first, there are transformations which in-

terchange them. The phase coupling of the A.p and A
terms is vitally important at any order above the first,
and this is shown below to be sustained even in the
weak-field limit. In brief, one cannot properly manipu-
late the A term by itself in a multiphoton problem.

Finally, it must be noted that most arguments for re-
moval of A rely on setting A(r, t ) —+ A( t ) at the outset
of the demonstration. That is rather like trying to ex-
plore the limit as x ~0 of (sinx)/x, or (sinx) /x, or
(sinx )/x by starting with x =0. It is important to apply
the limit properly when exploring the electric dipole ap-
proximation (EDA).

The need for care in formulating the problem and in

applying limiting procedures can be appreciated by not-
ing some of the orders of magnitude associated with basic
field-interaction terms. As a practical example, consider
the CO2 laser environment (10.6 pm) at 10' W/cm . The
e A /2mc interaction term has a magnitude of about 10
keV, as does the e A p/2mc term when evaluated for a
momentum corresponding to the peak of the above-
threshold ionization (ATI) spectrum for a circularly po-
larized field. These field-interaction energies are to be
contrasted to atomic binding energies, which are a
thousand times smaller.

The SFA is a completely formulated theory starting
from exact expressions. In apparent convict with this
picture of a Keldysh-type theory as a strong-field approx-
imation, well founded on first principles, some investiga-
tors have concluded that the theory is internally incon-
sistent or even that it is a weak-field theory. A
feature common to these researchers is that they remove
the A term from the theory. The inconsistencies they
find are the inconsistencies bound to Aow from this step.
Other investigators have undertaken to compare ' a
one-dimensional version of Keldysh-style theories with
one-dimensional numerical models of atomic photoion-

ization, and find that Keldysh methods fare poorly. A
"one-dimensional Keldysh-style theory" would require
use of a one-dimensional Volkov solution, which does not
exist. "One-dimensional Keldysh-style" calculations
differ radically (and unphysically) from three-dimensional
calculations of the very same processes by a true
Keldysh-style theory. "

It is well to emphasize again that the theory to be
developed here is a strong-field theory which differs in

many respects from conventional atomic theory. These
differences can take the form of distinct physical interpre-
tations of the same phenomenon, or they can be impor-
tant quantitative differences. As one illustration of the
former, the phenomenon of peak suppression in above-
threshold ionization is sometimes described in atomic
theory in terms of field-induced atomic energy level
shifts. In a Keldysh-style theory this same phenomenon
arises as the need to supply to the detached photoelectron
its minimal energy of interaction with the plane-wave
field '"

The organization of this paper is that Sec. II is con-
cerned with wave equations. First the free electron in a
plane-wave field is considered (Volkov solution), and then
the complete situation is addressed, with the atomic po-
tential simultaneously present. Section III is devoted to
the development of the transition amplitude. It is first
expressed exactly by way of an S-matrix theory. It is
shown how perturbation theory arises from this formal-
ism, and then the SFA is developed. The nonrelativistic
limit of the SFA is found in Sec. IV. Section V is devoted
to an examination of the A problem from the three
points of view summarized above. Appendix A is dedi-
cated to a derivation of the Klein-Gordon S matrix. Ap-
pendix B gives a simple nonperturbative derivation of the
Fermi "golden rule" starting from the S-matrix formula-
tion, and applied to problems exhibiting the Floquet
property.

II. WAVE FUNCTIONS

A. Volkov solution

The Volkov solution is an exact solution for a free
charged particle in an electromagnetic plane wave. His-
torically, this was first written down for a relativistic spi-
nor electron obeying the Dirac equation, but a minor
modification of this result produces a solution for a rela-
tivistic scalar charged particle obeying the Klein-Gordon
equation. Keldysh-type theories, however, have been
based' on a putative solution to the nonrelativistic
Schrodinger equation with the field rendered in the EDA

2

i' 4(r, t)= —p ——A(t) %(r, t),1 e

Bt
'

2m c

where p is the canonical momentum operator and A is
the vector potential describing the field. The essential
point is that 4 satisfying Eq. (2.1) is not a Volkov solu-
tion. The reason is that a Volkov solLtion must describe
a free particle. It must therefore be applicable over many
wavelengths. It is not correct to restrict the motion to a
small fraction of a wavelength in the original equation of
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motion. However, if one generalizes Eq. (2.1) from A(t)
to A(cot —k r), then there is no known solution to Eq.
(2.1) so generalized. To find an unambiguous free-
particle solution, it is necessary to employ the only true
Volkov solutions, which are relativistic. Reduction to
the electric dipole approximation and the nonrelativistic
limit cannot be done directly in the Volkov solution,
since there is no ab initio justification for doing that.
That justification comes about only when the Volkov
solution is folded together in a transition matrix element
with a bound-state solution for the electron. The transi-
tion matrix element must be entered with a proper solu-
tion to the equation of motion.

The Volkov solution to be employed will be for a scalar
particle, since it is much more transparent to see how the
EDA and nonrelativistic limits come about in that case
than it is when working with the spinor Dirac solution.
Units with A= 1 and c = 1 will now be employed, and the
relativistic conventions and notation of Bjorken and
Drell' will be adopted. In brief, these conventions are
that four-vectors bear Greek indices that range from 0 to
3, and a time-favoring real metric is used. An inner prod-
uct is given by, for example, p.x —=p„x"=p "x„
=Et —

p r; where the energy E and three-momentum p

are the time and space parts of the four-momentum p",
and t and r are time and space parts of x". The Klein-
Gordon equation in the presence of a field described by
the four-vector potential A" is

[[id„e—A„(x)][id" e—A "(x)]—m ]ql(x)=0, (2.2)

where functional dependence on x refers to the four-
vector x". Equation (2.2} may be rewritten with interac-
tion terms separated as

(8"8„+m )ql(x) = —V„o(x )4(x), (2.3}

where V~o(x) is defined by

VKo=ie(B„A "+A "8„)—e A„A", (2.4)

in terms of the abbreviated notation 8"=—8/Bx„and
8„—=8/Bx".

When the vector potential AI' represents a packet of
electromagnetic plane waves all propagating in a single
direction, an exact solution of Eq. (2.2) is given by either

kx , eA p e A A4'+'=(2EV) '~ exp ip x—i d—(k x')
p k 2p k (k.x')

(2.&)

or

eA p'=(2EV) '~ exp —ip x+i d(k x')
k x p'k

e A A

2p k (k.„')
(2.6)

lim 4'+ '(x) =4(x),
k X —oc

lim 4' '(x) =4&(x) .
k.x + oc

(2.7}

satisfying the boundary conditions field, as before. That is, the right-hand side of Eq. (2.9) is
a sum of transverse and longitudinal terms. When substi-
tuted into Eq. (2.2), (2.9) gives uncoupled transverse and
longitudinal interaction terms plus a cross coupling given
by 2VeA . Equation (2.3) is then replaced by

The function &P(x) in Eq. (2.7) is the noninteracting solu-
tion which satisfies (8"8„+m')O(x)= —(V +V"+2VeA )4(x), (2.10)

(8"8„+m )4(x)=0 . (2.8)

The solution given by Eq. (2.5) or by (2.6) is a Klein-
Gordon Volkov solution.

where V~ is the field-interaction operator [as in Eq. (2.4)]
and V is the atomic interaction operator, given by

B. Plane-wave field plus binding potential
VF id eA~+eA "i' —e2A "A

P P p (2.1 1)

To write the Klein-Gordon equation for a combined
plane-wave field and static binding potential, Eq. (2.2) can
be employed with the replacement

A "~A "+g" V(r), (2.9)

where g" is the metric tensor of special relativity, and
where the continued appearance of A" on the right-hand
side is meant to represent the plane-wave electromagnetic

V"=iB,V+ Via, —V' . (2.12)

The last term on the right-hand side in Eq. (2.10)
represents a coupling between the external field and the
atomic potential which is an impediment to straightfor-
ward application of a strong-field approximation. The ra-
diation gauge (or Coulomb gauge) is explicitly designed
to decouple longitudinal and transverse fields. In this



42 COMPLETE KELDYSH THEORY AND ITS LIMITING CASES 1479

gauge 3 vanishes, and the cross-coupling term along
with it. Apart from later remarks about the cross-
coupling term in the Keldysh approximation, the radia-
tion gauge will be adopted from here on.

Because of the decoupling of the field and atomic in-
teractions, the equation of motion for the combined in-
teractions can be written either as

III. TRANSITION AMPLITUDE

A. Exact S matrix

The exact S matrix can be written as

Sf;= lim (4f, V,'+'), lim 4,'+ =4, ,t~+ oo t~ —oo

or as

(3.1)

[(ir) —e A )(i d" eA—")—m —V"]ql(x ) =0,
P P (2.13)

Sf;= lim (4f ', 4, ), lim 'Pf Pf
t —+ —oc t~+ oo

(3.2)

or as

[(iB„—Vg„)(iB" Vg—" )
—m —V ]%'(x)=0 . (2.14)

It is Eq. (2.13) which provides the form relevant here,
since it leads to the integral equation solution

4(x)=% (x)+f d x'6 (x,x')V"(x')%(x'), (2.15)

in terms of the Volkov solution (here designated by ql )

and the Volkov Green's function 6 (x,x'). This Volkov
Green's function satisfies the equation

t[i8„eA„—(x)][i8" eA "—(x)]—m ]G (x,x')

=5 (x —x') . (2.16)

The state 4' in (2.15) is the complete solution for Eq.
(2.10), (2.13), or (2.14). The integral equation (2.15) can
be solved by iteration to yield the successive approxima-
tions

(2.17)

4"'(x)=% (x)+ f d"x'GF(x, x')V"(x')+F(x'), (2.18)

4' '(x)=% (x)+ f d x'G (x,x')V"(x')+ (x')

+ f d"x' f d x "G"(x,x')V"(x')6 (x', x")

x V"(x")q '(x"), (2.19)

and so on. Equations (2.17)—(2.19) and the logical con-
tinuation thereof represent an expansion of the complete
wave function in powers of the atomic potential V".
This is in contrast to the more usual procedure which un-
derlies ordinary perturbation theory, in which the start-
ing point is Eq. (2.14) and the expansion is in powers of
V, due to the applied plane-wave field.

The procedure introduced above is the one which is ap-
propriate under circumstances in which it is expected
that the applied electromagnetic field will be dominant in
magnitude over the atomic field. An illustration of this
situation is provided by the explicit example cited earlier
(CO2 laser environment at 10' W/cm ) in which the ex-
pectation value of V /2m is about 10 keV, whereas that
of V /2m is only about 10 eV.

In these expressions, 4 represents the complete physical
environment with all interactions present, whereas 4 is a
reference state, free of the transition-causing interaction,
against which 4 is compared. That is, Eq. (3.1) corre-
sponds to the measurement process in which the final re-
sult of the interaction causing the transition is appraised
by detection of the final outcome of the experiment in a
detector located outside of the interaction region. Equa-
tion (3.1) is the probability amplitude that a state initially
prepared as 4, has been transformed into a different
noninteracting state 4f. Equation (3.2) is the time-
reversed version of (3.1), and is more suitable for the de-
velopment of the SFA.

The S matrices defined in Eqs. (3.1) and (3.2) can be
converted' to finite times in a relativistically covariant
way suitable for scalar particles. The procedure is given
in Appendix A. The results [Eqs. (A12) and (A13)] are

(S—1)f, = i f d x—4f'V 4I+',

(S—1)f, = i f d —x 4f 'V 4, .

(3.3)

(3.4)

It is reiterated that these equations are exact as long as 4
is exact. Since an exact 0 is not normally known, an ap-
proximation must be employed. There is more than one
systematic procedure for doing this.

For later discussion about the A term, it is stressed
that the functions 4 in Eqs. (3.3) and (3.4) are both refer-
ence states which are free of the transition causing -in

teraction V .

B. Perturbation theory

Equation (3.4) will be made the focus of attention. The
conventional approach via perturbation theory is to ex-
pand qlf in powers of the interaction term V . The
zeroth-order term in the expansion of 4f is just 4f, in
which case the first approximation to Eq. (3.4) is

(S—1)"' = —i d x 4&*V 4I X (3.5)

This contains the transition-causing interaction exactly
once, as the factor V . In concordance with the S-matrix
definition requiring the reference states to be free of the
transition-causing influence, the 4 states have no depen-
dence on Y at all. The next perturbative approximation
beyond Eq. (3.5) will contain a single factor V in the ex-
pression for 4f, so there will be exactly two factors of V
in the S matrix, and so on. This is the well-known struc-
ture of perturbation theory.



1480 H. R. REISS 42

where 4f ' is the Volkov solution explicitly stated in

Eq. (2.6).
The most noteworthy feature of Eq. (3.6} is that it is

certainly not a perturbation expression in V . The field
interaction has been completely retained everywhere that
it originally appeared in the exact S matrix. Since the
Volkov solution becomes a more accurate representation
of the ionized electron as the dominance of V over V"
increases, the approximation represented in Eq. (3.6)
should improve in accuracy as V grows larger. For de-
tails about higher approximations in the SFA expansion,
see Refs. 2 and 4.

Another significant feature of Eq. (3.6) is that, al-
though it arises as the leading term in an expansion of 4f
in powers of V", the SFA is not simply a lowest-order
perturbation expression in V". Referring back to a true
first-order perturbation expression as in Eq. (3.5), it is
seen that the perturbing interaction appears once only.
Because V is the infiuence which leads to the transition,
it is nowhere involved in the reference states 4f or 4;.
By contrast, in Eq. (3.6), V" is contained exactly —that
is, to all orders —in the function 4;. The reason for this
disparity in behaviors is that V is the interaction that
causes the transition and V" is not. They thus appear in
fundamentally different roles in the S matrix since the
reference states in the SFA case are fully dependent on
V". A practical result of this nonperturbative depen-
dence of the SFA on V" is that one can use Eq. (3.6) to
explore the consequences of different initial bound states
with very important qualitative and quantitative distinc-
tions arising therefrom.

Equation (3.6) for the SFA can be efFectively siinplified
by an integration by parts. Two of the terms in V as
shown in Eq. (2.11) contain differential operators. If an
integration by parts with these two terms is carried out in
Eq. (3.6), and the surface terms at infinity are dropped by
the standard boundary condition on A", then Eq. (3.6)
becomes

(g 1)sFA ~ f d4 (VFqp( —)F)eq (3.7}

The relative sign between the differential terms and the
A. A term in 'V is maintained after the integration by
parts because of the complex conjugation of V in Eq.
(3.7). The state 4&

' is an eigenstate of the operator V
with the consequence that Eq. (3.7) can be rewritten as

(S—1)f"; = —i f d x +&
' (2eA.p —e A A )4;,

(3.8)

where the p" in Eq. (3.8) is now an eigenvalue and not an
operator.

C. Strong-field approximation

If the physical problem is such that the interaction V"
is likely to be of lesser magnitude than V, a rational ap-
proach is to expand 4f in powers of V" rather than V .
This is the procedure detailed in Eqs. (2.17)—(2.19). The
lowest-order approximation so obtained is exactly the
strong-field approximation

(3.6)

Equations (3.6) and (3.8) exhibit an important property
which cannot be emphasized too strongly. As demanded
by the boundary conditions expressed in Eq. (3.2), 4, has
no interaction with the external field, and so it is a simple
stationary state. On the other hand, 4f ' is a Volkov
state which has strong-field interaction, and, as will be
seen shortly, possesses a time-dependent A term in an
exponential factor which makes an important contribu-
tion in the energy conservation condition. By contrast,
Eq. (3.5) from perturbation theory has no such factor at
all. The two approaches can then be very different in
their predictions because the A term can be so very
large. Even if perturbation theory is carried to higher or-
ders, the A term never appears in an exponential factor,
and A will show up only as a polynomial term which
cannot make anything like the important energy
difference that is introduced by the exponentiated A .
The contribution of A to the energy is thus a true
intense-field effect, which does not occur in any finite or-
der of perturbation theory.

D. Keldysh approximation

The SFA given above is strongly suggestive of the Kel-
dysh approximation, since it folds together in the transi-
tion amplitude the Volkov solution for the final state, the
interaction Hamiltonian, and a noninteracting initial
state. This appears to be the same structure as the Kel-
dysh approximation, ' which was written down as an an-
satz on physical grounds. However, the Keldysh theory
has never been derived from first principles. It differs
from the above formalism in that it is written in the so-
called Goppert-Mayer gauge, ' in which the interaction
Hamiltonian takes the form —eE r. That interaction is
explicitly nonrelativistic in nature, since it represents the
electromagnetic field by a single (scalar) component of
the four-vector potential. That is clearly not adequate for
a relativistic treatment, but it is possible to generalize the
Goppert-Mayer gauge to the relativistic case. ' (It is
done in Ref. 15 for a monochromatic field, but it is a
minor matter to extend those results to an arbitrary uni-
directional wave packet. ) The full Volkov solution in the
relativistic Goppert-Mayer gauge is also given in Ref. 15.
However, it is not possible to carry out the program lead-
ing to an equivalent of the SFA in the Goppert-Mayer
gauge. First there is the matter of the cross coupling be-
tween the field terms and the atomic potential that ap-
pears in Eq. (2.10). The quantity eA is very important
in the Goppert-Mayer gauge, and so its partial omission
in order to reduce the interaction term to V alone con-
stitutes the loss of a major field-dependent term. Furth-
ermore, the Goppert-Mayer Volkov solution is not an
eigenstate of V, and so the steps analogous to Eqs. (3.7}
and (3.8}are not possible.

IV. NONRELATIVISTIC AND EDA LIMITS

A. Strong-field approximation

The SFA transition amplitude in Eq. (3.8) will now be
taken to the nonrelativistic limit. The four-vector prod-
ucts in Eq. (3.8) are easily converted to three-vector prod-
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ucts in the radiation gauge, where A.p= —A p and
A-A = —A. A= —A . The relativistic 0' and 4 func-
tions are both normalized in the Klein-Gordon metric, so
that the normalization factor is (2EV) ', whereas the
nonrelativistic Schrodinger counterparts are normalized
by V ' . In the nonrelativistic limit, this introduces an
overall (2m) into Eq. (3.8), so that the nonrelativistic
transition amplitude is

(S 1 )sFA

eA'p+ e A +NR
2 2

pl 2m

(4.1)

The application of the EDA is permissible in the ma-
trix element, because of the e6'ective limits on radial mag-
nitudes imposed by the bound-state 4 function. When
the EDA is applied, then 4f ' is identical to what has
been used in the past as a so-called "nonrelativistic Vol-
kov solution. " The state 4f is the usual nonrelativistic
initial-state atomic wave function. Equation (4.1) is then
identical to the expression which has been adopted in ear-
lier work as the SFA in the radiation gauge. In this
sense, the use of a nominally nonexistent "nonrelativistic
Volkov solution" has meaning.

The adoption of Eq. (4.1) as a meaningful transition
amplitude is verified by the explicitly relativistic Dirac re-
sults. ' These give numerical output in the low- and
moderate-intensity domains which is nearly identical to
that which emerges from Eq. (4.1). The specific Dirac

case which has been evaluated (circular polarization, hy-
drogenic 1S initial state) also gives an analytical nonrela-
tivistic limit identical to that which follows from Eq. (4.1)
for that same special case.

B. Keldysh approximation

As pointed out in Sec. III, there is no transition ampli-
tude in the relativistic Goppert-Mayer gauge equivalent
to Eq. (3.8). The Keldysh approximation then remains
entirely a physically motivated ansatz nonrelativistic in
nature, without a well-defined underlying relativistic for-
malism. Table I gives a summary of the comparative
qualitative properties of the SFA and the Keldysh ap-
proximation. It is because of these difterences that the
phrases "Keldysh type" and "Keldysh style" have been
adopted. There are clear distinctions between the Kel-
dysh approximation and the SFA.

V. THE A2 TERM

A. Boundary condition considerations

A strategy which has become widespread in multipho-
ton formalisms is to manipulate the A term, either by
complete removal via a contact transformation, or by re-
location within the formalism to suit the convenience of
the investigator. The basis for these manipulations is
that the A term in the EDA is a function only of the
time variable. When exponentiated, as it is in the "EDA
Volkov solution, " it appears to be quite straightforward
to remove the A term by a contact transformation.

TABLE I. Comparisons between the SFA (strong-field approximation) and the Keldysh approximation.

SFA

Nonrelativistic version published in

1980. Present work gives full,
relativistic basis.

Keldysh approximation

Pioneering work. First published in
1964.

Rigorous formal basis. Physically motivated ansatz.

SFA is the first term in an expansion
in powers of V".

All field terms retained at every
order.

In application, use monochromatic
approximation {not necessary}.

No further approximations beyond
those listed above.

Attempt at expansion gives powers of
V"—2e A V.

Some important field terms omitted.

In application, use monochromatic
approximation.

Assume large orders (no)&1) in
addition to approximations listed
above.

Two basic intensity parameters:
z = (ponderomotive potential)/h u,
z, =2 (ponderomotive potential)/(binding energy).

Only one intensity parameter:
7=1/(z )'"-

Supports both low-intensity and
high-intensity limits.

Supports high-intensity limit only.

Applicable to any initial atomic
bound state.

Worked out only for 1S hydrogenic
initial state.
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atomic photoionization.
Not all physical problems share the boundary condi-

tions of photoionization. A case in which A terms ex-
actly cancel out between initial and final states is in the
Kroll-Watson problem. ' As was pointed out by Rah-
man, ' the Kroll-Watson solution corresponds to a prob-
lem in which an atomic potential treated in first order
provides a scattering mechanism from one Volkov state
to another. That is, the relevant S matrix is given by Eq.
(3.5) in which V should be replaced by V", and the
reference states 4 are both Volkov states. In that case (in
the nonrelativistic EDA limit) the A terms from the
Volkov states exactly cancel each other, as remarked
upon by Rahman.

B. Relativistic considerations

Because the Dirac formalism never exhibits the A term
directly, none of the arguments put forward for remo-
val of the A term can be applied in the Dirac case. Yet
the A term is implicit in the Dirac theory, hidden by the
noncommutative Dirac algebra. Numerical results from
Dirac calculations ' fully contain A effects. They are
consistent with Schrodinger computations from Eq. (4.1)
only when A terms are retained. Neglect of A violates
the manifest gauge invariance inherent in the minimal
electromagnetic coupling.

The separate identity of A.p and A terms is, in a cer-
tain sense, only an illusion. Eveji after one has selected a
particular gauge in which to express the electromagnetic
field, conversions between A and A p remain possible.
Consider the nonrelativistic, EDA case. In any matrix
element containing A, if the substitution

It was pointed out in the Introduction that suSciently
strong fields require a relativistic theory of photoioniza-
tion. The notion of A removal cannot then arise, since
A "(x)=2 "(cot —k r), and a contact transformation is
inapplicable. A calculation carried to completion in a
relativistic context is then free of any ambiguity with
respect to the treatment of A . Such relativistic calcula-
tions depend very strongly on the presence of A . Ex-
plicitly, the circular polarization results shown in Figs. 1

and 2 were done relativistically for those curves that are
labeled "full"—meaning with full retention of A . The
magnitude of the contribution of the A term is evident
from Figs. 1 and 2.

At some level of intensity, it should be permissible to
ignore relativistic effects. Yet the A term can retain
great importance even when the nonrelativistic limit is

appropriate. Again in reference to Fig. 2, which is for
10' W/cm of Nd-YAG (where YAG denotes yttrium
aluminum garnet) laser radiation, the nonrelativistic limit
is acceptable, since a calculation starting from Eq. (4.1)
gives an outcome almost indistinguishable from the corn-
plete Dirac calculation. ' When uncertainty exists about
how to treat a problem when a limit of any kind is taken,
the final arbiter in such decisions is the theory in which
that limit is not employed and the full prelimiting theory
is consulted. By that rule, the A term must be retained.

C. Field-interaction considerations

It is argued here that the A p and A terms are two
aspects of the same interaction, they are intimately cou-
pled and interchangeable, and hence the neglect of one
part of this interaction and retention of the other is fun-
damentally inconsistent. It is bound to lead to problems
in multiphoton processes (except for low-intensity erst
order processes, where one needs only the A.p contribu-
tion).

We point out first the fundamental role of A in gauge
invariance. The "minimal electromagnetic coupling"
substitution p"~p"—eA" is introduced on the grounds
of gauge invariance. In any theory quadratic in the
momentum, as in Schrodinger or Klein-Gordon theory,
the A. A or A term is thus a vital part of the proper for-
mulation of the theory. The Dirac theory, even though it
is linear in p", provides extra support for this assertion.

A = i[A—r, Ap] (5.1)

'= V ' exp —iEt+i p r

2 2

+~ J "«' —' +'
m 2m

(5.2)

in which the contributions of the A p and A terms are
clearly evident. In the case of a monochromatic field
with linear polarization, with A=aecos(cot), the field-
dependent exponential in Eq. (5.2) becomes

exp i f "dt'
t

e A.p e2 A2

m 2m

(5.3)=exp i(sin(mt ) i sin(2cor )
—i—zcot—

2

with the usual asymptotic cutoff, where e is a unit polar-
ization vector, and where

(=cap e/me@, z =e .a /4m' . (5.4)

The zest term in the exponential in Eq. (5.3) gives the
famous ponderomotive potential or "jitter energy" term
in the energy conservation condition. ' Of most im-
mediate interest here are the Floquet terms (sin(cot ) and
—(z/2)sin(2cot). The first of these arises from the A.p
term and the second from the A term. They enter
directly into energy conservation conditions when it is
recognized that these terms constitute a generating func-
tion for the generalized Bessel function' J„(u,u),

is made, along with the usual p/m = i[r, H—O], there is
an immediate mechanism for exchanging A p and A
contributions. There is no true distinction between them.

The intimate coupling between A p and A terms be-
comes very apparent in application of the SFA. To sim-
plify the demonstration as much as possible, consider the
nonrelativistic version of the SFA. It is then appropriate
to use in the transition matrix element the nonrelativistic
version of the Volkov solution given in Eq. (2.6), which is
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z
exp i g sin(cot ) ——sin(2cot )

2

inrutJ

2n= oo

(5.5)

The point of Eq. (5.5) is that the A p and A contribu-
tions are inseparably coupled in the generalized Bessel
function. Even as the field intensity becomes small (ex-
pressed as z~0, g-z' ~0), it is impossible to separate
the contributions of g and z terms (i.e., A p and A
terms ) except when n =0,+1. This is shown in Appen-
dix C of Ref. 2. Hence, A.p and A are intimately cou-
pled, and cannot be separately treated in multiphoton
problems.

The qualifiers in the above conclusions are that the
process be of higher-than-first order, and that linear po-
larization is treated. The same conclusions hold true for
all elliptical polarizations except for the special case of
circular polarization. For circular polarization, the A p
and A terms are not coupled through the generalized
Bessel function. All the other remarks about the im-
propriety of A removal still hold, and it is only as z~0
that there is a confluence of no- A and with- A circular
polarization results, as shown in Figs. 1 and 2. It is im-
portant to observe that the linear polarization case con-
tinues to show a divergence between no- A and with- A
calculations in Fig. 3, even as the intensity becomes
small. This is a direct manifestation of the generalized
Bessel function coupling shown in Eq. (5.5).

VI. REMARKS

It has been noted that perturbation theory amounts to
the presumption that the atomic potential is stronger
than the effects of the applied field, and that the SFA
theory is based on the opposite premise. There is an im-
portant practical limitation in the application of the SFA
approximation. In an energy spectrum of photoelectrons,
those spectral peaks at the low-energy end will not have
very much kinetic energy, and so they are, in fact, strong-
ly influenced by the atomic potential. One then does not
expect the lowest-lying part of the spectrum to be well
represented by the SFA approximation. The rule of
thumb would be that the SFA should be applicable only
for those peaks with kinetic energies of at least a
significant fraction of the binding energy. For the ordi-
nary ATI experiments of the past few years, with linearly
polarized lasers, this means that the SFA method should
not be relied upon for the very important lowest part of
the spectrum. That is a serious limitation. There are,
however, important areas of strong-field atomic physics
where this restriction on the SFA approximation is of lit-
tle consequence. When circular polarization is used, for
all but the lowest ATI intensities the low-energy end of
the ATI spectrum is dynamically inhibited, ' ' and so
the SFA method works well for the entire observed spec-
trum. In recent calculations on photoionization from
higher-lying states, including Rydberg states, and on pho-
toionization even from ground states with extremely
strong fields, those peaks of the spectrum for which the

SFA method should be unreliable are only a trivial part
of the whole spectrum, even for linear polarization.
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APPENDIX A:
THE KLEIN-GORDON SMATRIX

The Klein-Gordon S matrix found here agrees with
that stated by Bjorken and Drell, ' but it is developed
here ab initio in a fully covariant way.

The starting point is the basic S-matrix definition as in
Eq. (3.2),

Sf; = lim (kf, +I+ ),
t ~+oo

(A 1)

(A2)

These two equations can be combined into

(S—1)f;= lim (C&f, %'I+') — lim (4f, +', +') .
f~+ oo f ~ —oo

(A3}

This is to be used in conjunction with the specification'
of an inner product in the Klein-Gordon space,

(4,%)= J d x 4'(iB 2eA —)qi, (A4)

along with the definition'

4'i 8 0'= 4'(i 8 +)—(i8 4*)% . (A5)

Equation (A4) identifies the two terms in Eq. (A3) as
surface integrals in the relativistic four-space. Both sur-
faces are flat, with timelike normal extending along the
positive x direction in the first term, and the negative x
direction in the second term. If these surfaces are first
taken to be at finite times, with the passage to infinite
times taken later, then a closed hypercylindrical solid in
four-space can be completed by adding to the two
constant-time surfaces a connecting hypercylindrical sur-
face with spacelike normals everywhere. This hyper-
cylinder joins the t ~+ ~ surface where it intersects the
forward light cone from the origin x"=0, and it joins the
t~ —~ surface where it intersects the backward light
cone from the origin. The two constant-time surfaces can
now be generalized to be of arbitrary configuration
confined only by the fact that normals to the surfaces
must everywhere be timelike. With these extensions, Eqs.
(A3) and (A4) give

(S—1)f;= fder„+f'(id" 2eA")0";+—', (A6)

where the double-arrow operator is defined by an im-
mediate extension of Eq. (A5}, and where do„ is a four-
surface element of area on the above-described closed hy-
persolid with outwardly directed normal. Inherent in the
passage from Eq. (A3) to (A6) is the notion that the state
vectors vanish at large spacelike displacements from the
origin. This limit (and the entire procedure just outlined)
is the same as that used in the standard demonstration of
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(S—1)f, = /do „J", (A7)

where J" is a "transition current" defined by the
correspondence of Eq. (A7) to (A6). By the four-
divergence theorem, this can be restated as

(S—1}f,= —i f d x(iB„J"). (AS)

the continuity condition in relativistic quantum mechan-
ics. Equation (A6) can be written as

transition amplitude, the transition probability per unit
time for a transition is

u= lim
7m oo

2m5(Ef E—, )2ir5(0}

(85)

using Eq. (83} and the general result on the product of
the 5 functions that 5(x —a)f(x)=5(x —a)f(a). With
the 5-function representation

7/2
2ir5(Ef E, ) =—lim f dt exp—[i(E& E; )t—/iii],—7/2 fi

(86)
(A9) then4f'[(i 8„eA—„)(ir}" eA—")—m 2]VI+ '=0,

[(iB„ii)"—ni )4f" ]ALII+'=0,
7/Z 1

2ir5(0) = lim —7/2
(87)(A10)

The result of acting on J" with i B„can be rearranged

by employing the difference of the two expressions

which follow from the equations of motion. After a bit of
algebra and an integration by parts, the result is

(S—1)f;= i f—d x 4f'

and so

w =(2irliri)5(Ef E; ) I Tf; I
(BS)

X(iB„eA"+eA "iB„eA—A )%I+',
For transitions into a continuum of final states, the total
transition rate is

or, with the terminology of Eq. (2.4),

(S l)f/ i—f—d x efVKQP~(+' .

(A 1 1)

(A12)

Ef +~E&2
IV= f dE5(Ef E;)ITf, I

—p(E),
f

(89)

where p(E) is the density of final states. This then gives
Fermi's golden rule

The time-reversed S matrix, by exactly the same pro-
cedures, is

(S 1)fj=— i f d xq f—VKQ@j (A13)

APPENDIX 8: THE $ MATRIX
AND FERMI'S GOLDEN RULE

Fermi's golden rule ' will now be derived from the S-
matrix formalism. This can be done without reference to
perturbation theory. Consider first a nonrelativistic
time-independent problem in which transitions are
caused by an interaction Hamiltonian V. Then, with irt

restored for this work, the starting point is the S-matrix
expression

(S—1)f, = 2irig 5(b,E—nfico)TfI"', — (811)

which generalizes Eq. (83}. Specifically, in ATI prob-
lems,

(810)

in terms of the T matrix of Eq. (84}.
The above results will now be extended to time-

dependent problems. At the same time, since little extra
complication is involved, the states are presumed to pos-
sess uniformly spaced sidebands in the presence of the ap-
plied field. This is Floquet behavior, and it is the nature
of the SFA method when the field is taken to be mono-
chromatic. Then the S matrix is of the form

(S—1)=—(i/fi) fdt(4f, Vip';+') . (81) hE =Ef —E, +zAco, (812)

Since the problem is stationary, the states can be written
as

4f =Pfexp( iEI t /R ), —'0,'+ '= g,
'+ 'exp( iE; t /fi) . —

in the notation of Ref. 2, where z is the basic dimension-
less intensity parameter and zkco is the ponderomotive
potential. Equation (85) now becomes

2ir5(bE —nfico)2ir5(0)
i T(„)Ip

When Eq. (82) is substituted into (Bl), the time integra-
tion can be done, yielding

(S—1)f;= 2iri 5(EI E, ) Tf, —
,

—

where the T matrix,

Tf; =(Qf, Vg, )

(83)

(84)

is generally viewed as being defined by Eq. (83).
From the way in which the S matrix is introduced as a

w =(2irlfi)+5(b, E —nirt~)ITf,"II' . (814)

The step analogous to Eq. (89) is carried out in Ref. 2 by
integration over the phase space of the detached electrons
in order to arrive at W, the total transition rate.

(813)

in which all cross terms of 5 functions with different ar-
guments explicitly vanish. The analog of Eq. (BS) is then
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