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In this paper we discuss in detail the dynamics of a two-state system ruled by a non-Hermitian

Hamiltonian. The relevance of the results to multiphoton ionization is also discussed and a compar-

ison to earlier works is presented.

I. INTRODUCTION

A feeling of reluctance is widespread among physicists
against the use of a non-Hermitian Hamiltonian (NHH),
and consequently of a non-Hermitian Schrodinger equa-
tion (NHSE), to treat physical problems. For this reason
the literature on the subject suffered for a long time from
strong limitations and fragmentation. Only recently, in
connection with various problems ranging from the mul-
tiphoton ionization to transverse mode propagation in
optical resonators and to free-electron lasers rigorous
and practical methods have been developed to study the
time dependence of non-Hermitian Schrodinger (NHS)
equations.

The deep reasons underlying the non-Hermiticity of a
Hamiltonian describing a physical process can be traced
back to the Fock-Krylov theorem. The theorem states
that the necessary and sufficient condition for a
quantum-mechanical state to be a truly decaying state
[i.e., such that the probability p(t) of a system in this
state tends to zero for large times t] is that the energy dis-
tribution of the state be a continuum,

The possibility of treating any system, with a part or
the whole of its motion in the continuum, as a decaying
state is therefore ensured by virtue of this theorem. The
finite lifetime of a decaying state and the uncertainty
principle ensure that its energy cannot be sharply peaked,
since the resulting width of the energy level is represented
by an imaginary component of the energy parameter of
the state. The complex energies can be shown to arise as
eigenvalues of a NHH associated with the decaying pro-
cess. Sometimes the NHH's are constructed heuristical-
ly, as in the case of two-level systems in which phenome-
nological diagonal decaying constants are introduced.
On the other hand, the use of the projection-operator
technique ' and that of optical potentials allows one to
derive a rigorous theory of a NHH, and a practical algo-
rithm of nonperturbative nature has been developed to
study the time dependence of a quantum-mechanical sys-
tern ruled by a NHS equation. '

In this paper we will discuss the solution of the time-
dependent NHSE of a two-level system using an algo-

rithm developed by two of the present authors" (G.D.
and A.T.) based on the spinor image solution technique
of parabolic equations. ' We will analyze the mathemati-
cal aspects of the two-state models with effective decay
terms in a non-Hermitian Hamiltonian' because, due to
their relative simplicity, they may represent a systematic
tool for investigating the quantum theory of multiphoton
ionization.

II. NON-HERMITIAN HAMILTONIAN AND TWO-STATE
EVOLUTION: THE SPINOR REPRESENTATION

(2.1b)

We are now interested in the relationship between the ei-
genvalues ( k;, e; ) and the eigenvectors ( 4; &, Ig; & ).

From (2.1b) we get

&x, 1~=&x, Ie; .

Projecting (2.2) onto IV; & we find

&x;I&I+;&=&y;Ie,"I+;&=&x;I~,I+, &

and thus

(2.2)

(2.3)

(2.4)

Furthermore, we also get

& x; III
I +, &

=
& y, I ~, I +, &

=
& y; I e,

*
I +, &,

whence it immediately follows that

(2.5)

In this section we will not dwell on a rigorous deriva-
tion of a NHS equation, which can be found in Refs. 1

and 10 where use has been made of the Feshbach and
Cohen- Tannoudji projection-operator technique. For
completeness, we will however recall some important
properties of a NHH and NHSE; the interested reader is
addressed to Ref. 15 for a more complete and rigorous
treatment, In the following we will denote by H the
Hamiltonian and by 8 +(A8) its adjoint and suppose
that they satisfy the following eigenvalue equations:

(2.1a)
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(x, —~,*)&y, Ie, & =o,
which together with (2.4) allows one to choose

(2.6)

(2.7)

In order to stress the deep implications of the lack of uni-
tarity of the evolution operator, let us notice that it can
be shown [see Ref. 15(c)] that the operators U(t) and U
obey different semigroup (rather than group) properties,
in the sense that

(2.8)

with the coefficients a and a given by

a, =&y, l+&,

a, =&@,le& .

Finally, from (2.8) and (2.9) it follows that

(2.9)

(2.10)

thus implying the closure or completeness property

& I+, &&x, I=1 . (2.11)

So far we have discussed the stationary case; the time
evolution of a state ruled by a NHH can be studied using
almost conventional tools. An evolution operator can be
introduced as for the Hermitian case, and therefore well-
documented and reliable methods can be exploited. The
evolution operator 0(t) associated with 8 is necessarily

nonunitary; it is therefore convenient to introduce U,
namely, the evolution operator of the adjoint, and it is
straightforward to prove that

Both results (2.4) and (2.7) are crucial in the theory of a
NHH. The eigenvalues of 8 are a complex conjugate to
those of its adjoint, while the concomitant eigenvectors
are biorthogonal to each other. Accordingly, a generic
state I

4 & can be expanded as

0(t)0(s)= 0(t +s);t, s ~0,
U(t) U(s) = U(t +s); t, s ~ 0 .

In other words, the operators 8 and 8 are forward and
backward time generators, respectively (see Ref. 10 for a
physical interpretation). This is just an example of the
unconventional features arising when NHH's come into
play. Another basic one is connected to the Heisenberg
equations of motion for operators [see Eq. (2.5) below and
the Appendix].

It is finally worth noticing that

I+„(t)&
= 0(t) I+„&,

ly„(t) &
= U(t) ly„&

(2.15)

form a biorthogonal basis at any time. In this paper we
will be concerned with the explicit evaluation of the evo-
lution operator for a NHH of two-level systems using the
spinor image method of Ref. 12 and then ordering
methods of Wei and Norman. ' We must, however, un-
derscore the fact that the possible non-Hermitian nature
of a Hamiltonian is by no means a drawback to using
conventional time-ordering methods of the type de-
scribed, e.g. , in Refs. 17 and 18.

In this section we will consider in detail the dynamical
behavior of a non-Hermitian (NH) two-level system. Ac-
cording to Ref. 10 the Hamiltonian we shall investigate is

0U+ = U+ 0=1 .

In fact,

tg—"(U '0)= —U '80+ U 'fI0
dt

= —U+(8 —8)0=o
and thus

(2.12) + &(t) ——[y,(t) —y, (t)] 8,

—O, (t)&+ —Q,(t)o (2.16)

5(t) —y, (t) ——A, (t)

where 1 is the unit matrix and o 3+ are Pauli operators.
The 2 X 2 matrix image of (2.16) is

H(t)= (2.17)
U0+ = I .

The time evolution of a generic state I+(0) & undergoing
a non-Hermitian interaction is therefore given by

I+(t)&=0(t)l+(0)& . (2. 13)

a„(t)=&y„l0(t)lq(0) &,

a„(t)=&+„I0(t)I%(0)&.
(2.14)

Owing to the nonunitary nature of 0, I'P(0) & develops a
truly decaying probability configuration. In general, a
time-dependent state can be expanded on an orthogonal
or a biorthogonal basis as well; therefore, analogous to
(2.9), we get

—Q,(t) ——yi(t)

I 6
F H (2.18)

whose entries are related to those of (2.17) by the follow-

All the matrix elements are assumed to be time depen-
dent, thus accounting either for eventual switching and
time profile of the interaction or because the interaction
is included semiclassically. The time-dependent detuning
5(t) includes possible time-dependent Stark shifts. The
evolution operator associated to the Hamiltonian (2.17) is
specified by the following 2 X 2 matrix:"
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ing system of di6'erential equations:

l
iL = 5——

y2 L —Q)F, L(0)=1
iG = 5——

y2 G —Q2H, G(0) =0

(2.20b)

and

. V1iF= Q—2L i—F, F(0)=0
2

(2.19a)
iH= —Q( G+ y—,H, H(0)=1 .

The unitarity condition according to (2.12) can be written
in matrix form

1iG= 5——
y2 G Q, H—, G(0)=0

2

liH= —Q2G — y, H—, H(0)=1 .

The elements of the concomitant evolution operator U
are instead specified by

1 00+0=
0 1

and is an immediate consequence of the relations

LL '+FF *=1, GG *+HH *=1,
GL *+HF '=0, LG *+FH *=0,

(2.21)

(2.22)

and

iL= 5+—
y2 L Q2F, —L(0)=1

2 2

iF= Q*, L+—y, F, F—(0)=0
2

(2.20a)

which can be deduced directly from Eqs. (2.19) and (2.20)
[or otherwise simply stated once (2.12) is assumed].

It must be stressed that conditions (2.22) arise natural-

ly in our formalism and are not imposed (see also Ref.
10). In the hypothesis that the Hamiltonian (2.16) and
(2.17) is time independent all the entries of the 0 matrix
can be explicitly derived and read

l lL= — — 5——(y —y ) sin2 1

V Q V Q —(i/2)[5 —(i/2)(y2+yi)]t
t +cos t e

r

V tt(), —(i/2)[5 —(i/2)(y2+yi)]t6=+ —sin t e
2

2i02F=+ —sin
—(i/2)[5 (i/2)(y—&+yi)]t

t e (2.23)

l l
5 ——(y2 —y, ) sin

'2
1

5 ——(y —y, ) +4Q Q

v'g
t + cos

—(i/2)[5 (t/2)(y +y —)]t
t e 2 I

2

Setting, for example, y& =y2=y and Q&=02=0 and as-
suming that the system is initially specified by the spinor
(0) it is easy to realize that the evolution of the popula-
tion inversion behaves like

0'++& 0+ &
& — &

1 2
~ 2 2l

where 0 are the Pauli matrices. As usual,

y, 5 +4Q cos(ht)
(2.24)

the dynamics of the system is well described by the evolu-
tion of s. Noticing that

We can, however, treat the problem in all its generali-
ty. Let us therefore represent the state describing the
two-level system by the spinor

a&

a2
(2.25)

&&, )=&+~a, ie&, q=l, 2, 3 (2.26)

where the time-dependent components a, 2 give the prob-
ability that the level 1,2 is occupied at the generic time t.

Then we introduce the Bloch vector s with components

&vie, ie) =&+,iO'e, Pie, ), (2.27)

3

&&,(t))=&,(t)+ g &, , (t)&&,(0}),
i=1

(2.28)

where the time-dependent functions A (t) and AJ, (t) are
specified by

with ~)Ito) denoting the spinor (2.25} at the initial time,
after some cumbersome algebra one gets
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A, (t) =
—,'Re(L *F+HG*),

A z( t) = —,
' Im(L *F+GH' ),

A3«}=-,'(IL I' —IFI'+ IG I' —IHI');

(2.29)

A3 )
=Re(L'G —F*H),

A3 z
= —Im(L'G F—'H }, . (2.30c)

A &, =Re(L*H+F*G),

A& z=Im(L'H F'—G),
A

& 3 =Re(LF H~—G);
A z i

=Im(L 'H+ G*F),

Az z =Re(L'H —G "F),
Az, =Im(L*F G*H—);

(2.30a)

(2.30b)

In deriving the above expressions it has been assumed

that the spinor I+0) is normalized to unity. The solution
(2.29} represents a kind of Rabi-rotation matrix for the
non-Hermitian dynamical behavior of the Bloch vector.
It is worth stressing that, within the present context, the
norm of I 4 ) and thus the modulus of s, is not a constant
of motion, but evolves in time according to

I+i'=2 Re(L "G+F'H )(cr,(0) ) —2Im(L'G+F'H)(o'z(0} &+-,'(IL I'+ IF I' —
I G I' —IH I') & o,(0) &

+-'(IL I'+ IFI'+ IGI'+ IHI') (2.31)

If 8 is Hermitian then we have

L =H*, F= —G*; (2.32)

the A functions vanish and A, are just the elements of
the generalized Rabi-rotation matrix derived in Ref. 19.
Correspondingly the norm of I%') does not change with

time as it can be easily inferred from (2.32) and from the
unitarity of 0 that implies"

one can easily prove that the norm of s is a constant of
motion.

It is useful to gain a geometrical insight in the evolu-

tion of the vector s. We derive the equations of motion
for the expectation values of the operators 0, , &2 o 3 us-

ing the following modified Heisenberg equations (see the
Appendix for further comments):

IH I'+ IF I'=1 . (2.33)

A law of conservation can be, however, associated to the
NH Bloch dynamics. Defining indeed a Bloch vector s
with components

(2.35)

(BJ ) =(y(t)lo J I+(t) ) (2.34) thus getting immediately

(+, )

(&z)

dt (o, )

2 Imago&

Reco2

—Reco2

2 Imm)

—Im(Q) —Qz) —Re(Q) —Qz)
—2 Im( Q, +Qz) —Re(Q )

—Qz)

2 Imago&

2 Imc02

2 Imco2

2 Imu&

Im(Q, —Qz) —,
' Im(Q, +Qz)

Re(Q, +Qz) —
—,'Re(Q, —Qz)

(&, )

&oz)

(o, )

&I)

(2.36)

For convenience we have defined

,'(r i+ }'z-»—

2= 6+-,'(r
&

—Xz)

In this case the evolution of the system (2.36) is
specified by the further quantity (I ) due to the fact that

A + A ~

the operator U U is not a constant of motion [see r.q.
(2.35)], from the physical point of view (I ) can be direct-
ly linked to the total bound population.

The motion of the three-component vector

S,.=(g, ) exp 2f Imago&(t')dt', i =1,2, 3
0

can be cast in the following Bloch-type form:

S=QXS+T,

the vector Q is the torque vector given by

Q = ( —Re(Q, +Qz), Im(Q, —Qz), Remz ),
and T, the damping vector, is defined as

(2.37)

(2.38)

(2.39)
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—ISI =2T S .
dt

(2.41)

We must underscore the fact that Eq. (2.28) represents
the most general form of the transition amplitudes for a
NH two-level problem.

As it happens for the Hermitian case, the evolution
problem is completely solved once the time behavior of
the (L,G, F,H) is totally specified, or, equivalently, when
Eqs. (2.19) are solved. As is well known, this is a formid-
able problem and analytical solutions can be obtained in
few cases. Equations (2.19}can be cast in the form

L — L+Qi02L =0,

T= —,
' exp —2 Imm, t' dt'

tp

X (Im(Q&+ Q2), —Re(Q, —Q2), 41mcv2) . (2.40)

It is easy to realize that the presence of T causes the non-
conservation of the norm of S whose time behavior is
fixed by

As already remarked, Eq. (2.31) can be analytically
solved in a very limited number of cases. Second-order
differential equations with time-dependent coefficients
have been the topics of intensive research during these
last years. Simple criteria have been developed to
specify functional dependences of the coefficients which
allow solutions in terms of known special functions.
These methods, originated by the pioneering work of
Bambini and Berman, consist in finding the appropriate
change of variable which allows the mapping of the
differential equation under study on an equation with
known solutions. The first of equations (2.42) can be, for
example, rewritten in the form

Q)02
q "(x )+——lnx ——lnQ, q'(x)+

z q(x) =0,x'

(2.45)
where x =x(t) is the mapping variable, q(x)=L(t), the
prime and the dot denote derivatives with respect to x
and t, respectively. Equation (2.45) can be reduced to a
Liouville standard form setting

F— F+Q)02F =0,
0)

after setting

(2.42) q(x)=v (x)u (x),
xv(x)= exp ——f A(x')dx'

Xp

(2.46)

(2.47)

F= exp —
—,
' f y, dt' F,

(2.43a)

1 d2 (x)=——ln(x/Q, ),
and with u (x) satisfying the following pendulumlike
equation:

tL= exp i —5 ——
y2 dt' L,

0 2

and

u "(x)+p(x)u =0,
y)(x)y2(x)

p(x) =
(2.48)

1
'2

1 d
A (x) —— A (x),

4 . . 2 dx

y) 2(x)=Q] 2(t)

Q, =Q, exp i f 5(t'—)dt' exp ,' f (—y,—+y2)dt'

(2.43b)

Q2=Q2exp +i f 5(t')dt' exp + —,
' f (y, +yz)dt'

0 0

L(0)=1, L(0)=0,
F(0)=0, F(0)=iQ~ .

(2.44)

The initial conditions of Eqs. (2.42) can be inferred from
(2.19) and (2.43) and read

which can be mapped on a Whittaker equation, provid-
ed that

x =e ~&~' -'"'=n'x
A, ~ g

(2.49)
~(x)= ——b, b= (IqI'+4Q'Q'}'"

x '
I my I

In the case 5=0, we get from Eq. (2.47) that the relaxa-
tion functions y, 2 have the following time dependence:

—,'(y, +y~)= —a IgI+(IgI +4Q, Q, )'~ e '~ ' . (2.50)

Choosing a &0 to get meaningful results we can finally
write

L(t}=exp (b —1)x —— a—M —(1 b), a, x +pU —(—1 —b)a, x
1 b a a
2 2 2 2

(x=e '&') (2.51)

where M and U are the independent solutions of the
Kummer equation, and a and P are constants depend-
ing on the initial conditions.

Within this framework, the solution of the second of
Eqs. (2.31) is identical to (2.40), with the only difference

I

being that, apart from the obvious differences due to the
different initial conditions, a and b should be replaced by—a +2 and —b, respectively. More specific examples of
physical interest will be discussed in the concluding sec-
tion.
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III. NON-HERMITIAN HAMILTONIAN AND

TWO-STATE EVOLUTION: THE WAVE-FUNCTION
METHOD

In Sec. II we have discussed a NH two-state evolution
using the spinor representation and a generalized Bloch
method accounting for both the evolution of the two-
level vector and that of the total bounded population.
The central results of this analysis have been the proof
that the dynamics of the system depend on the coupled
linear equations (2.19) and the derivation of the ampli-
tude probability (2.31) which is directly linked to the ion-
ization probability (see Ref. 14 and Sec. IV).

The (L, G, F,H) functions, namely, the characteristic
functions of the two-level evolution, can be understood as
a generalized version of the Cayley-Klein parameters of
the Hermitian two-state problems. " The lack of unitari-

ty and unimodularity of the evolution operator does not
allow useful relations of the type (2.32) and therefore sim-
ple reinterpretations in terms of Euler angles are not pos-
sible. In fact, as already stressed, and as implied by Eq.
(2.38), the evolution dynamics of the NH two-level sys-
tern cannot be simply reduced to a rotation of the Bloch
vector around a torque, and useful laws of conservation
cannot be easily stated. The nonconservation of the
norm of the Bloch vector makes quite problematic the
analysis of the evolution of the system using angular
momentum eigenstates. It might be, however, interesting
to deal directly with the evolution of the wave function
rather than with the average values and transition matrix
elements as discussed in Sec. II. To study the time be-
havior of the wave function it is worth having the evolu-
tion operator in the Wei-Norman ordered form'

+2h(f)J3 g(~)J+ f & J— s(t)IU=e e e e (3.1)

A+s — F
—h+s zy

(3.2a)

F
e '=HL FG f = ———

H '

HL —FG GH
e

HL —FG
g=

(3.2b)

Suppose that the Hamiltonian (2. 1) is that of two coupled
Harmonic oscillators and that the J operators are written
in the Schwin ger angular momentum representation,
namely,

Assuming furthermore that the initial state is simply
~4(O)) =~n, ,O), we easily find the wave function of the
system at a later time t, just given by

According to Ref. 11 the (h, g,f, s) functions are relat-
ed to (L,G, F,H) by the following relations (see also Ref.
24):

e"+'(1 fg) =L, —
h+s G

~'Ii(t) ) = 0(t) ~n, , O)

s
—h()( —2 )

e
"'

~n, —mm ) . (33)m.

The ordering functions (h, g,f,s) relevant to the evolu-
tion operator associated with 8 + can be obtained using
the same method leading to (3.2) and are also straightfor-
wardly derived. If, otherwise, the J operators are written
in the coordinate representation as

r

a - a - 1 a
"ay' —

a ' ' 2 a ay

and assuming that the initial condition
Schrodinger problem is g (x,y) we can write'

4'(t;x, y) =e'"g [x ( t),y (t)],
where

(3.4)

of the

(3.5)

x (t) L G x

y (t) F H y

For practical purposes and for a deeper physical insight
the geometrical picture of Sec. II is recommended.

(3.6)

IV. CONCLUSIONS

The results we have presented in Sec. II offer a general
and comprehensive treatment of the non-Hermitian dy-
namics of two-level systems. NHH operators have been
the subject of considerable interest during the last years
within the framework of the theory of the multiphoton
ionization. ' They in fact permit exact solution by the
resolvent-operator technique' or by iteration in orders of
adiabaticity. " Furthermore, a considerable body of
literature has been devoted to the time-dependent effects
implied by different models and by different shapes of the
external couplings Q. It is therefore worth concluding
this paper by adding some further remarks on the gen-
erality of our results and their connection to earlier treat-
ments of multiphoton ionization.

The operator (2.16) is a model Hamiltonian for a two-
photon ionization process involving two states only, the
ground state ~1), and one of the excited states ~2), reso-
nant with the applied external field. The effect of the
remaining nonresonant states is accounted for introduc-
ing an effective Hamiltonian into the atom-field interac-
tion part or equivalently the quantities y, and y2, physi-
cally understood as the rate of two-photon ionization of
the ground state, not involving the intermediate state,
and the rate of ionization of the excited state, respective-
ly. One of the advantages of the present formulation is
that the dynamics of the two-photon ionization can be
fully determined, once Eqs. (2.19) specifying the time be-
havior of the evolution operator are solved. According to
the usual procedure the ionization probability P ( t )

should be given by
P(t)=1 —

i
P", , (4.1)

where ~4~ has been derived in Sec. II [Eq. (2.31)]. In
the hypothesis that the atom-field interaction, abruptly
turned on at t =t, and off at t =tf, can be regarded as
constant during the time tf —t, , Eqs. (2.19) are solved ex-
actly [see Eqs. (2.23)] so that
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e
—I f/2

P(r)=1—
2a

cosh(at sin8) a +5 + +4~II~ +2a sinh(at sin8)(5cos8+ —'psin8)
4 2

2

+ a —5 — —4~0~ cos (at cos8)+2a sin(at cos8)( —'pcos8 —5sin8)
4 2

(4.2)

We have assumed that initially (8, )=(8z)=0 and

( &3) =1; furthermore we have introduced the following

notation:
ly (r))=, ~y (t))=

X2+
(4.5)

F1+32 ~ 3 1 V2 I

g2 —52 i 2+4~II~2+i5 —a2 2is (4.3)

belonging to the eigenvalues

1 i5+ —I +erg"
2 2

(4.6)

Equation (4.2) is the ionization probability given by
Beers and Armstrong and derived using a more cumber-
some method based on the so-called resolvent tech-
nique. ' However, within this concern the question about
the validity of the procedures, usually adopted in the
Hermitian quantum mechanics, in calculating for in-

stance operator expectation values, naturally arises. Ac-
cordingly, the theory developed in Ref. 10 suggests that
one evaluate the ionization probability as

(4.4)

5 i ——og*
2

For an initial state,

(4.7)

respectively, where cr =sgn(5) and Q is given by (4.3).
Correspondingly the components of (4.5) can be in-

ferred from the eigenvalue equation associated with 8 +,
thus getting

the summation involving all the eigenstates g„(t) of the
adjoint Hamiltonian 8 (t).

In particular, for the Hamiltonian (2.16) we are consid-
ering, the eigenstates of the adjoint can be represented by
the spinors

(4 &)

using the explicit expression of the U-matrix elements L
and F. After some algebra we end up with the following
P(r):

P (t) =1—e p cos —cos8 +q sin —cos8
—l t/2 at at

2 2
cosh —sin 0

at .
2

+ p sin —cosO +q cos —cos8
. 2 at z at

2 2
sinh —sin 02 at

2

1+—sin(at cos8) (p —2) cos8 —(p +2)5 sin8
a 2

+—sinh(at sin8) (p —2)~ sin8+(p+2)5sin81

a 2
(4.9)

with

1 2

p= S'+a'+ ~-
2/nf' 4

2

q= p 5 +~ +8~II~ +45 —
pa'

eP(r)=1—
2

(4 10) for (4.2) and

4in['
2

(4.11)

(4.12)

It is evident that the expressions (4.2) and (4.9) are quite

different. Just to further display the differences, let us

consider the simple case y&=y2=y, which yields the

simplified form

for (4.9).
A further example stressing both the generality and the

flexibility of our method is the comparison with the Ack-
erhalt model of ionizing resonant pulse excitation. In
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this model the atom consists of two bound states and
essentially a third level which represents the continuum.
The laser pulse excites the atom; the ionization is due to
some mechanism other than the exciting pulse, which is
time independent during the excitation. Ionization
occurs only from the atomic excited state, giving the state
a width proportional to the inverse of the ionization rate.
The model assumes that the laser is resonant with the in-
termediate state and that no Stark shifts occur. In this
case since y2=y, y, =0,5=0, Eq. (2.36) specializes to

—&e) = 2nd
dt

(I&

(4.13)

which are just the equations of the Ackerhalt model. It
is, however, worth further dwelling on the generalized
Bloch equations (2.36) in the realistic hypothesis of
0& =02 real function of time. In this case we have

(o, )

&o2)

dt &&3&

(I )

'2 Imago )
—Rea2

Rem, 2 Imago, 2Q 0

0 —20 2 Imago) 2 Imco2

0 2 Imco2 2 Imago
&

(4.14)

Introducing the four-vector

with metric

(4.15)

(4.16)

lution operator, which, on the other hand, causes the
nonequivalence between the Heisenberg and Schrodinger
pictures.

Consider, for example, an operator A, (t) in the
Schrodinger picture; the average value of A, is

we get from (4.14)

(4.17)

%e must, however, emphasize that, since the solution of
the problem can be always traced back to Eqs. (2.19), it is
convenient to deal directly with them rather than with
the system (2.36), which is significantly more complicat-
ed. In fact, in the Ackerhalt model, Eqs. (2.19) reduce to
the simpler form [see also Eqs. (2.19)]

We assume that 0 is nonunitary since the relevant Ham-
iltonian operator is non-Hermitian. Taking the
Schrodinger derivative (iA' d /dt) on both sides of (Al) we
find

(A2)
iL = —Q)F, iF= —02L . (4.18)

Then, if y is a constant, the solution, in analytical form,
can be found for different 0 shapes, as we will discuss
elsewhere in a more quantitative paper.

As a concluding remark we notice that the results of
the paper are not confined to quantum optics. They can
be indeed extended to the analysis of other phenomena,
like K -E mixing, where non-Hermitian Hamiltonians
are currently used, and, for example, CP violations
could receive in the Bloch model we have developed a
simple geometrical picture. It is, however, worth adding
a few words of caution against the use of average values
of operators in non-Hermitian quantum mechanics as ex-
ploited throughout the paper. According to the already
quoted criticism by Baker, the usual definitions should be
indeed carefully reconsidered.

APPENDIX

In Sec. II we have touched on the fact that for quan-
tum systems ruled by NHH operators the Heisenberg
equations of motion should be modified. This is an im-
mediate consequence of the nonunitary nature of the evo-

(A3)

Indeed, as it is easy to check, transformation (A3) does
not even preserve the form invariance of the evolution
law (2.35). One can, however, take advantage from the
fact that

U+0=0+U=l (A4)

from which Eq. (2.35) immediately follows. It is worth
stressing that the modified Heisenberg equation (2.35) for
NHH suffers from some drawbacks, the most serious of
which is the lack of an algebraic structure. In fact, it is
well known that in the Hermitian case, the expression at
the right-hand side of Heisenberg s equation is nothing
but the commutator [A,P], i.e., the associative product
of a I.ie algebra. This property is obviously lost in Eq.
(2.35), since the corresponding term entering it is trilinear
in the operators A, P,8 +.

It is clear that owing to the nonunitary of 0 it is not
convenient to introduce the Heisenberg counterpart of
A„namely,
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and use the new representation

AH. = U+ A, O . (A5) then

[A„, ]=iC, , (AS)

Taking the Schrodinger derivative on both sides of (A3)
we find

[A,B ]=U+[A„B,]O=iC (A9)

i' A H. = —U+BA, 0+ U+ A, BO+iAU+ —A, 0 .

(A6}

Using (A4) we immediately get

i h A—H = [ AH, A'H ]+ i A U+ —A, 0, (A7)

thus recovering the familiar form of the Heisenberg equa-
tions. It is also worth stressing that the commutation re-
lations takes the same from in both pictures, as it can be
easily inferred from the following simple considerations.
Let

On account of Eqs. (2.15) and (A9) the transformation
(AS) plays, for non-Hertnitian Hamiltonians and
biorthogonal states, a role analogous to the standard,
quantum canonical transformations (i.e., it preserves
mean values, commutation relations, and biorthonormali-
ty of states). Therefore, we may name it biunitary (or bi-
canonical} transformation.

%e must, however, conclude that for practical calcula-
tions the most convenient equation for the operator evo-
lution is that provided by (A2). The mixed representation
(A3) is just a mathematical curiosity, which may become
useful for problems involving the concomitant evolution
of biorthogonal states.
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