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Angular distribution of saddle-point electrons in slow H+ +H collisions
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The production of the saddle-point electrons in slow H+ H collisions is discussed in the frame-
work of the quantum adiabatic approach. An analytical expression for the angular distribution of
the ejected electrons is obtained.

Recently, a new channel of ionization was revealed in
calculations of H++H collisions using the three-body
classical trajectory Monte Carlo method. ' It is due to the
"stranding" of electron on the transitory saddle region of
the electric potential between the two protons. These
"saddle-point" electrons have velocities that are nearly
one-half the velocity of the projectile and are called v/2
electrons in Ref. 1. Here we present a quantum calcula-
tion of this phenomena in the framework of an adiabatic
approach.

In the adiabatic approach the collision of two atomic
particles A and 8 is divided into regions of elastic
scattering along adiabatic potential-energy curves E~(R )

and into small regions of nonadiabatic transitions be-
tween potential curves in the vicinity of their avoided
crossings. Every avoided crossing of two potential curves
E, (R ) and E2(R ) reflects their exact crossing at a com-
plex branch-point R, and near R, the difference
b E(R ) =E, (R )

—E2(R ) takes the form

bE(R)=constXQR —R, .

At low relative velocities v of the nuclei the probability of
a transition is expressed through the contour integral of
the energy difference around the branch point

P =exp( 2b, /U ), —
1

2

Z ] Z2
V(r) =E(R}%(r),

ed crossings (the so-called S series) was revealed for the
first time in the two-Coulomb-center problem using
direct numerical calculation of the branch points of the
potential curves in the complex R plane. These avoided
crossings are not manifested in the pattern of the poten-
tial curves at real R and can be considered as "hidden"
avoided crossings (a similar situation exists in the
Rozen-Zener-Demkov model). The ionization due to the
S-series occurs during the approach stage of the collision,
because the avoided crossings of a given S-series ap-
proach the boundary of the continuum with decreasing
values of the internuclear distance R. Later, in the same
problem a second type of infinite series of hidden avoid-
ed crossings was revealed, which was named the T series
(recently this was rediscovered in Ref. 6). These series
lead to ionization during the separation stage of collision
and results in the production of saddle-point electrons. '

A quantal treatment of this ionization mechanism using a
different method was reported earlier. '

Before we consider the ionization process, we will

briefly review the results found in Ref. 5. The
Schrodinger equation of the two —Coulomb-center prob-
lem

where
I

b. = Im f bE(R(t))v dt (2)

admits, as it is well known, a separation of variables in
prolate spheroidal coordinates ( r, =

~
r —R/2 ~, r 2=

I
r+ R/21)

is the Massey parameter, t, is the complex root of the
equation R(t, )=R„and R(t) is the time-dependent in-
ternuclear distance. The above expression underlies the
calculation of the probability of ionization when one or
both atomic particles are positive ions. In this case the
electronic Hamiltonian of the quasimolecule contains the
Coulomb attraction and there is an infinite number of
bound Rydberg states, which prevents, according to the
Neumann-Wigner theorem, the merging of the initial en-
ergy potential curves with the continuous spectrum.
Thus in the adiabatic approach the ionization process
occurs only if there is an infinite chain of avoided cross-
ings, which becomes denser at the boundary of the con-
tinuous spectrum. Passing sequentially and inelastically
through all these avoided crossings with probability (1)
results in ionization. This type of infinite series of avoid-

+ — + + F( ~)=0,
dg g

—1 (g —1)
(4)

d G(71) bri A. 1 — —
G( } 0

dg 1 —g (1—g }

where p =( —2E)' R /2, a =(Zi+Z2)R, b =(Z~

f)+f2 f) f2
P =arctang(x /y ) .

R
' R

Substitution of the wave function

%(r) =[(g —1)(1—
ri )] '~ F(g)G(g)exp(imp)

in Eq. (3) yields the following equations for the functions
F(g) and G(g):

42 1331 1990 The American Physical Society



1332 E. A. SOLOV'EV 42

I5-

T series

~ (2po„-6ho„)

~ ( I so& -5go&)

~ (2p~„-4faU )

—Z, )R, and A, is the separation constant. In the
classification of levels it is usual to employ spherical
quantum numbers (n, l, m ) of a united hydrogenlike atom
at R =0. They are related to the number of zeros
(k, q, m ) of the wave function %(r) in the variables g, ri, P:
n =k+ q+ m + 1, I =q+ m. In the case of I and m we
shall employ also the spectroscopic notation:
I=s,p, d, . . . instead of I=0, 1,2, . . . and
m =cr, m, 5, . . . instead of m =01,2, . . . .

In the problem of two Coulomb centers there are two
nontrivial parameters, the internuclear distance R and
the ratio of the nuclear charges Z, /Zz. We shall consid-
er the symmetric problem Z& =Z2. In this case there is
the additional symmetry —the parity relative to inversion
in the reference frame with the origin at the midpoint of
the nuclei. Owing to this symmetry all the states are di-
vided into even (g states) and odd (u states}. The poten-
tial curves with different values of m or different parity
do not have common branch points, since the exact sym-
metry of a state cannot change as a result of variation of
R. Figure 1 shows the branch points of the potential
curves 1sog and 2pcr„of molecular ion H2+. These
branch points were shown in Ref. 5 as belonging to the S
and T series. From the point of view of our problem,
only the branch points of the T series are important.
These are located in the region of Re(R}=5 a.u. as
shown in Fig. 1. Merging of the branch points of the
1so. and 2pcr„potential curves into a common T series
is related to the degeneracy of these potential curves in
the limit R~~. In the symmetric case (Z, =Zz) all
levels split into such (g, u) pairs to that in the limit
R~oo one of them becomes a sum and the other a
difference between two hydrogen states of separated
atoms (Z, e) and (Zze) having the same set of parabolic
quantum numbers (n, , nz, m). The quantum numbers q
and k introduced above are related to the latter by

q =2nz —
—,'[( —1) —1], k=n, (g states)

q=2nz+ —,'[( —1) +1], k=ni (u states) .

As was reported in Ref. 5 for each pair of (g, u ) potential
curves there is a T series of branch points shared with
higher potential curves. These series are described by the
approximate relationships illustrated in Fig. 1. A11 the
points of a given series are located on a straight line
which is almost orthogonal to the real R axis. They are
separated by steps AR =~in„, where n„=n, +nz+m
+1 is the principal quantum number of an isolated atom
Z;e, and the branch points for the g- and u-potential
curves alternate.

The T series is due to the passage of a pair of (g, u ) po-
tential curves through the top of the barrier in the quasi-
angular equation (5). Here the adiabatic state stops
evolving as a function of internuclear distance and higher
states of the same symmetry run into it. This is rejected
in the appearance of the hidden avoided crossing. The T
series contains an inifnite number of branch points but in
slow collisions the main contribution is given by the
branch point nearest to the real R axis. Its position in
the complex R plane can be obtained explicitly using the
method of comparison:z

R,+ =3n „(2n „—2n, —m —1)+4in „,
R, =3n„(2n„2ni ——m —I)+8in„,

(6)

b =—b E(Re(R, ) )Im(R, ) .

Using the asymptotic expression (6) for R, and the same
approximation for the energy difference we obtain

where (+,—) indicate the parity of the state as z~ —z
(the (+,—

) parity W is related to the (g, u ) parity I by
I= We' ). This simple expression is of major practical
importance. Its real part determines the range of impact
parameters for which we can expect a nonadiabatic tran-
sition due to this avoided crossing, whereas the imaginary
part determines the Massey parameter (2) of the same
transition. The latter can be calculated by using a con-
venient parametrization of the energy difference

bE(Re(R, ))
bE(R )= [(R —R, )(R —R,")]'

Im(R, )

The above expression gives the correct energy difference
by R =Re(R, ) and incorporates the square-root behavior
in the vicinity of the complex branch-point R, . In this
approach the Massey parameter for the head-on trajecto-
ry (zero impact parameter) can be easily evaluated analyt-
ically as

S series
~ (Iscr -Ddt )

7T

(n „)' (n „)'

I

ReR

I

IQ

FIG. 1. Branch points of the adiabatic potential curves 1scrg
and 2po. „ in the complex R plane for the H2+ quasimolecule
(Ref. 5). The expressions in parentheses give the quantum num-

bers of the adiabatic states associated with a given branch point.

In our case the approximation (7) has sufficient accuracy
because for saddle-point electrons typical values of the
impact parameter are negligible compared with the very
large value of Re(R, ) [see Eq. (6)].

All branch points R,+ (or R, ) between the states with
the same quantum numbers (k, m ) form the connected
chain of hidden avoided crossings (see Fig. 2). Their po-
sitions on the real R axis increase as (n„) [see Eq. (6)]
and their energies tend to zero as (n „) . Consecutive
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The scale function must also satisfy conditions of
smoothness. Subject to these requirements z(2), A, ,p, m)
and v(2), k,p, m ) are found from equation (10) as expan-
sions in p. To first order we obtain

v=0, z (2)}=4p[l—(1—
ri )' ] .

FIG. 2. The sequence of avoided crossings of effective princi-
pal quantum number n, ii= [ 2/F(R—)]'/' as a function of R for
H&+ (Ref. 6). The adiabatic potential curves are
1so.g, 3dcTg Sgog, . . . in increasing order of n, &.

passing through all avoided crossings at the separation
stage results in ionization. At every point along this path
the nonstationary wave function coincides with those adi-
abatic states with energy levels touching the top of the
barrier of the quasiangular equation (5) or the saddle
point of the three-dimensional potential. Thus the evolu-
tion of the quasimolecule along this path is exactly the
same as discussed in Ref. 1.

Now let us consider the wave function of the saddle-
point electrons which coincides as R ~ ~ with the wave
function of the adiabatic states with energy levels touch-
ing the top of the quasiangular barrier at g=0. This situ-
ation corresponds to the following values of the parame-
ters in Eqs. (4) and (5): b =0, A. =p, p ~ Oo. In this case
the quasiangular equation (5) has the form

d G(2l)+ 2 'g + 1 —m

d21 (1 —
rI ) (1—

2) )'

To obtain the asymptotic form of 6(2)) it is necessary to
employ the method of the comparison equation as
developed in Ref. 7. For the region g=O the comparison
equation is the equation for the parabolic cylinder func-
tion

d W(z) 1+ —z +v W(z)=0 .
dz' 4

Its solution is the Whittaker function

.Z2W+(z)=z —1/2M, „/2+, /4 i

The parameter p may be connected to the quantum num-
ber n& by matching with solutions satisfying the bound-
ary conditions at g=+1 and g= —1.

At v=0 the Whit taker function reduces to a Bessel
function

6+(2))=const X
~2)1/2

Xsin p[l —(1—g )' ]+—+—
4 8

(12)

The solution 6 1(21) which satisfies the boundary con-
dition at g= —1 is constructed by using a Bessel equation
as the comparison equation. This enables us to take
proper account of the existence of a second-order pole
caused by a centrifugal term not containing a large pa-
rameter. As the standard we search for a solution in the
form

6,(2))=[y'(2))/y(ri)] ' 'J (y(21)), (13)

where J (x) is a Bessel function of the first kind. The
scale function y(i)) is determined after the substitution of
Eq. (13) into Eq. (5) and in first order is

Away from the pole 2) = —1, G, (2)) has the asymptotic
form

' ]/2

G, (2) ) = const X
'9

~2)1/2

2 1/2
1

2 1/2
6 (21)=const X

7l

XJ i/4(p[1 ( 1 7/ ) ])
Using the asymptotic form of the Bessel function for
large argument we can obtain expressions for 6+(21) in
the region outside of the top of the barrier

' 1/2

with 8'+(z) even and S' (z) odd asz~ —z.
We may construct the solution of the initial equation

(8) in the form

6+(21)=[z'(2))] ' ~+(z(2))) .

Substituting expression (9) into Eq. (8) we obtain the
equation for the scale function z(r) )

Xsin p(1 —
2) )' + ——

4 8
(14)

For rl=+ I a finite solution 6+, (2)) is obtained from
G, (2)) by the transformation 2)~ —

2) which does not
change the quasiangular equation but relocates the end
points of the interval. On matching the solution G+(2))
to 6,(2)) and 6+, (2)) we obtain a quantization condi-
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tion using the asymptotic formulas (12) and (14):

m+1P+ =m n2+ +—
2 8

(15) l3

The quasiradial equation (4) has no specific features in

our case and here the standard asymptotic form for

p ~ is valid:"
1/2

2k'(2 (~—1)F(g)= ' L (2 (g —1))e
(k +m)! p

(16)

with the quantization condition

p = —2p(2k +m+1) +2R, (17)

where L„(x ) is associated Laguerre polynomial.
In the limit R~~ the contributions of the regions

~ri~ =1 vanish and the wave function %(ri) is concentrat-
ed in the vicinity of the top of the quasiangular barrier
(see Fig. 3). Therefore the final result as R ~ ao for the
three-dimensional wave function corresponding to the
saddle-point electrons with normalizing condition

r dr=P p, U

contains only the quasiangular wave function (11) and
has the form

2P(p, v )k!rl[2p(g —1)]m
(k+m)!R ln(R )

(18)

where P(p, v ) is the probability of production of the
saddle-point electrons, p is the impact parameter, and p is
expressed through R by the quantization condition (17):

p=[(2k+m+1) +2R]' —(2k+m+1) .

To obtain the partial amplitude of the angular distribu-
tion A+(k, p) it is necessary to calculate the overlap of
the wave function (17) with the eigenfunction of the
momentum operator

A+ (k, p) = f4+ (r)e'"'d r .1

)
3/2

This three-dimensional Fourier integral can be calculated
analytically' and the final result is

(k R)
A+(k, p)=

4p

P(p, v )k!k,

(4p) (k+m )!ln(R)

1/2

XL,,
4p

k R
X exp

8p
J—i/4

k'R'

8p

The total angular distribution X+(k) is obtained by in-

tegrating [A+(k,p)] over the impact parameter

FIG. 3. Three-dimensional adiabatic wave function O(r) of
the H&+ quasimolecular ion with quantum numbers
k=0, q=20, m =0 in [z,{x'+y'}'~'] plane. The quasiradia!
part is Eq. (16) and the quasiangular part is a composite from

Eqs. (11)and (14) obtained by matching in the overlap region.

cr(v)k!k, (k R )
X+(k)=

(4p) + (k+m )!ln(R )

x I.,
4p

2R 2

XJ &/4
8p

exp
Sp

where

cr( v ) =2'f P(p, v )p d p
0

(19)

is the total cross section for the production of the saddle-
point electrons.

It is seen from expression (19), that the width of this
distribution tends to zero as R ~ ~. To apply this result
to the actual situation it is necessary to take into account
the following circumstance. We are using the adiabatic
approach which is valid as long as the probability of tran-
sition (1) remains small. In our case consecutive inelastic
passing through the hidden avoided crossings is accom-
panied by a decrease in the Massey parameter (7) and,
therefore by a increase in the probability (1). From the
physical point of view it is clear that when the probability
reaches the value P =0.5 then there is no longer a corre-
lation between the motion of the nuclei and the distribu-
tion of saddle-point electrons. The internuclear distance,
at which this occurs, can be estimated using the analyti-
cal expressions (6), (7), (15), and (17). We obtain

X+(k)=2~f [A+(k,p)]'pdp .

As A+(k, p) depends on p only through P(p, v ) this in-

tegral is trivially evaluated
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m4 m4R+=, R
2U V

(20)

which can be substituted into Eq. (19) to yield X+(k) and
X (k), respectively.

The process of formation of the saddle-point electrons
is very interesting phenomenon. The final state can be
described as a Rydberg state of the quasimolecule with
large quasiangular quantum number frozen at internu-
clear separation (20) which depends on the relative veloc-
ity of the nuclei. This quantum number can be estimated
using Eqs. (15), (17), and (20) as n &+ =m/&U, n

&

=srl&2U for the symmetric and antisymmetric cases, re-
spectively. This process is interesting also as an example
of the application of the adiabatic approach which allows

us to obtain the final result in analytic form using only
the small magnitude of the velocity of the nuclei without
any additional assumptions. For this case the close cou-
pling method is in difficulty because it is necessary to take
into account many higher excited states and to carry the
calculation out to very large values of the internuclear
distance.
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