
PHYSICAL REVIEW A VOLUME 42, NUMBER 1 1 JULY 1990

Lower bounds on the ground-state energy and necessary conditions
for the existence of bound states: The few-body problem
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We consider a positive diatomic molecule consisting of W electrons and two nuclei and obtain
some results that exhibit scaling properties of the adiabatic energy E,d

—the ground-state energy
with the nuclei fixed —under changes in the charges, and we obtain lower bounds on E,d. In partic-
ular, with the use of available numerical results for E,d for a single electron in the Coulomb field of
two fixed nuclei with charges Z& e and Z&e, we show that composite bound states cannot be formed
for X = 1 and Z& +Zz 3 nor for N =2 and Z„=Z& 3, results not too far from the true lower
limits.

I. INTRODUCTION

The determination of a lower bound on the ground-
state energy E is much more difficult than the determina-
tion of an upper bound on E. The proof, where true, of
the nonexistence of a bound state is more difficult still,
and increases further when there is more than one parti-
cle involved. One useful approach' in an attempt to
prove the nonexistence of a bound state for a certain sys-
tems is, as an intermediate step, to determine the lower
bound on E for a diatomic molecule in an adiabatic ap-
proximation in which the nuclei are fixed at a separation
r„~. The determination of a lower bound on the adiabat-
ic energy E,d(r„tt) has an additional element of complexi-
ty in that one must choose an approach in which
E,d(r„tt) becomes exact as r„it~~; we discuss this
below. We will touch upon other methods, but our pri-
mary effort will involve the adiabatic approximation.

It will be useful to begin with a brief sketch of some
concrete applications that have been made of the adiabat-
ic approximation technique; we will thereby at the same
time define the notation to be used. We consider a heli-
um atom (with the nuclear mass M taken to be infinite)
and a positron, and let the electron coordinates be r, and

rz and the positron coordinate be r3. Then, in an obvious
notation,

H(r„rz, r&)=(T3+2e Ir3)

+ ( T, + T2 2e Ir i
2—e /r2—

+e Ir, 2
—e Ir» —e Iri3)2 2 2

—:h (r&)+H(r&, r2,'r&) .

(Here and later, H denotes a Hamiltonian which arises on
making an adiabatic approximation. ) Since H does not
contain T3, the positron coordinate r3 in H can be taken
to be a parameter —the positron is fixed. The determina-
tion of the ground-state energy E(r&) of H(r„rz, r3) is
then a two-body problem, and even though it is a two-
center problem, accurate numerical evaluations of E(r3)

have been performed. ' [The calculations were done
within the context of the adiabatic approximation to the
Hz molecule. It makes no difference whether it is a pro-
ton or a positron (e+) which is frozen. ] We then have

H(r&, r 2r 3) T&+2e Ir&+E(r3) (1.2)

(Mathematically, it follows immediately that H =h

+H ~ h +min of H; physically, the result is understand-
able in that in the evaluation of E the electrons have been
allowed an arbitrary amount of time to adjust to each
possible position of the e+.) If we denote the ground-
state energy of the helium atom by E~„ it will then not
be possible for the e+ to be bound to a He atom if
Ti+ V,ff(rs), with the effective potential defined by

Vcff(rs )=2e /r3+E(r&) —Eii,

cannot support a bound state. [Note that E(r& )-Eii, as
r3 ~, so that V( r& ) -0 as r& —oo .] The analysis of the
three-body problem in a center of force for the existence
of a bound state has thus been reduced to the much
simpler analysis of a two-body (two-center of force) prob-
lem followed by a one-body problem. In the approxima-
tion considered (nonrelativistic theory, M = ao, no spin
interactions), the above analysis' does indeed prove
rigorously that the bound system (e++He) does not ex-
ist.

The adiabatic approach can in principle be applied to
reduce the dimensionality of an N-body analysis, but in
practice is limited to cases for which the lower-
dimensional problem is solvable. Various extensions are
also possible. Thus the approach as described above,
with the e initially frozen at a point r3, cannot prove
the nonexistence of a bound state of an e+ and a hydro-
gen atom, but the nonexistence of such a bound state can
be proven by freezing the e+ at a given value of r3 rather
than of r3; the intermediate analysis for this less crude ap-
proximation is more difficult, but doable. One can also
allow for finite nuclear mass, not particularly relevant
for the e+-He or e+-H cases noted above, but significant
for a problem such as p++ H. The Hamiltonian H, in
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the center of mass then includes a mass polarization
term, but H, can be bounded from below by a Hamil-

tonian of the same form as that for which the nuclear
mass is infinite.

Some formal results have been obtained relating the
number of electrons N and the atomic numbers Z„and
ZB of two nuclei which can form a diatomic molecule. It
was shown that there exists a critical value Z, (N) such
that no such molecule can exist if ZA & Z, and ZB & Z„
where Z, -2N as N- ~. This result is understandable
intuitively, the repulsive nucleus-nucleus Coulomb poten-
tial dominating over the attractive potential generated by
the presence of the electrons, and it is both surprising and
disturbing that more concrete results —for example,
specific values of Z, for N fixed —have not been obtained.
It must be understood, however, that the attempt made
limited itself to purely analytic results, with numerical re-
sults (either for the problem itself or from related prob-
lems) not allowed.

A number of other results in this area have been ob-
tained, but these are unrelated to the approaches dis-
cussed below, and will therefore only be noted. Thus one
can obtain lower bounds on the energy of some one-body
central potential problems by using the Sobolov inequali-

ty to bound the kinetic energy, and one can obtain a
lower bound on the ground-state energy E of bulk matter
by using a many-body extension of the Sobolov inequali-
ty. (The bound is of the form E ~ CN, with —N the num-

ber of particles in the system, and therefore provides a
proof of the stability of matter which is simpler than the
original proof. ) One can also obtain concrete results on
the maximum number of electrons which can be bound to
a group of nuclei with total charge Z to form a negative
molecular ion. A very good lower bound on the
ground-state energy of some simple systems, such as the
He atom, can be obtained by a projection operator ap-
proach. ' Methods applicable to more complicated sys-
tems, such as the Li atom, and capable of proving the
nonexistence of some bound states, have been provided
by Hill. " Finally, we note that while upper bounds on
the scattering length A can often rather readily be ob-
tained'z'3 by methods which are extensions of the
Rayleigh-Ritz approach, lower bounds on A are much
more difficult to obtain; lower bounds can be obtained for
some systems by using an approach based on the adiabat-
ic approximation. ' '

II. SYSTEMS CONTAINING TWO NUCLEI
AND ONE OR TWO ELECTRONS

A. The one-electron case: Some scaling properties

Our three-body system consists of two particles, with
charge and mass ZA e, m „and ZBe, mB, respectively, and
a particle with charge —Z1e and mass m, . The proto-
type problem is that of two nuclei and an electron.
With Z representing (Z„,Z~, —Z, ) and m represent-
ing (m „,ms, m, ), we characterize the system by
(Z„,m„; Z~, m~; —Z„m, ), or, more simply, by (Z, m).
The Hamiltonian is

H(Z, m}=T—ZA Z 1 e ZBZ1 e Z„ZBe
+ (2.1}

T=T„+Ts+T„T;= (—fi /2m; )V; . (2.2)

where

p;~ =m;mj/(m;+m~ ) (2.3)

is a reduced mass. The deepest continuum threshold E,h,
is then the ground-state energy of the ZA, mz and Z1, m1
pair, that is,

ZA Z1@A 18
2 2 4

thr 22
To avoid having an infinite number of three-body bound
states, we assume that ZA Z1~0. Since a three-body
bound state exists only if E(Z,m) lies below E,„„we
define a new Hamiltonian H'(Z, m) with E,h, as the
zero-energy reference level, so that

H'(Z, m)—=H(Z, m) —E,h, . (2.4)

We let p represent (r„,rz, r&). If H*(Z, m) is non-

negative, that is, if

&ylH"(Z, m)ly) &0 (2.5}

for every square integrable function p(p), the system has
no three-body bound state. A number of consequences
follow from the assumption that (2.5) is valid.

(i) Replace Z„by A,Z„, where here and later A, ~ l.
With A'=e = 1, H'(Z, m) is replaced by

ArZA Z 1H'(AZ„)=T—
A1

ZBZ 1 +
~B1

AZg Zg

TAB

+ A, ZAZ1PA1
2 2 2

2

[Here and later, the argument of the altered H' will indi-
cate which of the parameter(s} has been changed. ]
Changing variables from p to p/A, , we obtain

H'(AZ„)=A, H'(Z, m}+A(A, —1)(ZsZ)/r~, ) ~0 .

In other words, the system with ZA replaced by XZA will

not have a three-body bound state if the original system
did not.

(ii) If Z„and Zs are replaced by AZz and AZs, re-
spectively, H'(Z, m) is replaced by H'(AZ„, AZs). Un-
der p~p/A, , we Snd

H'(A, Z„,A,Zs }

=A, H*(Z, m)+A, (A, —1)(Z„Zq/r„)~s0 .

Again, the change does not generate a three-body bound
state if there was no such bound state to begin with.

(iii) A similar result holds for the change Z, ~Z, /A, .
Under p~k.p, we find

We denote the ground-state energy of the three-body sys-
tem by E(Z, m). Without loss of generality we can as-
sume that

ZAP A1 —ZBPB1
2 ) 2
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H*(Zi /A, ) E'"(res', Az&, kzs) A, E ' (r„s,z&,zs) .

=(I/gi)[H'(Z m)+(g —1)(Z„Z /r„)] &0 The effective potential is

H(r»res, z&,zs)= T&—
Zg e Zge2 2

r A1 rB1

Under Z& A,Z&, Z& A,Z&, and p p/k, where, as al-
ways, A, ~1, we fin

E"'(r„s;AZ„,A,Zs)=A, E".'(Ar„s;Z„,z.s) . (2.6)

Using the monotonicity theorem of Leib and Simon, '

namely, that E '" increases monotonically with increas-
ing r„~—E becomes less negative —we arrive at(1)

(In the Appendix we attempt to provide some physical in-
sight into the above results. }

The results just obtained can be summarized as follows.
Assuine that the system defined by (Z, m) has no three-
body bound states and that the A —1 pair is more deeply
bound than the B —1 pair. Then there will be no three-
body bound states for a system for which (i} Z„ is in-
creased, (ii} Z„and Zs are increased by the same factor,
and/or (iii) Z, is decreased.

Apart from some very special cases —for example, the
absence of a bound state of tritium, an e+ and e
guarantees, using (i), the absence of a bound state of He3,
an e and e —results (i), (ii) and (iii) have little immedi-
ate applicability, since they were obtained under the as-
sumption that the masses are held fixed, while a change
in charge normally implies a change in mass.

As will be seen shortly, much more useful results can
be obtained in the adiabatic approximation. Results (i),
(ii), and (iii) are also valid in that approximation, and that
is the context in which we first obtained them, but the
derivations are simpler —and the results stronger —if one
considers the original Schrodinger equation, as was point-
ed out by Robinson. '

B. The one-electron case: some further
general properties and some applications

We can deduce three additional simple scaling proper-
ties which allow changes in the nuclear masses as the nu-
clear charges are changed —essential in our approach to
the proof of the nonexistence of certain bound states —if
we make the adiabatic approximation and certain as-
sumptions.

(iv) Assume that m„»m~ and m„&&m, . Particle A

can then be taken to be fixed, and T„can be set equal to
zero. The fact that m~ increases with Z„ is then ir-
relevant, and property (i) becomes applicable to some real
systems.

(v) Consider a system for which the effective potential
,V(rff„),&with particles A and B held fixed at a separa-

tion rzz, is positive for all rzz. Let T„~ be the kinetic
energy of relative motion of particles A and B. It is then
obvious that the Hamiltonian T„s(r„s)+V,ff(r„s) can-
not support a bound state. With the superscript one on
E "' indicating that the system contains one electron, let
E "'(r„s,z„,za) be the ground-state energy for an elec-
tron in the field of the two fixed nuclei, that is, for the
Hamiltonian

(1) A 8
ff( AB, A, ZB )=E (Pgs, zg, zs )+

rAB

where

thl. . 1

It follows that (i' =e = 1)

V,ff(r„s,kZ„, A,Zs )=E ' "(r„s;A.z„,k,zs )

A, Zg Zg m]A, Zg+ +

X Vtff(r&s', ZA, ZB

V,ff(res, z„,zs } . (2.7)

V ff(r„s,Az„,zs ) & A, E '"(Ar„s,'Z„,zs )

Zg Zg+ + m1Zg
krgg 2

=k V, (kffr„a, z„,za) . (2.8)

It follows that if V, (ffrz s,
'

Z&, Z 8)&0, the system with
Z„replaced by kZ~ cannot support a bound state.

It should be emphasized that subject to the assumption
that m „»m

~
the results in (v) and (vi) are rigorous; the

adiabatic approximation generates a lower bound on the
energy, and its use does not vitiate the proof.

The nonexistence of bound states of some systems can
be proved using (iv), (v), and (vi) and available numerical
results for E '"(r„s;Z„,zs).

(a) The systein (p, e+, e ) is known to have no three-
body bound states. ' Since mp)) Alp it then follows
from (iv) that a system containing a nucleus with Z„& 1,
an e+ and e will not have any three-body bound states
either.

(b) Consider systems consisting of an e and two nu-
clei. An a particle (m„=m, Z„=2), a proton (m~
=m, Zs= 1), and an e are known' to have no three-
body bound states, since it follows from the data
of Bates, Ledsham, and Stewart and Wind' that

This result proves that if Vff(1+ sz+, Zs) 0, then V,ff

for the system with Z~ and Zz increased by a factor A,

will also be non-negative, so that the system cannot sup-
port a bound state, independent of the nuclear masses as-
sociated with the charges A.Z„and A.Zz.

(vi) Replacing the nuclear charge Z„by AZ„, we have

V ff(r As, Az„,zs ) E" (r„s—, Az„,zs )

ZA ZB
+it + —m A~zi

r~a
m1

Since the energy in the adiabatic approximation satisfies

E '"(res , Az„,'zs ) E ' "(rq~ , Azq, A'zs ),
we obtain, on using Eq. (2.6),
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V,ff(res, Z„=2,Zs= 1 }~0. The ProPerties (v) and (vi)

then give, respectively,

eff (r'wa&Za —2A&ZIr —A, ) 0,
(2.9)

V ff(r„li;Z„' =2k, ,ZIi= 1)~0
with available numerical results' for
E "'(r„s;Z„=ZIi=1}for H2+, and with the use of Eq.
(2.7), we find that

V,ff(res , Z„' '=2k, ,Zs =2k, ) ~0 . (2.10)

Noting that A, need not be integral, we conclude from
(2.9), (2.10), and property (vi) that a system with total nu-
clear charge Z~ +ZB & 3 has no three-body bound states.
Consider, for example, the case Zz ~2, ZB=2. We
would start with Z„=2 and Zs =2 in Eq. (2.10) and use

property (vi) to conclude that a system with Z„~2 and

ZB =2 has no bound states. We can proceed similarly for
the case ZB ~ 3.

C. Two-electron systems

Let E ' '(r„ii;Z„,Zs) be the ground-state energy for N
electrons in the field of nuclei of charges Z„and ZB fixed
at a separation r„B. Numerical data exist for N=2,
Z„=ZB=1, and for Z„=2, ZB =1. The latter data can
be and have been used to prove that a He atom and an
e+ cannot be bound. ' [E' '(r„s,Z„=1,Z =&1} is the
same for an a and an e+ fixed as for fixed a and p.) It is
obviously much less demanding, however, where possible,
to use data for two fixed nuclei and one electron rather
than two electrons, and we will now prove the nonex-
istence of bound states for some two-electron systems us-
ing only one-electron data. (Ultimately one would, of
course, want to consider diatomic molecules with more
than two electrons; for a consideration of such systems in
the adiabatic approximation, the use of adiabatic energy
data involving fewer than the true number of electrons
would normally be essential. ) As above, we denote the
one-electron data by E "'(rzli, Z„,ZII). Since the e -e

interaction is repulsive, we have

E ''(r„II&Z„&ZII) 2E '"(r„II&Z„&ZII).
Using (2.6), we find for the effective potential between the
nuclei, in the two-electron case, with Zz =ZB =Z,

In Table I, we summarize the results obtained in this
paper, and some of the results obtained previously, for
systems which cannot form composite bound states.
There are two major shortcomings in the approaches we
have discussed. (1) All of the results obtained were based
on numerical calculations. It would be desirable to have
some rigorous analytic proofs. (2) None of the methods
discussed allows generalization to systems with more
than two electrons, and even for two electrons results
were obtained only for Z„=ZB.

With regard to (1), consider, for example, an attempt
to prove analytically that Z„, ZB, and e cannot form a
bound state, and let us specialize to the case
Z„=ZB —=Z. One might begin by using the adiabatic ap-
proximation and then use the necessary condition

max[L (r;E)]~ 1, (2.11)

where

L(r;E)=fG(r, r';E)V (r')g, (r')dr'/g, (r)

to bound E "'(r„ll;Z,Z) One mig. ht expect
—Zlr —r && /21/ao —Zlr+ r && /21/ao

, r=e +8

(2.12)

(2.13)

to be a reasonably good trial function —it would prob-
ably give a fairly good estimate of the energy —especially
for r&B large. Since the objective is to show that Z, Z,
and e cannot have an energy below the ground-state en-

ergy —Z e /(2ao) of Z and e, we must prove, for

F(r;r„jI,E)= J G(r;r', E)V(r', r„s)g, (r')dr'/i', (r),
where 6 is given by

G(r, r', E}=— (2.14)

Setting Z = 1 and using the numerical data for
E"'(r„li,Z, Z), ' one finds that

2 2

2E "'(3r„ii,1, 1 )+ + ~0,
raB ao

and therefore that V',z' ~ 0 for A, & 3. In other words, two
electrons cannot bind two bare Li nuclei, nor two bare Be
nuclei, etc.

D. Conclusion and discussion

V',ff(r„ll,'AZ, /&Z) ~ A, 2E '"(/&r„II, Z, Z) and

rAB

Z2e2 Z2e2

ao

1 1

ir res/2i il +rgli/2/

TABLE I. Some systems which have been shown to be incapable of forming composite bound states.

System

a+p +e
Z~ +Zq+e
p+e++e
Zg +e +e
Q+e +e +e
Z„+Za+e +e
p

—++e +e+ and p+p +e+

Condition

ZA +ZB

Z„=Z~ ~ 3

Reference

Reference 1

Present work
Reference 17
Present work
Reference 1

Present work
Reference 4
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that the maximum over r of F ( r; r „a,E) approaches 1

when r „~ approaches 00 so that the lower bound on the
energy approaches the deepest continuum threshold

Ethr = 2Z e /ao

However, consider r „z arbitrarily large but fixed, and
choose r )&r /i z . The dominant contribution to F comes
from r' =r, and we arrive at

F(r;r„&,E,h, ) =2 I 6 (r, r', E,h, )( Ze —/r')
—Zr'la& 3, Zrlao-x e 'd r'/e

as given by Eq. (2.13) is therefore useless. That g, of
Eq. (2. 1 3) is very wrong for r && r„s is clear, for the e is
then efFectively in the field of a point charge of magnitude
2Z. [For E = —Z e /( 2ao), the wave function is then
proportional to that of a 2s state for nuclear charge 2Z,
very different from the f, of Eq. (2 .1 3 ).]

There would also seem to be great difficulties in an at-
tempt to apply the projection operator technique to
bound E( r „~;Z, Z ) This .is a two-center problem, and
there is no obvious choice of H0 in the decomposition
H =HD +H ', where

H(r, ;r„s;Z,Z)= T, + V(r, ;r„~ )

We are free to choose H0 but the projection operator
technique for obtaining a lower bound on the energy
demands that 8' be non-negative everywhere, a severe re-
striction

With regard to (2), we note that there do not seem to
be any simple scaling laws for N ~ 2, where N is the num-
ber of electrons, except for all of the Z's the same. Even
then the scaling law is not on the original Hamiltonian H
nor even on 8, but on the H with the e -e terms omit-
ted. (Though that omission will weaken the necessary
conditions for the existence of bound states, it does
preserve the lower bound on E ' '.) Furthermore, scaling
laws are not, by themselves, necessarily useful; one often
needs a monotonicity theorem, which has been proved
only for X = 1 and may wel 1 not be valid for X ) 1, and
there is the severe restriction on the adiabatic energy
namely, that it must satisfy

E ' '(r„~ = ~,ZZ„,Zs )=EIf,'(XZ„,Zs ) . {2.15)

[By definition E ',p ' —which in general is a function of
both charges —is the ground-state energy of the system
of N electrons and two nuclei for the nuclei infinitely far
apart . Since the adiabatic approximation leads to a lower
bound on the ground-state energy, E ' '( r „~,Az„,Z& )
cannot lie above EI 'h( A Z„,Z )s; if it were to lie below,
one could not possibly prove the nonexistence of a bound
state. ] Thus, for N =2, Z„=Zs, and r„s~ ~, one elec-
tron is attached to each nucleus, the e -e repulsion can
be neglected, and the condition of E ' ' just recorded is
satisfied, but for Z„~Zz + 1 both electrons wi 11 be at-
tached to Z „ for r „z~ tx) and the condition on E ' ' is
not satisfied, and it does not seem to be satisfied even for
Z„=Zs for N & 2. [Parenthetically, we note that E "' is
not monotonic for the system consisting of a proton,
an electron, and an antiproton. Thus we have Eth,

V,q( r) = ( Z „—Z, )Zs e 1 ( Zee )

4r
Vc ( r j + Vp [ ( r),

e /( a o), and a polarization energy E,i
2 4ae /r~~ for

larger�„~,
where a =

—,a o is the polari-9 3

zabi 1ity of the hydrogen atom . The adiabatic energy v an-
ishes for r ~z =0 and is equal to E,h, at r „z= ~, while for
r ~z very large it is equal to E,h, +E,&, below its values at
r„z =0 and r„s = ~ .] For N & 2 there is, of course, the
additional problem of having to satisfy the Pauli princi-
ple

While the adiabatic approximation technique has the
advantage of reducing the prob 1em to a sequentia 1 pair of
lower-dimensional problems, it has the disadvantage, not-
ed just above, of requiring Eq. (2.1 5) to be satisfied. One
might therefore consider other approaches. Thus, for ex-
ample, for N = 1 the necessary condition defined by (2.1 1 )

and (2.12) requires the use of the six-dimensional free
Green's function —this might be reduced somewhat by
using the azimuthal symmetry of the problem with
respect to the axis joining the two nuclei —but the ques-
tion of the validity of Eq. (2.1 5) does not arise.

Note added in proof. We had not considered the possi-
bi lity that Z~ ( 1 . Though not of immediate physical in-

terest, the case is of considerable conceptual interest, as
pointed out to us by Professor M . B. Ruskai. Thus, for
X = 1, assume that r „~ is large and that the electron is
bound to particle B. Since, for Zz & 1, the net charge of
the bound system is negative, the interaction between the
bound system and particle A is attractive . One of course
expects the electron to be bound to A rather than to 8
for r '„z large, but the rigorous proofs for the nonex-
istence of composite bound states, for Z ~ arbitrarily
large, depend explicitly on the assumption that the in-
teraction is repulsive for large r „I„whether the electron
is attached to A or 8. That no bound state exists for
Z~ ( 1 does not seem to follow from our results. We note
without proof that it is not necessary to invoke the mono-
tonicity theorem to prove properties (v) and (vi); one can
simply use scaling
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APPENDIX A VERY ROUGH KSTIMATE
OF THE CHARGE AND MASS PARAMETERS

FOR WHICH A SYSTEM IS JUST BOUND

We seek conditions on the parameters Z and m of a
three-body system such that the system is just bound; we
here abandon any pretense of rigor. The wave function
for the bound-state system may then be significant only
for r~ ~ and r~, large compared to r „,; a characteristic
value of rz

&
is R /(p „&Z&Z

~
e ) =a ~, the Bohr radius for

the A - 1 pair in its ground state. %'e can therefore hope
to approximate rz

&
by rz „. Further, the dominant in-

teraction between B and the A —1 pair may be given, for
the values r ))a 0 under consideration, by
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where, in this appendix and only in this appendix we
write r for rB~, where by an earlier assumption

Z~ —
Z& «0, and where Vc is the Coulomb potential,

Vp f is the polarization potential, and a is the static elec-
tric dipole polarizability of the 3-1 pair in its ground
state. a is given by

9 A' 1
CK=

pg ie ZgZ i

ZlmA

+Zoom

1

m&+m&

Let jtt be the reduced mass of the 8-( A-I) system, that is,

Irttt(rrl g +rrt t )
p=

mB+mg +mi
(Al)

h (r) = t + V,tt(r)

can support a bound state, where

t = —(A' /2p)V

(A2)

(A3)

We will return to this question shortly, after having made
some scaling studies. Let us first assume that
H*(Z, m)) 0. If the one-body approximation is a good
one, it can then be expected that

The question as to whether or not H(z, m) can support a
three-body bound state is then reduced to the question of
whether or not the one-body Hamiltonian

for r rather large compared to ao/Z„, where

C=—'(fi—/e ) .
4

Under Z~ ~A,Z„, one can see by inspection that
h (A,Z„))0, so that we obtain (i); the proof does not con-
sider the change r~r/I, . Similarly we obtain properties
(ii) and (iii) from this one-body Hamiltonian; here we do
need to consider that change. The fact that h (r} has the
same scaling properties as H* slightly increases our faith
in the use of h (r).

The critical values for the nuclear charges can also be
estimated from a study of h (r). The monotonicity
theorem' ' ' provides a simple lower bound on the adia-
batic ground-state energy for all r~B. If, for simplicity,
we take particle-1 to be an electron and choose
Zz =ZB =—Z for the nuclear charge, we have

(2Z)~e~
E(rett, Z, Z)
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The lower bound for V,z is then given as

2 2 2 2 2 2

)& Z e 2Z e Z e
eff AB~

AB 0 2a 0

The effective potential V,z is then non-negative for

3
0 Q

On the other hand, it fol lows from the V,z of
Eq. (A5) that V,tt(r „tt ) )0 for r„tt ~ —,'ao if Z satisfies

h(r))0. (A4)
32Z —32Z —243 ~ 0,

h(r)=— (Z„—1)Zsep2+
2m' r

CZB

m'Z4 r'
e

(AS)

[Note that h (r} is the one-body equivalent of H'(Z, m) in
Eq. (2.4), not of H (Z, m).] We will now determine wheth-
er the scaling laws for the original problem are valid for
what one can hope is an approximately equivalent one-
body problem, at least for m~ )&m&. For particle-1 an
electron and for mz ))m„h (r) reduces to

which gives Z ~ 2.0, to be compared with the more accu-
rate numerical value Z) 1.4. (Analogous results can
readily be obtained for arbitrary Z and m. ) It must be
stressed that the estimate Z ~2.0 is indeed an estimate,
not a rigorous bound. If, for example, one includes the
r terms in V,z, terms originating in the static electric
quadrupole polarizability and in nonadiabatic effects, the
estimate becomes Z ~ 1.1, below the more accurate nu-
merical value.

'Present address: Department of Physics, University of
Western Ontario, London, Ontario, Canada N6A 3K7.

'F. H. Gertler, H. B. Snodgrass, and L. Spruch, Phys. Rev. 172,
110 (1968). [For proofs of the nonexistence of bound states
for a particle in a potential, see Z. Chen and L. Spruch,
preceding paper, Phys. Rev. A 42, 127 11990).]

L. Wolniewicz, J. Chem. Phys. 41, 1646 (1964).
J. D. Stuart and F. A. Matsen, J. Chem. Phys. 43, 1087 (1965).

4E. A. G. Armour, J. Phys 8 16, 1295 (1983); Phys. Rev. Lett.
48, 1578 (1982).

~M. B.Ruskai, Lett. Math. Phys. 18, 121 (1989).
6E. H. Lieb, Rev. Mod. Phys. 48, 553 (1976).
E. H. Lieb and W. Thirring, Phys. Rev. Lett. 35, 687 {1975).

8F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 (1967).
E. H. Lich, Phys. Rev. Lett. 52, 315 {1984);Phys. Rev. A 29,

3018 (1984).
' N. W. Bazley, Phys. Rev. 120, 144 (1960);J. Math. Mech. 10,

289 (1961).
"R.N. Hill, J. Math. Phys. 21, 1070 (1980).
'2L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 {1959);117,

1095 (1960).

' L. Rosenberg, L. Spruch, apd T. F. O' Malley, Phys. Rev. 118,
184 (1960).

'4Y. Hahn and L. Spruch, Phys. Rev. A 9, 226 (1974).
L. Rosenberg and L. Spruch, Phys. Rev. A 12, 1297 (1975).

~6E. J. Robinson (private communication).
E. H. Lieb and B. Simon, J. Phys. B Atom. Mol. Phys. 11,
L537 (1978).

' I. Aronson, C. J. Kleinman, and L. Spruch, Phys. Rev. A 4,
841 (1971).

'90. R. Bates, K. Ledsham, and A. L. Stewart, Philos. Trans. R.
Soc. London Ser. A 246, 215 (1954); H. Wind, J. Chem. Phys.
42, 2371 (1965).

~oL. Spruch, in Proceedings of the Ninth Summer Meeting of Nu

clear Physi cists, Hercegnovi, 1964, edited by M. Cerineo
(Federal Nuclear Energy Commision of Yugoslavia, Belgrade,
1965), Vol. I, p. 271; in Lectures &n Theoretical Physics, edited

by S. Geltman, K. T. Mahanthappa, and %. E. Brittin {Gor-
don and Breach, New York, 1969), Vol. X1-C, p. 57; the re-

sult obtained is restricted to the N& = 1 case.
2'H. Narnhofer and %'. Thirring, Acta. Phys. Austriaca 41, 281

{1975).


