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Energy loss by slow electrons in polar gases
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The mean energy loss by slow electrons moving in a gas and rotationally exciting the molecules is

proportional to the rotational stopping cross section (RSCS) defined by multiplying the cross section
for a rotational transition I ~I" by the transition energy and by summing the product over I '.

The RSCS for linear and symmetric-top polar molecules are studied in the adiabatic-rotation ap-

proximation at scattering angles 8 larger than a critical value 8, and in the first-Born approximation
for L9 & 8, . Formulas independent of |9, are derived for the RSCS for any I as the sum of the RSCS
for the ground rotational state I =0 and a term that depends on I in a simple analytic form and is

proportional to the dipole moment D squared. For a vanishing D, this term vanishes and the formu-

las reduce to a previously proven theorem for nonpolar molecules that the RSCS is independent of
I . Useful expressions are also derived for the average of the RSCS over the Boltzmann distribution
of I".

I. INTRODUCTION

The knowledge of the energy spectra of free electrons
in gases, liquids, and solids is indispensable for the studies
of radiation physics and chemistry, physics of gas
discharges, physics of the upper atmospheres of the Earth
and other planets, etc. The energy spectra change as the
electrons collide with the molecules in the matter; the
fast secondary electrons produced in the matter as a re-
sult of ionization slow down in the collisions, first rapidly
by electronic excitation, and then gradually by vibration-
al and rotational excitation after their kinetic energies be-
come insufficient for the lowest electronic excitation. '

The mean energy loss by electrons with an energy c.

due to rotational excitation and deexcitation of the mole-
cules is proportional to the stopping cross section'

S(P„s)= g (AErr~ ~r.r)

where p=1, 0 r „.is the integral cross section for a rota-
tional transition I ~I", and EEr r. is the corresponding
transition energy. The brackets denote the average over
the degenerate initial rotational sublevels.

Rotational excitation often occurs simultaneously with
collisional vibrational excitation u~u . A convenient
definition in this case is

g (~E,r, U r )"o'Ur, 'r'
r'

(2)

which is similar to Eq. (1) but depends on the vibrational
states u and u'.

Equations (1) and (2) for general p, (not necessarily
equal to 1) define the pth moment of the rotational struc-
ture in the cross section as a function of the transition en-

ergy. We may also define the moments dS(p;e)/dao by
replacing err „ in Eq. (1) by the differential cross section
do r r /de, or similarly, by replacing a', r, .r. in Eq. (2)

by do.„r, r /d~. Such moments were studied previously

in the adiabatic-rotation approximation, which assumes
negligible molecular rotation during the electron-
molecule collision, and some useful general formulas were
found. This approximation is valid except for collision
energies close to an excitation threshold, except in ex-
tremely narrow resonance regions, and except for ex-
tremely forward scattering by polar molecules.

In the calculations of the stopping cross sections
S(1;e) for rotational transitions of polar molecules, for-
ward scattering needs some different treatment without
the adiabatic-rotation approximation. The main purpose
of the present paper is to derive general formulas for
S(1;e) for polar molecules. Section III is devoted to this
derivation for linear-rotator molecules, and Sec. IV for
symmetric-top molecules. Prior to them, however, Sec.
II reviews the formulas derived previously in the
adiabatic-rotation approximation. Section V considers
the average of the stopping cross section over the
rotational-state distribution. This average should be use-
ful in practical applications to gases consisting of polar
molecules. Finally, Sec. VI summarizes the main results
of this paper.

II. THEOREMS IN THE ADIABATIC-ROTATION
APPROXIMATION

Operator techniques with commutation relations were
used in Ref. 2, and a theorem that reads as follows was
proved for rnolecules regarded as linear, spherical-top,
symmetric-top, or asymmetric-top rotators: dS(1;s)/des,
and hence, also S(1;c.) in the adiabatic-rotation approxi-
mation are independent of the initial rotational state.
Therefore they remain the same as, say, for the initial
ground rotational state even after being averaged over
any rotational-state distribution.

This theorem was proved again in Ref. 3 for linear,
spherical-top, and symmetric-top molecules, but not for
asymmetric-top molecules, by using a different technique
that clarifies the physical (or geometrical) meaning of the
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theorem. A similar technique is found also in Ref. 4. In
the following, J, J', and J"denote the quantum numbers
of rotational angular momenta, and K, K', and K" their
projection onto an axis of quantization fixed on the mole-
cule. The latter quantum numbers with a tilde run over
both positive and negative values and represent primitive
symmetric-top states. Because the energy of a
symmetric-top state is independent of the sign of K, the
average is taken between K and —K of the initial state in
the calculations of moments for symmetric-top mole-
cules. Therefore these moments depend only on J and
the absolute value of K, denoted in the following by K
without a tilde.

A scaling relation

dS(0;J,c) dS(0;O, c)
dco dpi)

dS(1;J,c) dS( 1;O,c)
dc' dc'

ds(2 J c}= ds(2 0 c) + E J ds(1 0 c)
(5)

dS(3;J,c) dS(3;O, c) E dS(2;O, c)

The theorem is generalized for higher moments
dS(p, ;c)/des in Ref. 8. The following summarizes the
formulas for the lower moments for linear rotators and
spherical tops:

(3)

is known, where y =(2J'+ 1)/[(2J+ 1)(2J"+ 1 }] for
spherical-top molecules and y =[C(JJ"J',000)], the
square of a Clebsch-Gordan coefficient, for linear-rotator
molecules. ' For symmetric-top molecules the scaling
relation reads '

=g y(JJ"J',EK"E')

where y=[C(JJ"J',KK "K')] and K"=K' K. Use o—f
Eqs. (3) and (4} reveals equivalence of the above theorem
for linear and symmetric-top molecules to the second
cosine formula J'2=(J+J"} =J +J" +2J J".

(1)dS(1;O, c)
c31

and dS(2n; J,c) Idco and dS(2n+ 1;J,c)Idee are polyno-
mials of integral degree n in E (J), where E(J) is the rota-
tional energy BJ(J +1),B is the rotational constant, and
c21=2, c32 =6, and c» =2 for linear rotators and c2, = 3,
c32 4, and c» =—', for spherical-top rotators. Formulas
simpler than Eqs. (5) follow from a high-J approxima-
tion. Results similar to Eqs. (3) and (5) are also obtained
for collisional transitions of classical rotators in the sud-
den approximation.

It follows for quantum-mechanical symmetric tops
that'

dS(0;J,K, c)
dc'

dS(1;J,E,c}
dco

dS(2;J,K, c)
dco

dS(3;J,K, c)
dco

ds(0;O, o, c)
dN

dS(1;0,0,c)
dco

dS(2;0, 0, c) +2[E(JE) AK2] dS(1;0,0,c) 2[E(J E) 3AK2] dU(1;0, 0,c}
dco dco dco

+6[E(J,K) —AK ]
' ' ' 4B[E(J,K) —AK BE ]- —

dc'

—6[E(J,E)—3AK ] ' ' ' +4B[(1+BIA)E(J,K) AK 5BK ]- —
dco N

(6)

and dS(2n; J,E,c)/de and dS(2n + 1;J,E,c)/de are po-
lynomials of degree n in E(J,K) and E, where E(J,K) is
the rotational energy BJ (J + 1 }+( A —B)K, A and B
are the rotational constants (where A )B for prolate
symmetric tops and A (B for oblate symmetric tops),
and another constant parameter d U/dm is defined by

AE" [E(J",E")]"

dt's dt's

(6a)

Equations (5) and (6) are based on the relations (3) and
(4) combined with formulas for the sum

g [J'(J'+1)—J(J+1)]"[C(JJ"J',KE"K')] . (7)

An approximation slightly better than Eqs. (3) and (4)
contains a kinematic factor, or the ratio of the final-
channel to initial-channel wave number, on each side of
these equations. This factor may be expanded in terms
of powers of EEL z /c. . Retention of the two leading
terms in this expansion slightly modifies Eqs. (5) and (6).
Furthermore, the modified formulas may be averaged
over the Boltzmann distribution of the rotational states at
temperatures T. The averages dS(p; T, c) Idee= (dS(p;c)/dao) r are calculated to be
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dS(0; T, E) dS(0;0, e)
dco dc'

dS(1; T, e) dS(1;O, e) kT
dc' dc' E,

(8)

dS(2; T, E) dS(2;O, r) dS(1;O, e)
dc' dc' dc'

The interaction between an electron and a polar mole-
cule having a dipole moment D = (D, D ) takes an asymp-
totic form of a dipole potential

Vd(r)- — D r,
T

(9)

where —e is the charge of an electron, and r=(r, r) is the
position vector of the electron relative to the center of
mass of the molecule. Because of the long-range nature
of the potential (9), the effective collision region for
small-angle scattering, which is due dominantly to distant
collisions, can be extremely large. Therefore the effective
collision time can be extremely long, much longer than
the period of the rotational motion of the molecule. This
invalidates the adiabatic-rotation approximation for for-
ward scattering by polar molecules. ' ' Indeed, the in-
tegral cross sections for rotational transitions of polar
molecules diverge in this approximation because of the
divergence of the differential cross sections towards a
zero scattering angle. This is pointed out in Ref. 11,
which criticizes finite numerical results of previous au-
thors.

for spherical-top, linear, and symmetric-top rotators for
8 ((kT (& c., where k is the Boltzmann constant.

These results are generalized in a few different ways.
First, generalization for rotational-vibrational transitions
rather than purely rotational transitions is straightfor-
ward. ' Second, generalization for rotational-vibronic
transitions needs special considerations. This is because
the rotational Hamiltonian for the final vibronic state is
often different from that for the initial vibronic state.
Reference 3 discusses modifications necessary in this
case. Third, many of the above results apply, either
directly or with a slight modification, to molecular photo-
ionization and to positron-molecule, ion-molecule, atom-
molecule, and molecule-molecule collisions. ' '

III. STOPPING CROSS SECTIONS
FOR LINEAR POLAR MOLECULES

Fortunately, a simple perturbation theory applies to
that forward scattering by polar molecules for which the
adiabatic-rotation approximation breaks down. This is
because, in this case, the electrons interact with the mole-
cules almost only at large distances, and hence, only
weakly, although the collision time is long. ' ' In the
first-Born approximation for distant collisions for which
the interaction potential is represented accurately by Eq.
(9), the differential cross section for a rotational transition
J~J' of a linear rotator takes a form'

der J J. 4kf emD
J+1,J'

3k l

2

2J+ 1

where k, and kf are the wave vectors of the initial and
final channels, k; and kf are their magnitudes, m is the
reduced mass of the electron-molecule system, and J& is
the larger of J and J'.

Let 0, be a scattering angle such that the dipole-Born
approximation (10) is valid for 8&8, and such that the
adiabatic-rotation approximation is valid for 6 8, . We
may assume an overlap between the angular regions of
the validity of the two approximations, and the choice of
8, is arbitrary, provided that it lies in this overlap region.
Note that Eq. (10) satisfies the theorems summarized in
Sec. II, if we make a further approximation that k, =kf,
which is equivalent to the application of the first-order
perturbation theory to the adiabatic-rotation expression
with the dipole potential (9). This fact is consistent with
the assumption of the overlap of the two angular regions.

The momentum-transfer cross section in the adiabatic-
rotation dipole-Born approximation is

'2
Sm meD

k, A

This quantity often appears in later derivations, although
it is not employed as an approximation to the true
momentum-transfer cross section; Eq. (11) is to be under-
stood merely to define a notation for the quantity on the
right-hand side.

The contribution S& (p;J, e) from the angular region
0& 8& 8, to the moment S(p;J,e) may be easily calculat-
ed by multiplying Eq. (10) by (bEJ J, )"=(+2BJ&)", by
integrating it over this angular region, and by summing
over J'=J+1, as

8,
S&(p;J,e)=(2B)"0 ln sin 2J+1 e

(12)

where

(J + 1 )"+'ln( J+ 1 )
—

( J)"+' lnJ-
2J+1

(13)
F(p;0)=0 .

For J =0 there is no contribution from J'=J—1, and

S takes a simple form

2c .S((p;O, c}=(28)"cr 1n sin
B+0

(14)
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r

0,
S&(0;J,s)=o . ln sin F—(0;J)+0 B

E,

(15)

Take an example of p=O. Combining Eq. (14) with an
equation

IV. STOPPING CROSS SECTIONS
FOR SYMMETRIC-TOP POLAR MOLECULES

In the first-Born approximation with the potential (9),
the differential cross section for a rotational transition
JK~J'K' of a symmetric-top rotator vanishes if
lJ —J'l ~2 or K%K'. The differential cross section for
J'=J+1 and K'=K is'

that follows from Eq. (12), we find that

S (0;J,s) =S (0;O, s) (r F—(0;J)+0 — . (16)
B
E

We have assumed the validity of the adiabatic-rotation
approximation for 8& 8, . Therefore the contribution
S&(0;J,s) from the region 8&'8, to S(0;J,s) satisfies the
relation

'2
JK, ( 1+1)K 4kf emD 1 KJ

dao 3k, g2 2J+1 J)

and that for elastic scattering (J',K')=(J,K) is

do — — 2ii(, inc 4 emD K
lk k

l

z

dc@ 3 g J(J+1)

(19a)

(19b)

S (0;J,s) =S (0;O, E) (17)

according to the first of Eqs. (5). Because S(0;J,E)
=S&(0;J,s)+S& (0;J,E), summation of Eqs. (16) and
(17) leads to a relation for S(0;J,c. ) that has the same
form as Eq. (16) for S&(0;J,E). This relation is a sum

rule for the cross section for electron scattering by a po-
lar molecule.

Similar procedures also apply to higher moments. In
summary it follows for the lower moments that

S(0;J,e) =S(0;0,s) (r F(0—;J),

S(1;J,E) =S(1;O,s)—(2B)o F(1;J),

(18a)

(18b)

S(2;J,E}=S(2;O,s)+2E(J}S(1;O,s}—(28) a F(2;J),
(18c)

S(3;J,s)=S(3;O,s)+2E(J)[3S(2;O,E) —(28)S(1;O,s)]
—(2B) (7 F(3;J), (18d)

where terms of order (8/e)ln(8/e) are omitted. Note
that these equations are independent of the choice of the
critical angle O„as is natural from the definition of 8„'
only the assumption of the existence of 8, suffices for the
proof of these equations.

Equations (18) are extensions of the integral-cross-
section version of Eqs. (5) for polar linear-rotator mole-
cules. In fact, Eqs. (18) are general in the sense that they
also apply to nonpolar molecules, because o. vanishes
for these molecules. and

—(28)cr [F(1;J) KF( —1;J)]—(21a)

where the definition of the quantities k;, kf, and J) is
similar to that in Eq. (10).

The cross section (19b) diverges as 8 z for forward
scattering, because k, =kf and lk, —kf l

=2k, sin(8/2) for
elastic scattering. Therefore the integral cross section for
elastic scattering with KAO diverges logarithmically.
This means that the zeroth moment S(0;J,K, e), or the
summed cross section, for any polar symmetric-top mole-
cule with KAO (and hence, JAO) is infinitely large. The
moments of the first and higher orders, however, are
finite, because the summation over the final state for
these moments excludes elastic scattering, for which the
transition energy is zero.

The energy of a transition JK~J'K without change in
the K value is the same as that of a transition J~J' of a
linear-rotator molecule. The only essential difference be-
tween the derivation of the moments for symmetric tops
and for linear rotators arises from the second term
K~/J in large parentheses in Eq. (19a). Introducing a
critical angle t9, as in the preceding section, we may ex-

press the contribution S&(p;J,K, s) from the angular re-

gion 0~ 8& 8, to the moment S(p;J,K, s) in terms of the

quantity S, (p;J,s) of Eq. (12) as

S((p;J,K,E)=S((p;J,e) —K (2B) S((p —2;J,s) .

(20)
This result combined with Eqs. (6), (12), and (14) yields

relations independent of t9, as

S(1;J,K, c. ) =S(1;O,O, E)

S(2;J,K, s)=S(2;0,0, e)+2[E(J,K)—AK ]S(1;0,0, e) —2[E(J,K) —33K ]U(1;0,0,c)

—(2B) o [F(2;J)—K F(0;J)], (21b)

where terms of order (8/E)ln(B/s) are neglected. The
quantity U is defined by the integral of Eq. (6a) over the
whole angular region, and has no contribution from the
region 0 0~ 0, because of the conservation of the K
quantum number in the dipole-Born approximation (19),
which means that K"= lK"

l
=0 in Eq. (6a).

V. AVERAGE OVER THE BOLTZMANN
DISTRIBUTION

If the molecular gas is in rotational equilibrium at a
temperature T, the normalized Boltzmann distribution
X(J;T) for polar linear-rotator molecules is expressible
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as

N(J; T) ~ (2J + 1)exp[ E—(J)lkT], (22)

temperature region is derived.
For the rotational average of E(J) the high-T and

low- T expressions
because the statistical weight due to the nuclear spins is
independent of J for these molecules. At high tempera-
tures the summation over J in taking the Boltzmann
average may be replaced by integration, and hence the
average of [E(J)]", for example, may be approximated
b 8

68a(1+Sa ) for ~(1.4,
(E(J)) = (1+3a+5a')

B(r —,
' ——I/45') for r & 1.4, (24)

([E(J)]") =/N(J;T)[E(J)]"

-(n!)(kT)" for kT »8 . (23)

suSce for approximate representation in the whole region
of temperature; the relative error of Eq. (24) is 0.78% at
most, and is much smaller than that of Eq. (23) even at
high T. In Eq. (24) r and a are defined by

This formula was used previously to derive Eqs. (8). In
the present paper, however, this high-T approximation is
avoided, and the following procedure is taken. First, ana-
lytic forms of the sum over J at high T and at low T are
studied, and are compared with accurate numerical
values of the sum at various T. If the analytic expres-
sions are inaccurate at intermediate T, another approxi-
mate expression is proposed for this temperature region.
In this way an approximation that applies in the whole

I

r=kT/8 (25a)

and

a=exp( —2/r) . (25b)

For the calculations of the Boltzmann average of the
moments for polar molecules, F(p;J) of Eq. (13) must be
averaged. For example, approximate formulas necessary
for calculating the summed cross section are

a[2 ln2+(3 ln3+2 ln2)a ]
3

for ~«2. 2,
(F(O.J)) = 1+3a+5a

0.393 in~+0. 031 for 2.2 & v. & 20,
(1nr —y)/2 for 20(r,

(26)

where y is Euler s constant and is 0.5772. The maximum relative error of Eq. (26) is 3.2%. Formulas necessary for cal-
culating the stopping cross section are

a[41n2+(91n3 —41n2)a ] for v&1.6,

(F(1;J)),= 1+3a+sa
0.481n~+0. 261 for 1.6«~&12,
(lnr+1 —y)/2 for 12(r.

(27)

The maximum relative error of Eq. (27) is 0.47%.
The temperature dependence of the Boltzmann average

of the 6rst two moments for polar linear-rotator mole-
cules may then be written in terms of the quantities given
by Eqs. (26) and (27) as

N(J, K;T) o-(2J+1)exp[ E(J,K)lkT] —. (29)

(F(1;J) KF( —1;J) ) z. =——,'1nr+C& . (30)

The average of the quantity F(1;J) KF( —1;J) in-
Eq. (21a) over N (J,K; T) at high T is approximately

S(0;T, E) =S(0;O,E)—cT (F(0;J ) ) 7 (28a)
If the constant C, is chosen to be

and

S(1;T, )e=S(1; ,0)E—(28)cr (F(1;J) ) r, (28b)
C, =(1—y)/2+( —,

' —ln2)(8/A)

=0.2114+0.1402(B/A) (31a)
where S(p, ;O, e)=S(p;J=O, E). Terms of the order of
(kT/e)S(1;O, s) and higher have been omitted in Eq.
(28b).

The Boltzmann distribution N(J, K; T) for symmetric-
top molecules involves a statistical weight that depends
on the rotational quantum numbers and on the molecule.
The following arguments neglect this factor, which is a
good approximation at high temperatures. It then fol-
lows that

C, =0.03+0.32(B/A)' (31b)

is used for oblate symmetric tops (for which 8/A & 1),
the relative errtor for ~ 10 is less than 2'Fo for &/~ «30,
less than 5% for 8/A «50, and less than 12% for
8/A «100.

for prolate symmetric tops (for which 8 l A ( 1), the rela-
tive error is less than l%%uo for ~) 10. If the expression
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The average stopping cross section for polar
symmetric-top molecules may be expressed in terms of
Eq. (30) as

S(1;T, z) =S(1;O,e) —(28)cr (F(1;J) K—F( —1;J) )r,
(32)

where S(1;O,e)=S(1;O,O, E). Here again, terms of the
order of (kT/e)S(1;O, e) and higher have been omitted.

VI. SUMMARY

The theorems, proved previously in the adiabatic-
rotation approximation and summarized in Sec. II, for
the moments of the rotational structure of the cross sec-
tions for electron scattering by nonpolar molecules, have
been generalized for polar molecules. The main results
are Eqs. (18a)—(18d) for linear-rotator molecules, in
which the definition of Eqs. (11)and (13) is used, and Eqs.
(21a) and (21b) for symmetric-top molecules, in which the

definition of Eqs. (6a), (11), and (13) is used. The
rotational-state-independence theorem for the stopping
cross sections that applies to nonpolar molecules does not
apply to polar molecules. However, the dependence on
the rotational state is weak and is expressible in a simple
analytic form; both the stopping cross sections and other
moments are expressed as the sum of a constant term and
a term depending on the rotational state and proportional
to the cross section o. . Because 0. contains a factor
D, as is defined in Eq. (11), the latter term vanishes for
nonpolar molecules, and the previously proven theorems
are recovered.

Practically useful results for molecular gases in rota-
tional equilibrium at temperature T are Eqs. (28a) and

(28b) with Eqs. (26) and (27) for linear-rotator molecules,
and Eq. (32) with Eqs. (30), (31a), and (31b) for
symmetric-top molecules.

This paper has considered purely rotational transitions
only. Generalization for vibrational-rotational transi-
tions is straightforward as is explained in Refs. 2 and 3.
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