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Moments of the dipole oscillator strength distribution and mean excitation energies of helium
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The S(p) and L(p) moments of the dipole oscillator strength distribution and the associated
mean excitation energies I„have been calculated for the helium atom using the polarization-

propagator formalism. It is found that, if correlation is included, agreement with experimental and

other theoretical values is good. The mean excitation energy for stopping is found to be ID=42.41
eV.

I. INTRODUCTION

The moments of the dipole oscillator strength distribu-
tion (DOSD) of a system are of considerable interest, as
they are related to many physically interesting quantities.
The pth moments of the DOSD are defined as

S(p)= fE" dE,
dE

L (p) = fE"lnE dE,d
(2)

and

&(p)
' (3)

where E and f label the excitation energies and oscillator
strengths of the system, respectively. The I's are referred
to as the mean excitation energies of the system, and are
related to quantities such as the stopping (p=O) and
straggling (@=1) of swift, massive particles in matter, the
Lamb shift (@=2), electronic excitation (p= —1), and
the static polarizability (p= —2). ' Similarly, many of
the I.'s and S's can be related to physically measurable
quantities.

As the interest in these quantities is high, there has
been considerable effort expended in their determination.
As the full excitation spectrum (both excitation energies
and oscillator strengths) of the system is necessary to
determine the moments, it is difficult to calculate them
directly. Thus emphasis has been placed on ascertaining
them semiempirically. In particular, Meath and co-
workers have published a long series of papers reporting
various properties of the DOSD's of various atoms and
molecules.

There have been several first-principles calculations of
the DOSD of atoms, most notable those of Inokuti and
co-workers, which are derived from Hartree-Fock-
Slater (Herman-Skillman) wave functions. Although
these calculations are rigorous and very extensive, en-
compassing all the atoms in the first four periods, they in-

volve several severe approximations, and, being derived
from Hartree-Fock-like wave functions, are uncorrelated.
More recently, Rosendorff et al. have introduced a
method, based on that of Dalgarno and Lewis, to calcu-
late several of the I„moments which requires only
initial-state wave functions as input. They report I„ for
H and He. For H the results are exact, but for He the
calculations are based on Hartree-Fock, thus uncorrelat-
ed, wave functions.

In the past several years, we have developed a method
for determining moments of the DOSD which is based on
the polarization-propagator formalism, and, like the
method of Rosendorff et al. , requires only initial-state
data as input. Unlike their method, however, this
method is not restricted to —1 ~ p ~ 2, and in principle
all moments could be calculated. To compare the two
methods, we report here our calculations on the DOSD
of He.

II. METHODOLOGY

Direct calculation of the moments of the DOSD from
Eqs. (1)—(3) requires integration over, and therefore
knowledge of, the complete oscillator strength distribu-
tion of the system. We calculate these directly, without
determining the eigenstates of the system and their ener-
gies, from the poles and residues of the polarization prop-
agator, defined as'

&(r.;r, &)~=
&0/r, /n &(n/r, /0)

E —E„+ED

&0[rb/n &&n/r, /0)

E +E„—Eo
(4)

Here the sum is over all excitations out of the reference
state 0 into state n, and r, and rb are components of the
dipole operator r. The dipole length oscillator strengths
can then be calculated (in hartree atomic units) from

fo„=—', (O~r~n ) (n~r~O)ED„.
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Similarly, the residues of the polarization propagator
((p„pb ))z yield the oscillator strengths in the dipole ve-

locity representation. The excitation energies are simply
EQ„=E„—Eo.

Solution of the equation of motion for the polarization
propagator at various levels of sophistication leads to a
hierarchy of approximations to the exact solutions. We
consider here that the reference state is the ground state.
In the normal implementation, the zeroth-order solution
uses the Hartree-Fock (HF) ground state as the reference
state, and single determinants composed of unrelaxed HF
ground-state orbitals as representations of the excited
states. The simplest extension of the zeroth-order ap-
proximation is to represent the excited states with a
monoexcited configuration-interaction (MECI) wave
function, which adds correlation to the excited, but not
the ground state. The consistent first-order approxima-
tion to the propagator is the random-phase approxima-
tion (RPA) where correlation is introduced into both
ground and excited states. Post RPA correlation correc-
tions can also be introduced. The next level which is nor-
mally implemented is the consistent second-order
polarization-propagator approximation (SOPPA), " and
the third order is underway. ' It should be noted that
the HF, MECI, and RPA excitation energies and oscilla-
tor strengths can be obtained from a single diagonaliza-
tion, while the SOPPA excitation energies are eigenvalues
of an energy-dependent matrix. " Consequently, for con-
sistent results one must iterate on each excitation energy
separately. Since, for the basis we use, there are not too
many allowed excitations, this is feasible.

In all propagator calculations finite basis sets are used,
leading to a finite number of excitations corresponding to
the number of particle-hole excitations allowed by the
basis. Thus we approximate the continuum excitations
by a finite number of discrete excitations into the contin-
uum. For average properties such as the moments of the
DOSD, this procedure works very well indeed, ' but in
such a case, no significance can be attached to individual
states placed in the continuum.

The calculations reported here were done using the
MUNIcH program system. We employed a basis set of
70 uncontracted Gaussian-type orbitals (GTO's), ob-
tained using the (13sllp61) contracted to [13sllp4d]
basis of' Jaszunski and Roos. " This basis admits a total
of 33 allowed transitions, 11 with each of the Cartesian
polarization directions.

As the Thomas-Reiche-Kuhn (TRK) sum rule

S (0)= g fo„=N,
n(XO)

S (0)= g fo„=N
n(40)

should be obeyed exactly at the RPA level of approxima-
tion for a complete basis, ' it can be used as a measure of
the goodness of the basis. The agreement of the oscillator
strength sums with the number of electrons indicates how
complete the basis is, while the agreement between the
length and velocity forms indicates how well the basis is
balanced. At the RPA level, we find SL(0)=2.000025
and S (0)= l.999 983, indicating that the basis is both
nearly complete and well balanced. The self-consistent-
field (SCF) total energy for the basis is

Esc„=—2. 861 674 34 a.u. , which can be compared to the
Hartree-Fock limit value of Clementi and Roetti' of
EHF = —2. 861 6799 a.u.

III. RESULTS AND DISCUSSION

The first few dipole allowed excitation energies and os-
cillator strengths of He as calculated at the SOPPA level
are presented in Table I. For comparison we also show
some SOPPA excitation energies obtained using a Slater-
type orbital (STO) basis' and the experimental excitation
energies and oscillator strengths. ' The excitation ener-
gies and oscillator strengths for the first two transitions
compare very well with the experimental values, but
deteriorate for higher excitations. The third calculated
excitation is already higher than the first ionization
threshold [24.580 eV (Ref. 18)]. The reason that we do
poorly for the higher excitations is that we do not have
enough diffuse p orbitals in the basis to represent transi-
tions of the type 1snp~ls for n 3, as can be seen from
the comparison with the other SOPPA calculation'
which uses a more diffuse basis set.

In Table II we present the S(p) [Eq. (1)] moments for
—6 ~ p ~ 1 calculated at various levels of approximation.
It is dif6cult to assess the quality of the results presented
here by direct comparison, as there are few consistent
sets of literature values available for most of the moments
reported, and experimental values for only a few of the
moments. The only firm touchstone is the TRK sum rule
in RPA [S(0)=2] which is fulfilled in these calculations.
[It should be noted that for a complete basis the TRK
sum rule is exact for RPA, while it is only fulfilled
through second order in SOPPA, leading to better S(0)
values in RPA than in SOPPA. ] We include the results
of Thakkar, ' Cummings, and Dehmer, Inokuti, and
Saxon (DIS), each of which is a consistently calculated
set of moments, for comparison. (An extended tabulation

TABLE I. SOPPA excitation energies and oscillator strengths for the 1s~(n +1)p excitations of
He.

This work
Eo„(eV)

21.327
23.152

fo.
0.269
0.080

Jgfrgensen et al.
(Ref. 17)
Eo„(eV)

21.28
23.04
23.66
23.98

Experiment
(Ref. 18)

Eo„(eV)

21.217
23.085
23.741
24.045

fo.
0.276
0.073
0.030
0.015
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TABLE II. S(p) sum rules for He in the dipole length approximation (hartree atomic units).

SOPPA
RPA
MECI
HF

S( —6)

1.9841
1.7294

S(—5)

1.7152
1.5266

S( —4)

1.5245
1.3864

S( —3)

1.4113
1.3119

S( —2)

1.3919
1.3222

S( —1)

1.5264
1.4785

S(0)

2.0391
2.0000
2.1727
2.3795

S(1)

4.2261
4.0877

Thakkar (Ref. 19)
DIS (Ref. 3)
Cummings (Ref. 20)
Accurate

2.0404
3.231

1.7499
2.591

1.5210
2.131

1.4150
1.818
1.43

1.3831
1.645
1.487
1.3831

1.5049
1.644
1.579
1.5050'

1.9965
1.999
2'
2

3.854
3.81557
4.0837'

'Constraint on the calculation.
Experimental value, Ref. 23.

'Pekeris, Ref. 24.

of other calculated S and L moments for first row atoms
is available in Ref. 3). The results of Thakkar' are com-
puted via a perturbation variation scheme using an ex-
plicitly correlated wave function (constructed using the
generator coordinate method) and should be normative.
Our best (SOPPA) results agree well (-2%) with them.
The advantage of the present method is that it can easily
be extended to larger systems. The results of Cummings
are calculated in the Hartree-Fock approximation, while
the DIS results ' comprise the set of moments obtained
using the HF-like formalism with Herman-Skillman (lo-
cal density functional) wave functions discussed earlier.
Both methods utilize some constraints on the calculation
which assure that the TRK sum rule is fulfilled. This is
equivalent to renorrnalizing the calculations, and as such
it is not straightforward to determine the effect of the re-
normalization on the other S(p)'s. The question of
whether or not the DIS results contain correlation is
problematical. The calculations use a HF formalism,
which is, by definition, without correlation, but employ
wave functions generated using a method which is some-
times claimed to include some degree of correlation.

As the level of calculation increases from HF to MECI
to RPA and finally to SOPPA, some correlation is first
introduced in the excited states (MECI), then in the
ground state to a lesser (RPA) or greater (SOPPA) extent.
As correlation is not so important in He, none of the ex-
citation energies changes much as correlation is included
to a greater extent in the calculation. The oscillator
strengths do change for the middle-lying excitations
( 1snp+ 1s, n =5,6,7)—, however, giving up some 15% of
their oscillator strength to the rest of the excitations.
This leads to a gradual increase in S(p(0) and a de-

crease in S(p) 0) as correlation increases. The changes
are small, however, compared to cases where correlation
is more important, such as Be.

In hartree units, the static polarizability of the atom is
equal to S( —2). The exact value of a(0)=1.383 a.u.
(Ref. 23) differs from our SOPPA value by only 0.5%,
giving some measure of the reliability of the calculation.
This result is much closer to the experimental value than
earlier that of DIS or of Cummings, which is not too
surprising considering that neither of those calculations
is correlated. Similarly, the S( —1) moment is in better
agreement with the accurate calculation of Pekeris even
though the absolute agreement is not as good as for
S( —2). For the S(1) moment we see the onset of the

problem created by representing the high-lying continu-
um excitations with a finite basis set.

The situation is similar for the case of L (p), presented
in Table III, except that there are no experimental data
to compare to. Some theoretical values are available, and
we include in the table the values of DIS as well as some
values obtained from moment theory. It is clear that
correlation makes little difference in the calculation of
the L (p) moments. In the case of S(p) the variation of
the moments came from variation of the oscillator
strengths, the excitation energies varying only little.
Here, one might consider that the oscillator strengths are
multiplied by a smoothing function, lnE, giving rise to an
even smaller variation in L(p) on inclusion of correla-
tion. The results agree well with both moment theory
and DIS in the range —1 ~@~1,but we find DIS obtain
moment values which are numerically too large for small-
er values of p.

Perhaps more interesting quantities than the moments

TABLE III. L {p)sum rules for He in the dipole length approximation (hartree atomic units).

SOPPA
RPA
MECI
HF

L( —6)

—0.3106
—0.2351

L( —5)

—0.2288
—0.1712

L{—4)

—0.1529
—0.1088

L( —3)

—0.0712
—0.0373

L( —2)

0.0410
0.0688

L( —1)

0.2582
0.2754

L (0)

0.9048
0.9006
1.0382
1.2478

L(1)

4.9205
4.4358

DIS (Ref. 3)
Moment
Theory (Ref. 25)

—0.745 —0.543 —0.383 —0.244 —0.099 0.121
0.248

+0.003

0.711
0.870

+0.015

4.163
4.53

+0.25
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TABLE IV. I„(eV) for He.

I( —4) I( —3) I( —2) I(0)

SOPPA
RPA

24.62
25.16

This work (dipole length)
25.87 28.02
26.45 28.66

32.23
32.78

42.41
42.69

87.18
80.54

Upper bound
Lower bound

Shimamura and Inokuti
(Ref. 26) 32.06

31.99
42.33
41.99

85.76
78.69

22.74
DIS (Ref. 3)

23.80 25.62 29.29 38.84 80.14

Rosendorff and Schlaile
[Ref. 6(b)] 31.01 39.96 76.64

TABLE V. Mean excitation energies of He.

Reference

SOPPA
RPA

MECI
HF

This work
42.41
42.69
43.88
46.69

Other
Shimamura and Inokuti
Rosendorff and Schlaile
Aashamar and Austvik

DIS

theoretical values
42. 161
39.96
39.52
38.84

26
6(b)

27
3

Experimental values
39.1
41.8
42.3
41.7

Janni
ICRU37

Ahlen
Andersen and Ziegler

28
29
30
31

of the DOSD themselves are the mean excitation energies
I„, as they correspond more closely to measurable quan-
tities. In Table IV we present our calculated values of I„.
We also include the upper and lower bounds to the I„
calculated by Shimamura and Inokuti (SI), along with
results of DIS, and some values calculated recently by
Rosendorff and Schlaile ' ' (RS). Generally the agree-
ment between our numbers and those of SI is very good,
even though the moments used by SI to calculate their
bounds come from a variety of sources. Agreement with
DIS is reasonable, our correlated results generally being
of the order of 10% larger than those of DIS. This is a
somewhat smaller difference than we found in Be, but
the latter is a case where correlation is especially impor-
tant. We also note in the case of He, as in other calcula-
tions, ' that the bigger change in the I„comes on the in-

itial addition of correlation to the calculation (i.e., from
HF to RPA). Additional correlation beyond RPA tends
to change the I„'s only by a further small amount.

If we compare to the results of RS, ' ' we find that
their results tend to be consistently higher than those of
DIS for p= —1,0 but lower for p= l.

The quantity which is easiest to compare to experiment

is the mean excitation energy for stopping, Io. In Table
V we present our calculated values of Io at various levels
of approximation, and compare them to other representa-
tive calculated and measured values. Helium should be
nearly ideal for comparison of theoretically with experi-
mentally determined I„'s. The sample is a monoatomic
gas, and should behave very much like a theoretical iso-
lated atom. The gas is easy to handle, and no untoward
experimental conditions are expected. The atomic num-
ber is low so that there will not be relativistic effects to
consider. In spite of these considerations, it is not easy to
extract a mean excitation energy from experiment, and
care must be taken in doing so. Comparison of our corre-
lated results with those of Shimamura and Inokuti, gen-
erally considered the best of the available theoretical re-
sults, and with the experimental results shows very good
agreement. It is clear that the HF level calculations, DIS
and RS, are too low by at least 2 eV.

IV. SUMMARY

The moments of the dipole oscillator strength distribu-
tion of He have been calculated in the polarization-
propagator approximation up through second order in
the fluctuation potential. As in previous cases, ' the in-
clusion of correlation is very important in order to get re-
liable values of the L(p) and S(p) moments and of the
mean excitation energies I„. Most of the improvement is
already present in first order (RPA), although there are
some changes when correlation is included to second or-
der (SOPPA). Where it is possible to compare moments
to experiment, agreement with our calculated numbers is
good. The most reliable quantity to compare with is,
perhaps, the mean excitation energy for stopping, Io,
which we calculate to be 42.41 eV. This is higher by
some 1.5% than the recommended experimental value.

The basis set used in this study is reasonably complete,
as seen from the TRK sum rule. The greatest deficiency
is apparently in the most diffuse orbitals, as seen by the
deterioration of the excitation energies for the higher ex-
citations. This is reflected in moments as well, and the
large p moments are not as reliable as those with smaller
values of p. This is simply a reflection of the higher
powers of the excitation energy in those moments.
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