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Lower bounds on the ground-state energy and necessary conditions
for the existence of bound states: The potential problem
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We consider a particle in a three-dimensional potential V(r) or in a one-dimensional potential
V(x). We use a Green's-function approach to show that for many Vs of interest one can obtain a

necessary condition for the existence of a bound state below a specified energy that is somewhat

stronger than the usual condition; furthermore, results can be obtained for V(r)% V(r), under some

special restrictions, which utilize an integral containing only one, not two, Green s functions.

I. INTRODUCTIGN

where

V(r) where V(r) &0
V r='

0 where V(r) &0;
it will be assumed throughout the paper that all poten-
tials vanish at infinity. [For Nt large, the bound in Eq.
(1.1) is rigorous but very poor; the strength of the poten-
tial will increase as NI, not as NI. The bound can give
reasonable results for Nt = l. ' ]

(ii) The necessary condition for a central potential V (r)
to support NI bound states of angular momentum I,
where each state is bounded by at least an energy
E = tc fi /(2m )—, is '

(1.2}

Gt(r, r;E)V (r)dr ~Nt,
0

(1.3)

The power of the Rayleigh-Ritz principle and its
generality —it provides an estimate of the ground-state
energy that is of second order in the trial function and an
upper bound, and is applicable to any system —are
reflections of the fact that the Hamiitonian H is bounded
from below. The determination of a lower bound on the
ground-state energy, and the intimately connected prob-
lem of proving (where true) the nonexistence of a bound
state, are very much more difficult; the results that have
been obtained pertain almost exclusively to rather simple
systems. We list a few such results, those relevant to the
later discussion in this paper. This will at the same time
establish a notation.

(i) For a particle of mass rn in a central potential V(r),
a necessary condition for the existence of NI bound states
of angular momentum I is'

(2m/fi )f r~ V (r)~dr ~ (2I +1)Nt,
0

G(r, r', E)=— e ~Ir —r'I

(~0) .
fP 4ir

~
r —r'

~

(1.6}

Since p(r) is nodeless and can be taken to be positive, we
can introduce a nodeless positive trial function t(, (r) and
rewrite Eq. (1.5) as '

fG(r, r', E}V(r')P,(r'), dr'= . (1.7)
1 . . . f(r'), p(r)

, r r

With ~~g/p, (( the maximum value of g(r)/g, (r), we then
have, using the inequality V(r) ~ V (r) and the fact that
6~Oand GV f, ~0,

where the free-particle Green's function Gt (r, r; E) is
given by

Gt(r, r;E)= —(2m/fi )ttr ji(itcr)ht"'(ittr) ( ~0), (1.4)

where jI is a spherical Bessel function and hI'" is a spheri-
cal Hankel function of the first kind. [For tc=O, the in-
equality (1.3) reduces to (1.1).]

(iii) For a particle in a potential V(r), where V(r) need
not be spherically symmetric, a lower bound on the
ground-state energy which contains variational parame-
ters can be obtained ' from the Lippmann-Schwinger
bound-state equation. (Since the reference is rather
difficult to obtain, and since the proof is short, we give
the proof here. ) If there exist one or more bound states,
and if the ground state has an energy E = fi tc /(2—rn),
and a wave function g(r), we have

g(r) =f G (r, r', E)V(r')f(r')d r',

where G(r, r', E), the free Green's function of energy E
for a three-dimensional one-particie system, is given by

=max G(r, r', E)V (r')g, (r'), dr' ~ max fG(r, r';E)V (r')P, (r')dr'f(r) 1. . . it(r'), ( g(r) 1

,r, r) ' ' '
i', (r') i)'j, (r) P, (r)
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where max denotes the maximum over all values of r. A
lower bound is therefore provided by

max[L (r;E)]~ 1,
where

(1.8)

L(r;E)= fG(r, r';E)V (r')g, (r')dr'/g, (r) . (1.9}

It is interesting to note that this lower bound is intimate-

ly connected with the standard result E ~ max(HQ, /g, ).
(iv) For the one-dimensional problem defined by

H =T+ V(x), one obtains a bound on the ground-state
energy E by first replacing V(x) by V (x), defined in

analogy to the definition of V (r) given in Eq. (1.2), and

noting that H )H = T+ V (x). With g (x) and E
the normalized ground-state wave function and energy
associated with H, and with x, defined as the (un-

known) value of x for which ( ~ g (x)
~ ) has its maximum,

one then introduces

E& the ground-state energy of a particle in a negative po-
tential Vi(x)=A, V (W), and E, that for V (x), one will

have E ~Ei for k) 1. (In the limit A, ~ao, this reduces
to E ~ E&. Physically, one might conjecture that the
more compact the potential, the more e8'ectively the po-
tential can act.) A somewhat analogous "compaction"
theorem was given for the three-dimensional problem of
an electron in the Coulomb field of two nuclei fixed at a
separation r „tt . The ground-state energy E (Z„,Ztt; r „tt)
of the electron —the Coulomb potential energy between
the two nuclei is not included —was shown to be a
minimum for r „z=0, ' and, more generally, " to de-
crease monotonically as r„z decreases.

A proof of the conjecture, if true, might be based on
the approach used" in the proof that
dE(Z&, Z&, r„tt)/dr„&(0, and then in the proof that
E(N) & Es(N). We will prove a less general result; thus
we assume that there exists an xp such that

Vs(x)= f V (x')dx' 5(x —x, )=——I5(x —x, ),
{1.10)

dv &0 for x )xp
+0 for x &xp . (2.1)

and the normalized ground-state wave function gs(x)
and energy Es= —(m/2' )I associated with Hs ——T
+ Vs(x). One then uses g (x) as the trial function in a
Rayleigh-Ritz determination of an upper bound on the
ground-state of H5, and arrives at E as that upper
bound. Writing H =H&+( V —Vs), we thus have

E ~ E ~ Es = —( m /2R )I

(Note that it need not be the case that H ~Hs. Hs has
one and only one bound state, with an energy E&, but 8
could have more than one bound state. )

%e note that a knowledge of the number of bound
states of a particle in a potentia1 is not only of intrinsic
interest, but plays a fundamental role in the determina-
tion of upper bounds on the scattering length. '

II. I.OWER BOUNDS ON THE ENERGY

A. One-dimensional problems

1. A monotonicity theorem for a class ofpotentials

The lower bound E& on the energy for one particle in a
one-dimensional potential V(x), discussed in item (iv) of
Sec. I, has recently been generalized to the case of
N bosons in one dimension with a pairwise interaction
V(x,. —xj), it having been shown that E(N) ~Es(N),
where Es(N) is the {known) ground-state energy for the
pairwise interaction V&

= —Ig; ~; & ~5(x; —x ), where,
with y =x; —x,-, I is defined as

I= —f V (y)dy .

This interesting extension makes an attempt to improve
the X =1 result more worthwhile.

It might be conjectured on physical grounds that, with

With H(A, )=T+ V i( x)=T +A V (M), we have

aH(A. ) d
[ V (~)]

dx
(2.2)

= —f x V (Xx) Pi(x)dx,d 2

X
(2.3)

where the range of integration is from —00 to ao. It fol-
lows from the Schrodinger equation that

~0 if E ~ V&(x)

dxz ~~" &0 if E & V„(x) .

Since V (x ) and therefore V& (x ) increase monotonically
with ~x —xo ~, there exists only one (continuous} region R
in which E ~ Vz(x), and d /dx $~0 in %; it then fol-
lows, since the ground-state wave function P„ is nodeless,
that tg(x) has only one maximum, and that the max-
imurn lies within %'. Choosing the origin at the point at
which gi(x) has its maximum, we then have

~0 if x~0
0 if 0.

We thus arrive at the monotonieity theorem,

dE& (0
dA,

(2.4)

[We first obtained Eq. (2.4) by a graphic proof. The form
of the proof as presented arose after a communication
from Sokal. ' ]

As a minor but curious matter, we note that the result
that dE&/d A. ~ 0 at A, = 1 can be written as

With Ei and fi(x), the ground-state energy and wave
function associated with H(A, ), the Hellmann-Feynman
theorem then gives

d=f gi(x} [xV (Ax))dx
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dVff (xV ) Pdx= fg V +x gdx
with the present problem, but it is important for later
purposes to note the following points. The use in (2.7) of

=f f(V +2T)fdx &0, (2.5) max[IG(x, x', E)l]= IG(x' x', E)l =(mlniri )

using the virial theorem in the last step. Thus, for a
bound state for a potential satisfying conditions (2.1) on
V (x), we have —( V ) )2(T).

2. A /ower bound on the energy

by a Green's fun-ction approach

dV(x) )
dlxl

(2.6)

The analog of Eq. (1.8} in the present one-dimensional
case, for the choice g, (x)=1, gives

The derivations of the (three-dimensional} result con-
tained in Eq. (1.8) was based on a Green's-function tech-
nique. That approach can be immediately applied to a
one-dimensional potential V(x), provided suitable condi-
tions are imposed on V(x).

We consider a particle in a one-dimensional potential,
which is symmetric, that is,

V( —x) = V(x),

and further, which satisfies

leads immediately to E Es [without imposing (2.6)], and
this is presumably the best explicit result one can obtain
for an arbitrary V(x), but, as we have just seen, it is not
necessarily the best (if implicit) result one can obtain if
one imposes rather simple restrictions on V(x), for one
can then analytically maximize L(x;E) rather than G.
[One can, of course, maximize L (x;E) analytically for a
V(x) which does not satisfy (2.6) if L (x;E) can be evalu-
ated analytically; one can, of course, always maximize
L (x;E) numerically. ] For more complicated systems the
possibility of maximizing L(x;E) rather than G is not
simply a matter of obtaining an improved lower bound,
but can be essential if one is to obtain any lower bound at
all. Thus, for a particle in three dimensions, Gi(r, r', E)
exists —see Eq. (1.4)—but the maximum value of
G(r, r';E) of Eq. (1.6) is infinite; for a potential V(r)
which is not spherically symmetric one must consider
6 (r, r', E) and the maximization of 6 (r, r', E) alone is not
possible. The maximum value of the relevant G for
V(r)AV(r) for one particle in a space with dimension
D ~ 2, or for two or more particle in a space with dimen-
sion D ~ 1, is also infinite.

1 & max[L (x;E)],
L(x;E)=fG(x,x';E)V (x')dx' ()0), (2.7)

B. Three-dimensional problems

where the one-particle free Green's function is given by

6(x,x', E)= (2m IA' )e "—I" "I/(2n. ) ( &0)

To determine the maximum of L (x;E), we consider

dL (x;E) „I„„I
.. . „x—x'

dx
m dx — ~x

—x'~

=f e ""[iV (u+x)i —iV (u —x)i]du .
0

(2.8)

(2.9)

T

E ) —(2m/fi') f I V (x}ldx =Es,
0

(2.10)

the result obtained previously [without the restrictive
conditions on V(x) imposed by (2.6)] and discussed in
item (iv) of Sec. I. The implicit bound provided by (2.9) is
therefore better, when applicable, than the always applic-
able explicit bound provided by (2.10}.

We will not go into any further details in connection

Since
~
V (x)~ decreases monotonically with ~x~, and

since u )0, ( V (u +x)) —
) V (u —x)) is nonpositive for

x )0 and non-negative for x & 0. It follows that L (x;E)
has its maximum value at x =0, and the lower bound on
the energy is given implicitly by

[2m/(fi it)]f e ""~ V (x)~dx ) 1 .
0

If we weaken the inequality (2.9) by using exp( —ax) & 1,
the result reduces to the explicit form

where r& and r& represent the smaller and larger of r
and r'. Inspection of their power series shows that
i r &ji(iver & } is real and monotonically increasing and
that i'r

& hi
"(i—iver& ) is real and monotonically decreas-

ing. It follows that the maxiinum value of Gi(r, r', E) as a
function of r is at r = r', and with E the ground-state en-

ergy for angular momentum I, we immediately obtain

GI r, r;E V rdr~l, (2.12)

the special case (Xi = 1) of the result quoted in Eq. (1.3).
The bound in Eq. (2.12) makes no assumptions about

V(r) As for the. one-dimensional case, it is natural to in-

quire if one can do better for particular assumptions
about V(r). We restrict our attention to the 1=0 case,
with

Go(r, r', E)= —(2m /fi ic)sinh(vr & )exp( rcr & ) . —(2.13)

With ui(r)=rgb(r), the integral equation uI =Gi Vui for
the radial wave function ui(r) can be written as

For V(r) = V(r), one can readily obtain a bound on the
energy ' of a particle of angular momentum I. We
proceed as in Sec. II A 2, but with 6 (x,x'; E) replaced by
the free-particle Green's function of energy E and angu-
lar momentum I,

Gi(r, r', E)= —(2m/k )ter ji(iver )r hi''(iver ),
(2.1 1)
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1 ~ max[L (r;E, l =0)],
L(r;E,1=0)=f Go(r, r';E)V (r')r'dr'Ir .

0

One finds

«A~ z dL (r;E, 1 =0)
27tl Off

(2.14)

= —[(1+«r)e ""]f r'sinh(«r')~ V (r')~dr'
0

+[mr cosh(«r) —sinh(zr)] f r'e ""
~
V (r')~dr' .

P

(2.15}

We now impose the condition

~0 for all r . (2.16)

g&(r;E)= fGI(r, r', E)V(r')$1(r', E)r'dr'Ir .

The necessary condition for the existence of a bound state
of zero angular momentum and energy E then becomes

Since both square brackets in Eq. (2.15) are non-negative,
we obtain an upper bound by replacing ~V (r')~ by
~V (r}~, its minimum value in the first integral and its
maximum in the second. We can now perform the in-
tegrations; doing so, we arrive at

dL(r;E, 1=0) &
col'

We thereby obtain the necessary condition, assuming the
inequality (2.16),

(m/2M )f (e ""/r)~ V (r)~4mr dr ~1 . (2.17)
0

For I =0 and NI =1, this is a stronger condition, when

applicable, than the result quoted in inequality (1.3}—
this follows from the fact that we made the best possible
choice for r, namely r =0, and can be seen explicitly by
noting that 1 —exp( —2x)~2x exp( —x)—but the result
in (1.3) presupposes no condition on V(r)

If we start with u
~
= ( GI V ) u~ rather than

u&
=GI V u, for a negative potential which satisfies

(2.16), we arrive, for l =0, at

max f f Go(r, r', E)V (r')Go(r', r";E}V (r"}r"dr'dr" /r ~ 1 . (2.18)

With L defined by (2.14), we rewrite this as

max f Go(r, r';E) V (r')r'dr'/r ~ 1,

where

V (r')=V (r')L(r', E, l=0) .

(2.19)

d + V(r) u (r) =Eu (r),
2m dr2

and the boundary condition u (0)= u ( ~ ) =0. The solu-
tion to this equation is equivalent to that with the one-
dimensional potential

Having assumed in Eq. (2.16) that V (r) increases mono-
tonically with r, we know that L(r', E, l =0) decreases
monotonically, and it follows that

V(x) = ifx &0
V(x) if x ~0 .

dfV (r}/ ~0 for all r . (2.20)

Since the one-dimensional ground-state energy is bound-
ed by that in a 5 function potential, we then have

E ~ —
z f V (x)dx2'' .

Since (2.19) and (2.20) differ from (2.14) and (2.16) only in
the replacement of V (r) by V (r), (2.17) remains valid
if we replace V (r) by V (r). Making that replacement,
and expressing V (r) in terms of V and Go, we arrive
at

—(2m /A )f dr f r'dr'e '"V (r)GO(r, r';E) V (r') ~ 1 .

(2.21)

Having chosen the best possible value of r, namely r =0,
(2.21) is the best result obtainable starting from (2.18).

We can also obtain a lower bound on the (l =0}
ground-state energy for a three-dimensional spherically
symmetric potential from the bound for a one-
dimensional potential. The reduced radial wave function
for the I =0 state satisfies

However, this lower bound is worse than that given in
(1.3). [This is especially clear for the case V(x) = V( —x).
With D the dimensionality of the space, with E denoting
ground-state energies and E' denoting the first excited
state, we have E(D=3)=E'(D =1), but our bound is
not on E*(D=1); rather we are using
E(D =3)~ Es(D =1), where Es(D =1) is a bound on
E (D = 1).] More generally, one can reduce the problem
of the determination of bounds on D-dimensional prob-
lems to the problem of the determination of bounds on
lower-dimensional problems, but the results so obtained
are rather poor. A better bound on the ground-state en-
ergy for a spherically symmetric potential in a D-
dimensional space can be obtained by applying the ap-
proach above with the (known) l =0 D-dimensional free
Green's function. '

For a potential which satisfies
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and

V (r)= V ( —r) (2.22) where

L(r;E)= fG(r, r', E)V (r')d r'.

av (r)
Bixi

av (r)
&lyl

BV (r)
Biz'

The maximum value of L (r; E) can be determined from a
study of

a simple lower bound on the ground-state energy can be
obtained. Assuming that there exists a bound state with

energy E, and proceeding in the same way as in obtaining
(2.14), we have

max[L(r;E)]) 1,

2m eV'L(r;E)= — f (1+aq) +V (q+r)d q,
4m.q

(2.23)

where q=r' —r. Using the property that V (q+r)
= V (

—
q
—r}, the x component of Eq. (2.23} reduces to

f dq„ f dq f dq, (1+~q)

qx
X [ V (q„+x,q~+y, q, +z) —V (q„—x,q~+y, q, +z)] .

q
(2.24)

ICP

f [—V (r))d r)1.
27TA

(2.25)

We now compare the various lower bounds on the
ground-state energy E. Taking the three-dimensional
square-we11 potentia1

—Vo, r(a
V(r)=

0, r)a
as a simple example —it satisfies condition (2.16)—we
calculate the lower bound on E using the inequality
defined by (1.8), and Eq. (1.9), with a one parameter trial
function re ", and using inequalities (2.17), and (1.3) for
I =0 and NI=1. The lower bounds are compared with
the exact E for two sets of arbitrarily chosen values of
Voa in Table I. (We are interested only in qualitative re-
sults. ) [It is to be expected that the trial function chosen
above is a good approximation only for sma11 values of
—(2m/fi ) Voa .] Note that for each value of Voa, the
values decrease from left to right. Thus, as noted above,
(2.17) is superior to (1.3), and, since e "reduces to unity
for a =0, making the best choice of a guarantees that the

Since 8 V(r)/Bixi )0, it follows that

dL(r;E} (
a/x)

Similar results follow immediately for the partial deriva-
tives with respect to iy~ and iz~; the lower bound on the
ground-state energy is therefore determined by

result obtained from (1.8) is better than that from (2.17).
The truly interesting results are, of course, those asso-

ciated with more than one particle. It must therefore be
stressed that one-particle energy bounds can be of direct
use in the analysis of many-body problems. Thus, for ex-
ample, a bound (upper in this case) on the sum of the
negative energy eigenvalues for a particle in a potential
V(r) has been used' to obtain a lower bound on the ki-
netic energy of a many-body system, and the latter bound
played a crucial role in the simplest proof which has been
given' of the stability of matter. It should also be noted
that the proof of the nonexistence of three-body systems
can sometimes proceed via an intermediate (adiabatic ap-
proximation) stage in which two of the particles are held
fixed; a prototype problem is an electron and two bare
nuclei. The determination of a lower bound on the adia-
batic energy in the intermediate stage is a one-body prob-
lem. The problem of the nonexistence of systems of two
electrons and two bare nuclei can also be reduced to the
study of a one-body problem. This adiabatic approach
has been studied in some detail. ' Finally, we note that
the necessary condition and lower bound provided by
(1.8), and Eq. (1.9), while perhaps not there the best ap-
proach, is applicable to many-body systems.
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TABLE I. Comparison, for two square-well potentials, of various lower bounds on the ground-state energy with the exact numeri-
cal value and with one another. The energies are in rydbergs.

—(2m/$ )y a

2.25
25

Exact

—0.075
—0.21

Eq. (1.8)

—0.085
—0.46

Eq. (2.17)

—0.19
—0.50

Eq. (1.3)

—0.27
—6.0
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