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Electron transport in the presence of a Coulomb field
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We analyze the modifications of the transport behavior of electrons in dense media due to the
presence of a strong Coulomb field generated by an ion moving initially in close phase-space corre-
lation with the electrons. These modifications play a profound role in convoy electron emission in

ion-solid collisions. The transport behavior is studied within the framework of a classical phase-
space master equation. The nonseparable master equation is solved numerically using test-particle
discretization and Monte Carlo sampling. In the limit of vanishing Coulomb forces the master
equation becomes separable and can be reduced to standard one-dimensional kinetic equations for
free-electron transport that can be solved exactly. The comparison to free-electron transport is used
to gauge both the reliability of test-particle discretization and the significance of Coulomb distortion
of the distribution functions. Applications to convoy-electron emission are discussed.

I. INTRODUCTION

Recent experimental investigations of near-threshold
excitation in fast ions transversing thin solid targets have
revealed significant modifications of the excitation func-
tion compared to that observed in ion-atom scattering
under single-collision conditions. Near-threshold excita-
tion encompasses high Rydberg states just below thresh-
old and convoy electrons, i.e., electrons in the low-energy
continuum of the projectile just above the threshold.
Convoy electrons give rise to the well known "cusp"
shaped peak in the forward emission spectrum of elec-
trons whose velocity vector v, matches the projectile ve-

locity v&, i.e., v, =vp. Features that are clearly at vari-
ance with observations in gas-phase collisions under oth-
erwise identical conditions of projectile charge state q
and projectile velocity Up include the abundant popula-
tion of high-I Rydberg states, ' the high-order multipole
content of the convoy-electron velocity distributions,
and enhanced yields of convoy electrons that point to
anomalous transport properties such as an enhanced
transport length.

It has become clear that a description of foil-excited
states requires a detailed study of the dynamical evolu-
tion of the electronic states around swift ions inside the
solid. More specifically, the observed Anal-state distribu-
tion is the result of a complex dynamical evolution of the
electronic charge cloud associated with the swift ion
which is governed by the interplay between multiple
scattering in the medium and the electron-projectile
Coulomb interaction. It goes without saying that the
transient wave packet formed inside the solid has little in
common with stationary atomic (or ionic} states.
Nonetheless, the buildup of a closely phase-space-
correlated, isotachic electron flow in the proximity of the
projectile is a precursor event for the formation of post-
foil Rydberg and convoy-electron states.

A theoretical description is complicated by the intrin-

sic complexity of the underlying interaction processes.
Viewing the evolution in terms of transient projectile-
centered states, one is faced with the problem of strong
perturbations, both time dependent and time indepen-
dent, which preclude any perturbations treatment.
Time-dependent perturbations result from multiple
scattering of the electron at target atoms while time-
independent perturbations are due to the dynamical
screening of the Coulomb field in the medium (the
"wake" field' ' }

In the following we discuss a classical transport theory
employing stochastic dynamics. At present, a quantum-
mechanical transport theory appears to be a formidable,
even though highly desirable, task in view of the large
number of coupled states including those in the continu-
um. It is not at all obvious within which basis set of
manageable size the evolution of the transient wave pack-
et can be represented with sufficient accuracy. Correc-
tions due to quantum efFects are therefore an open ques-
tion and presently under investigation. We focus here on
the influence of the nearby Coulomb field on the trans-
port of electrons. For technical and conceptual reasons
we treat the electron-projectile interactions as purely
Coulombic, thereby neglecting the dynamical screening
field. Investigations performed in parallel employing the
dynamical screening potential' show that the dynamical
screening field alters the transport properties only weak-
ly. This is due to the fact that the primary excitation
process of convoy electrons, which provides the initial
conditions for the transport problem, takes place at small
distances where dynamical screening is not yet efFective.
The dynamical screening field plays, however, a crucial
role in other aspects of ion-solid interactions, e.g. , molec-
ular dissociation' and the electron emission induced by
antiproton transmission. ' The conceptual advantage of
using a pure Coulomb field lies in the fact that the
modification of transport coefficients can be expressed in
terms of universal scaled variables based on classical
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similarity transformations. On a more technical level,
the propagation in a Coulomb orbit in between subse-
quent collisions can be performed in terms of a discrete
mapping rather than by numerically integrating the equa-
tions of motion as required for the wake potential.

Transport of free electrons (or other pointlike charged
particles) through dense media is one of the few simple
problems of transport theory. The transport behavior is
determined by multiple scattering leading to both angular
straggling and energy straggling of an initially well-
collimated monoenergetic beam. The framework for the
theoretical description of elastic and inelastic scattering,
mostly treated separately, has been established some time
ago. ' Within our present description, free-electron
transport can be recovered as the q~0 limit, i.e., in the
limit of vanishing Coulomb force (q is the charge of the
projectile). The free-electron limit will be used as a gauge
for the modification of the transport behavior in the pres-
ence of a Coulomb force. Since the underlying transport
equation, a phase-space master equation, can be solved
exactly, though numerically, for free electrons, the nu-
merical accuracy of the test-particle discretization and
Monte Carlo sampling method used in solving the full
transport problem can be tested. Furthermore, we will be
in the position to test the separability assumption of an-
gular and energy straggling underlying the standard
theory of free-electron transport.

In Sec. II we brieAy introduce the theoretical frame-
work, the phase-space master equation, and classical sto-
chastic dynamics. The transport kernels or differential
inverse mean free paths (DIMFP's) entering the theory as
input will be discussed in Sec. III. Results for free-
electron transport will be presented in Sec. IV, followed

by results for the electron transport in the presence of a
Coulomb field in Sec. V, where implications for convoy-
electron emission will also be discussed. Concluding re-
marks will be given in Sec. VI. Atomic units are used un-

less otherwise stated.

II. PHASE-SPACE MASTER EQUATION
AND CLASSICAL STOCHASTIC DYNAMICS

—p(r, v, t)=(L+R )p(r, v, t),
Bt

where

L = —v-V +VV .V (2)

is the classical Liouville operator describing the phase-
space fiow ("drift") due to the electron-projectile interac-
tion Vt„and R is the collision operator. In (1) we have
adopted the projectile frame as a Galilean frame of refer-
ence. Accordingly, the dynamical phase-space variables
(r, v) are defined relative to the projectile ion. The

A. Phase-space master equation

Within the framework of (nonrelativistic) classical dy-
namics (ut «c) the electron transport problem in the
presence of the field of the projectile ion moving with
speed Uz is described by a phase-space master equation
for the distribution function p,

effective electron-projectile interaction V~, which, in gen-
eral, includes the dynamical screening potential, ' will in
the following be replaced by a bare Coulomb potential

for an ion of charge state q. The collision operator (relax-
ation operator) is given by

Rp= J d P[W(v, —P, P)p(r, v —P, t)

—W( v„P)p(r, v, t)] (4)

Z=Upt,

where the transition rates IV(v„P) depend on both the
local momentum v, of the electron at the time of the col-
lision and the momentum transfer P during the collision.
The transition rates are proportional to the differential
inverse mean free path or differential cross sections.
They describe both elastic and inelastic scattering with
the target atoms or the delocalized electron gas of the
medium. They play the role of a kernel of the linear
integro-differential equation in six space and one time
(6+1) dimensions. For reasons of clarity we express the
velocity dependence of the DIMFP's in terms of the lab
velocity v, rather than in terms of the velocity in the pro-
jectile frame v =v, —vp. The assumption of a homogene-
ous (i.e., r independent) kernel is justified for homogene-
ous media and, to a lesser extent, for amorphous targets
or propagation along "random" directions in a solid. A
detailed description of the W chosen in our calculation is
given in Sec. III. Equation (1) is nonseparable due to the
presence of the Coulomb interaction and due to the cou-
pling of different degrees of freedom by the collision ker-
nels. Separable approximations for the DIMFP's will be
considered below.

The linearity of (1) in p is the result of a one-electron
approximation: The "active" electron whose phase-space
correlation with the ion is analyzed is well separated in
phase space from the electrons in the medium since in
our case up &)uF (uF is the Fermi velocity). The full
Boltzmann-type collision integral can therefore be linear-
ized yielding (4). It should be noted that (2) is still non-
linear in canonical phase-space variables (r, v). The non-
linear and chaotic dynamics in the underlying single-
particle motion is therefore present. Both L and R pos-
sess axial symmetry about the beam velocity (up). If the
initial conditions possess axial symmetry as well, Eq. (1)
can be reduced to a (4+ 1)-dimensional integro-
differential equation. Since even in reduced form this
equation is not easily accessible to a direct numerical
solution with present computing capabilities, we will use
therefore an alternative approach employing classical sto-
chastic dynamics and test-particle discretization as dis-
cussed below. In the latter form the dimensionality plays
a less crucial role such that the full (6+1)-dimensional
transport problem can be solved for initial conditions of
arbitrary symmetry. We note that the time coordinate in
(1) can be replaced by the path length of the projectile
ion, which in a straight-line approximation is given by
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i.e., angular straggling and energy loss of the heavy parti-
cle is neglected, which is well justified in view of the small
electron to nucleus mass ratio ( ~ 10 ). We will in the
following use path length and time interchangeably. It
should be noted that the path length of the accompany-
ing electron does not coincide with the one of the ion Z.
In the present ease this is not primarily due to the well-
known path-length enhancement due to electronic angu-
lar straggling in free-electron transport, but due to
Coulomb potential induced trajectory effects. The latter
turn out to be far more important, in particular for high-
ly charged ions, while the former will be neglected.

B. Initial conditions

The determination of the initial condition, i.e.,
po=p(r, v, Z =0), relies on specific models for atomic col-
lisions which are considered to be responsible for the for-
mation of projectile-centered near-threshold states. The
primary excitation event requires a large momentum
transfer in a close collision and therefore closely resem-
bles binary ion-atom collisions. Two processes are im-
portant for formation of final states near threshold: elec-
tron capture predominantly from inner shells of the tar-
get or direct excitation of a low-lying projectile state of
an electron either carried into the collision or formed in
an earlier stage of the transmission. The extension of
these processes to continuum states are known as elec-
tron capture to continuum (ECC) and electron loss to
continuum (ELC), respectively. Realistic distribution
functions can be derived from experimentally determined
cross sections for capture and excitation. Alternatively,
phase-space distributions can be taken from classical tra-
jectory Monte Carlo (CTMC) calculations for binary
ion-atom collisions. In the present investigation of near-
threshold excitation in the Coulomb field, we use a con-
strained microcanonical distribution function of well-
defined angular momentum

po(E, L, r, v) =N(E, L )5(E u l2+q lr )5—(L —
~r Xv ),

(6)

where N(E, L) is a suitably chosen weighting function
such that pp is normalized to excitation or capture proba-
bilities. For example, the n rule for excitation cross
sections is incorporated into (6) by requiring that after in-
tegrating over r and v, po(E, L ) is a constant near thresh-
old as a function of E. Similarly, the dominance of low
angular rnomenta in the final-state population formed in
fast ion-atom collisions is modeled by a distribution func-
tion po(E, L), which peaked at small values of L. The
distribution function (6) corresponds to an isotropic en-
semble. Gas-phase studies of ECC and ELC show that
cusp electron emission displays anisotropies. ' Exten-
sions to anisotropic ensembles using specific distribution
functions for Euler angles (see Sec. IIC) are straightfor-
ward.

For cusp electrons in the Coulomb continuum (E ~0),
which will be studied in the following, an additional radi-
al constraint of the coordinate space is needed since the
motion is unbounded. We construct a normalizable dis-

tribution function by introducing a cutoff. For ion-solid
collisions such a radial cutoff r & r, is naturally provided
by the requirement of a large momentum transfer and, in
turn, a close collision in order to transfer an inner-shell
electron into the continuum. For loosely bound electrons
the dynamical screening length kD, within which the
electron-projectile interaction is only effective, provides
an additional less restrictive cutoff. We will pararnetrize
the cutoff for cusp electrons with E=0 and fixed L in
terms of a multiple a of the minimum distance of closest
approach (the pericenter distance),

L 2

Pc Af min

In the following numerical studies we will choose a=10.
The resulting distribution function

po(E =O,L, r, v ) =N(L)5 —u 12
T

L 2

X5(L —~rXv )8 a r-
2g

=N(L)(ulp&) '
(p2 v2)1/2

Xe(pu —u)e u— Pp
(8)

which depends on q and L only through the characteris-
tic momentum

2
0

of the classical cusp electron, i.e., of the parabolic orbit in
the Coulomb field (Fig. 1). po plays the role of a classical
analog to the Cornpton width of the E=0 quantum state.
In the initial distribution in the close collision regime
t =0, v =0 electrons are absent since v ~ polka, a conse-
quence of the radial cutoff. The peak at v =0 develops,
however, as ta co (or equivalently, Z~oo) under the
influence of L without any collisional interaction (R =0)
since Eq. (8) represents the population of E=0 threshold
states. In Fig. 1 the radial momentum distribution at
t =0 (Eq. 8) is shown for a=10 as a function of the re-
duced variable v/pp together with its Monte Carlo simu-
lation discussed below. The distribution is peaked at the
low cutoff pp/&a and will eventually shift to v=0 as
t ~~. We emphasize that all velocity distributions as a
function of path length discussed in the following refer to
the asymptotic velocity distribution (i.e., to the t~ ~
limit in the collision-free regime outside the foil) after
propagating a finite path length Z or the corresponding
time of evolution t(Z) under the influence of multiple
scattering (R WO) inside the medium.

with N(L) =N(E =O, L ) leads, for fixed cutoff parameter
o.', to a universal distribution function in momentum
space

po(E=O, L,v)= f d r pu(E=O, L, r, v)
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FIG. 1. Initial momentum distribution po(E =0,L, v ) of a
classical cusp electron in units of reduced momentum variable
p0=2q/L. Scaling parameter for radial cutoff a=10.
Eq. (8); ~ Monte Carlo simulation of initial conditions.

C. Test-particle discretization
and classical stochastic dynamics

Our method to solve the transport equation by a com-
puter simulation involves two major ingredients: the rep-
resentation of the phase-space distribution function p by
an ensemble of representative test particles ("test-particle
discretization") and the construction and solution of a
stochastic differential equation. This equation of motion
for the test particle should mirror the dynamics embo-
died in the transport equation (1) as closely as possible.

The construction of the initial conditions for orbits of
test particles employs the Kepler equations in terms of
eccentric anomaly u. For E =0 orbits they read

plane. Similar equations for negative-energy states (el-
lipses) and positive-energy states (hyperbolas) are given in
the Appendix. The equal a priori assumption of the mi-
crocanonical ensemble implies a uniform distribution of
the phase angle 9, the mean anomaly, which is realized
by drawing uniformly distributed random numbers. The
constraint r & r, is easily incorporated by rejecting all ec-
centric anomalies as determined from (10a) which would
lead to r(u) ) r, in (10b). Finally, the assumption of isot-
ropy is incorporated by drawing random numbers for the
three Euler angles for the rotation matrix, which trans-
forms the coordinates of the orbital frame [Eq. (10)] into
the projectile frame where z~~vp. The Euler angles a
and y are uniformly distributed random numbers while P
is uniform in cosP. The resulting Monte Carlo (MC)
simulation for the initial radial momentum distribution is
shown in Fig. 1 together with the analytic theory [Eq.
(8)].

The equation of motion governing the evolution of the
initial conditions of test particles is a stochastic
differential equation of the Langevin type, '

—v= —
q
—+F(t),r

dt r

where F(t) is a stochastic force describing the collisional
momentum transfer. Sampling the phase-space distribu-
tion of the test particles evolved according to (11) yields
an approximate distribution function at a later time p(t).
The resulting distribution function is, within the limits of
the Monte Carlo statistics, the exact solution of the trans-
port problem.

Since the drift term in (11) agrees with the classical
Liouville operator [Eq. (2)], the only nontrivial part in es-
tablishing the Langevin equation associated with the
original transport problem lies in the calculation of sto-
chastic force F. Such a construction is clearly not
unique. Our strategy is to optimize the agreement with
the collision operator for a finite number of low-order
jump moments,

B=—1+u u

2 3

L 2

r(u)= (1+u ),
2q

L 2

x(u)= (1 —u ),
2q

L2
y(u)= u,

B=co t+B0,

(10a)

(10b)

(10c)

(10d)

(10e)

d—(P" ) = fd'PP" W(v, p) (m =z or x) . (12)

Jump moments in x and y are equal because of axial sym-
metry. We note that in our application jump moments
are not necessarily small compared to the characteristic
momentum po [Eq. (9)]. The reduction of the master
equation to a Fokker-Planck equation ' is therefore not
applicable. For the same reason the term "diffusion"
used in the following is not to be taken literally.

We describe the stochastic force in terms of a sequence
of impulsive momentum transfers ("kicks"),

q
L

u
Vx $0

(10f}

(10g)

5'0
V

1+u2 (10h)

where the x-y plane is chosen to coincide with the orbital

F(t)= g g b,p, 5(t —t, ),
a=e or I

(13)

where hP. is the stochastic momentum transfer per col-
lision at the time t, . The determination of F(t) is thereby
reduced to that of a stochastic sequence of pairs
(BP~, t ) In (13) we h.ave decomposed the stochastic se-
quence into independent subsequences. One sequence
(a =e ) refers to elastic electron-target core scattering
while the other (a =i ) refers to inelastic electron-electron
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scattering. The terms (in)elastic refer here to
(non)conservation of the kinetic energy of a scattered fast
free electron. We note for later reference that in the pres-
ence of a Coulomb field the latter interpretation of this
decomposition will lose its meaning.

The explicit determination of the stochastic sequences
( AP, , tj ) depends on the choice of the collision kernel in
the master equation and will be discussed in Sec. III. The
fundamental approximation underlying (13) is the as-
sumption of an impulsive, instantaneous momentum
transfer. It is based on the observation that collisional in-
teraction with target atoms in the solid are short ranged
and determined by the static screening length in the
medium (typically of the order of 1 a.u. ). This is to be
distinguished from the dynamical screening length A, D for
the fast projectile, which is much larger. Dynamical
screening is neglected in the following. The correspond-
ing collision time t, =1/vp is small compared to the or-
bital period. For bound states the latter can be estimated
to be of the order of T„=2~n /q . For cusp electrons a
characteristic classical frequency is co„[see Eq. (10f)] and
T =2~L /q . The impulse approximation is therefore
valid for a wide range of q, n, and L. Nonetheless, the in-
troduction of unphysical high-frequency components via
(13) may lead to an overestimate of strongly inelastic pro-
cesses. Polarization effects of the target can be incor-
porated in the wake potential. Using Eq. (13), the
Langevin equation can be integrated to give a discrete
Coulomb mapping relating the canonical coordinates at
the times of adjacent kicks. Denoting the values of the
coordinates just prior to the jth kick by (r, v ) and those
just prior to the (j+ 1)th kick by (r, + „v,+, ), we find the
nonlinear mapping T,

I~+ [ r~=T
v~+ ) v~

(14)

where T can be decomposed as

T= To(ht, ) T, (b,P, ),
with

(15)

T, (b, P~ )
r

v+AP (16)

and To(b, t ) describing the evolution of canonical coordi-
nates after the kick on unperturbed Coulomb orbits dur-
ing a time interval At between adjacent kicks. Explicit
calculation of To(ht, ) requires only the solution of the
Kepler equations [Eqs. (10) and (Al)—(A18)] rather than a
numerical integration. Assume, e.g. , that T(AP, ) gen-
erates an E=O orbit with angular momentum L. The
phase angle of the orbit will then change during the inter-
val At by an amount b 0 =m b t . By solving the
third-order Kepler equation [Eq. (10a)] the change in ec-
centric anomaly hu and consequently the new canonical
coordinates ( r,. + „v,+, ) can be determined [Eqs.
(10b)—(10h)]. Obviously, for orbits with E &0 or E)0,
the Kepler equations for bound states (ellipses) [Eqs.
(Al) —(A10)] and for positive-energy states (hypobolas)
[Eqs. (All) —(A18)] must be used. This method allows

The well-known transport equations for free electrons,
i.e., in the absence of a perturbing Coulomb field, can be
recovered from (1) in the limit q ~0 as

—p(v, t)=Rp(v, t) . (17)
at

Note that in the absence of a field and for a homogeneous
collision kernel the position coordinates is cyclic. The in-
itial conditions of an initially well-collimated beam with
v, =v~ (i.e. , with a velocity distribution corresponding to
an E =0 cusp electron) is given in the Galilean frame of
the projectile by

po(v)=NB(v) . (18)

For a comparative analysis of free-electron transport
and transport in a Coulomb field it is important to realize
that the limit q~O requires both an alteration of the
transport equation and of the initial conditions. A
"mixed" treatment with (18) as initial conditions and the
use of the master equation including the Coulomb field
(1) is unsatisfactory since it induces unphysical transi-
tions due to energy nonconservation unless an adiabatic
switching procedure for the field is employed. We use
therefore Eqs. (17) and (18) for free electrons and Eqs. (1)
and (8) for electrons in the Coulomb field. The smooth
transition between the two cases can be simula)ed by
choosing small but finite values of q such that po is small
compared to the average collisional momentum transfer

p, «~(bp)
The treatment of the free-electron transport within the

framework of classical stochastic dynamics requires only
minor changes. The drift term in the Langevin equation
[Eq. (11)] vanishes for q =0 and the initial conditions of
the ensemble of test particles is chosen as v =0 according
to (18) with r arbitrary. Accordingly, T(b,P, ) [Eq. (16)]
remains unchanged while the map describing Coulomb
evolution To is replaced by the map describing free-
particle evolution

r r +AtvT(bt) 1 1 i J'

(20)v vJ J

III. COLLISION KERNELS

Several approximations to kernels of the collision in-
tegral in (4) have been discussed for free-electron trans-
port. ' ' ' In most cases a separability approxima-
tion is invoked such that the free-particle master equa-
tion

a—p(u„O, t )
at

= f du' f dO'(sinO' )

X [ W'(u„—u', u', O')p(v, —v', O —O', t )

—W( u„v', O')p( u„O, t ) ] (21)

the time-e5cient propagation of relatively large ensem-
bles (10 —10 test particles) for several hundred collisions
per particle.

D. Free-electron transport
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reduces to two one-dimensional equations in the polar an-

gle 0 and v (or energy). Equation (21) follows from (17)
upon eliminating the cyclic azimuthal angle. For free
electrons we choose the conventional laboratory frame
variables (v„0). As before, the kernel is assumed to be
homogeneous, i.e., r independent, corresponding to a
homogeneous or "random" medium. The separable ker-
nel reads

7TZTn 1
W, (v„0)=

2v, [sin (0/2)+(1/2av, ) ]
(24)

where n is the number density of target atoms.
Equation (24) has been shown to reproduce angular

straggling of free electrons reasonably well. A discus-
sion of improved elastic kernels is given by Ganachard
and Cailler and Kwei. Expressed in terms of the
momentum transfer AP',

b P'= 2v, sin{0/2),

Eq. (24) reads

8m.ZTn AP'
W, ( bvP') =

v, [(b,P') +(1/a) ]
(26)

W(v„v', 0') = W, (v„v')5(cos0' —1)+ W, (v„0')5(v'),

(22)
expressing the fact that angular straggling is primarily
due to elastic scattering and energy straggling due to in-
elastic scattering. A further approximation, valid only
for small distances of propagation, assumes that the col-
lision kernel is independent of the local speed of the scat-
tered particles, i.e.,

W, (v„v')= W, (vt„v'),
(23)

W, (v„0')= W, (vr, 0'),
since v, (t =0)=v~. In this form the resulting one-
dimensional master equations correspond to the Landau
theory for energy straggling and the Goudsmit-
Saunderson theory for angular straggling which can be
solved exactly. ' ' The solutions will be used to test the
Monte Carlo simulations. Extensions using the
continuous-slowing-down approximation to account for
changes in the kernel due to changes in the velocity dis-
tribution are straightforward. In stochastic dynamics
calculation the approximation (23) is dispensable. The
calculations therefore remain valid for larger distances of
propagation, i.e., thicker foils. Furthermore, the approx-
imation (22) is dispensable as well, which permits testing
of the accuracy of the separability assumption.

In our calculation we choose collision kernels which
are sufficiently simple to allow for a CPU time efficient
drawing of nonuniform random number distributions and
yet are physically acceptable approximations. For the
elastic scattering (a=e) we calculate W, from scattering
at an exponentially screened Coulomb potential
V(r ) = —Zrexp( r /a )Ir with a Tho—mas-Fermi screen-
ing radius a =0.886ZT ' and ZT the charge of the tar-
get nucleus (ZT=6 for carbon). In the first-order Born
approximation we have

The distribution of target atoms (scattering centers) with
medium is assumed to be random.

For the inelastic electron-electron scattering Ashley
et al. have provided a description of the kernel for car-
bon taking into account particle-hole and plasmon excita-
tion. They express the kernel in terms of the dielectric
function e{q, cv ) as

W~(v„, v'(cv))= f dq 1/q Im= 2

WU~ e(q, cv)
(27)

with tv=(v ) /2 and use an approximation for e(q, co) in
terms of Drude-type functions,

1
Im

e(q, tv)

4 r4) y, co,

;=& [(too;+q /2) —to ] +(y;to)

(28)

The coefficients A „coo„and y, are fitted to
match the experimental optical energy-loss function
Im[ —e(q =O, cv)] '. This approximation leads to
reasonable agreement for the inelastic mean free path
and stopping power of free electrons in the energy
range of =1 keV, which we are primarily interested in.
Bichsel has recently discussed various more sophisticated
inelastic collision kernels including K-shell contribu-
tions. ' The use of Eqs. (27) and (28) is particularly con-
venient for the numerica1 determination of the stochastic
force. We note, however, that more elaborate input can
be used if desired or necessary.

The calculation of the stochastic sequences (b,P, b, t )

proceeds as follows. The collision kernels (26) and (27)
determine the (in)elastic mean free path (MFP) for free
electrons, A, ,

1 1= —f d0(sin0) W, (v„0),
U, 0

(1/2)U —eF= —f dc' W, (v„v'(co)) .
Ve 0

(29a)

(29b)

(, b, t, &=X /v, . (30)

In the following numerical study (ht~") =4 a.u. For a
homogeneous (or random) medium the stochastic point
process is Poissonian. ' Consequently, the probability
distributions in ht are given by

P(ht,")=exp( —b, t /(ht ) )

= eXP( —
V „At /k ) (31)

with the two sequences (a=e or i) assumed to be in-
dependent of each other.

The probability distributions for the elastic momentum
transfers per collisions are given (up to an irrelevant nor-
malization constant) by

P(bP')= W, , (v„bP') . (32)

From (29), the average time interval between two adja-
cent collisions (reciprocal of the collision frequency) of
the same type (a =e, i ) follows as
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(34)

Recoil kinematics requires, however, that the inelastic
scattering process is also associated with a transverse
momentum transfer. This applies to both particle-hole
excitations and collective excitations. For example,
Raether points out that plasmon emission by fast elec-
trons occurs in predominantly transverse direction. This
transverse momentum transfer associated with stopping
and straggling is to be distinguished from the well-known
transverse contribution to stopping in the relativistic case
due to virtual photons. The presence of a transverse
component EPj, which is, in fact, larger than hP~~~, des-
troys the separability of the kernel W [Eq. (22)]. Its
quantitative importance will be investigated in Sec. IV.
The full vectorial momentum transfer due to the dielec-
tric response can be derived from the inverse dielectric
function itself rather than from the integral (27), i.e.,

P( b P')=,Imbp' e(b P', ui)
(35)

and the kinematic relation

—,
' v,

' =
—,
'

( v, —b,P, )'+ co . (36)

Note that the magnitude AP, defines the polar angle of
the vector b,P; through (25) while the azimuthal angle i))

is cyclic. The latter is to be uniformly randomized in the
interval [0,2'] in view of axial symmetry.

%e encounter a different situation for inelastic scatter-
ing processes: The kernel W(u„u'(co) } (27) determines
only the longitudinal momentum transfer U', more pre-
cisely, the momentum transfer antiparallel to the beam
velocity AP~~~. The latter is directly related to the stop-
ping power

E 1 (1/2) U
—eF=—j dpi u~ W, ( u„v'(co) }= ( co }/k; (33)

dx U~ 0

since

Accordingly, the longitudinal and transverse momentum
components are given by

AP' =— (AP') co
(37)

gpi [(gpi) 2 (gpi )2]1/2 (38)

Equation (35) amounts to a two-dimensional nonuni-
form distribution of random numbers. The function
Im( —e(q, iu)} entering (35) is depicted in Fig. 2. It
should be remarked that a plasmon dispersion relation
co(b,p) in carbon is only poorly defined because of the
width of the plasmon peak ( -0.5 a.u. ). As is the case for
the elastic scattering, the cyclic azimuthal angle is uni-
formly distributed.

Figures 3 and 4 display the collision kernels [or
(DIMFP's)] for inelastic and elastic scattering. Figure 3
shows the DIM FP associated with the longitudinal
momentum transfer in the inelastic process. The agree-
ment between the analytic expression for (27) derived by
Ashley et al. and the MC simulation is excellent. The
collision kernel for angular scattering (Fig. 4) displays a
new feature. In addition to the DIMFP for angular
scattering by elastic scattering, we find a DIMFP for an-
gular scattering by inelastic scattering. The complete
differential angular scattering probability is then a convo-
lution of the two distributions. The agreement between
the analytic expression and the MC simulation for the
elastic DIMFP is excellent. For the angular scattering
due to inelastic scattering no analytic expression is avail-
able. The MC simulation shows that the latter is strongly
peaked in forward direction. Angular straggling for free
electrons is clearly dominated by the elastic channel
thereby justifying the separability assumption (22) for
many applications. However, the angular straggling con-
tribution from the inelastic channel will play an impor-
tant role in the presence of a Coulomb field.

The present method allows the construction of stochas-
tic forces such that the distribution function of the en-

1.2

1.0
q=0

1,0

0,8

0.6

(a.u. )
(a.u. )

FIG. 2. Inverse dielectric function for carbon
Imt —I/[e(q, cu)]] according to Eq. (28) as a function of co for
dift'erent wave numbers q.

FIG. 3. Collision kernel W, [,Eq. (27)] for energy loss
(or longitudinal momentum transfer); ~ Monte Carlo simula-
tion.
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FIG. 4. Collision kernels for angular straggling due to elastic

collisions, W„[Eq. (24)], and due to inelastic collisions W, [Eq.
(32)].

pendent kernel [Eq. (23)]. We confine therefore the com-
parison to small distances of propagation d 450 a.u.
( =240 A), which is also the most interesting region for
the study of Coulomb-field-induced modifications. For
larger distances path-length modifications due to angular
straggling become important. Furthermore, in the separ-
able approximation [Eq. (22)] the angular straggling due
to inelastic processes is neglected. We correct for this by
convoluting two independent angular straggling distribu-
tions each calculated using the Goudsmit-Saunderson
theory and the kernels for elastic [Eq. (26)] and inelastic
scattering [Eq. (35)], respectively. Finally, the solutions
[Eqs. (21)—(23)] yield energy and angular distributions at
fixed distances of propagation while the MC simulations
yield phase-space distributions for a fixed number of time
steps of evolution. Since the latter implies a distribution
rather than a sharp value for the path length, the
equivalence is strictly fulfilled for ensemble expectation
values while deviations in the tails of the distribution
functions occur.

Figures 5(a) —5(c) show the energy distribution of an in-

semble of "kicks" reproduces the kernels very accurately.
The agreement can be measured in terms of the moments
of the kernel [Eq. (12)]. The zeroth-order moments
which give the collision rates [or equivalently, the MFP s,
Eq. (29)] are automatically reproduced by choosing
P(b, tj') distributions according to Eq. (31). The first-

order moment for longitudinal momentum transfer gives
the stopping power [Eq. (33)] while the second moments
measure energy and angular straggling,

d(gE )2 1 (1/2)v, —eF=—f '
des cu'W, (u„u'(co)), (39)

dX Ue 0

0.8

0.6

0 4

0.2

(a) Z=42. 5 a.u.

d8 1=—f d8(sin8)8 W, (u„8) .
dX Vq 0

(40)

In all cases, we find good agreement between the analytic
theory and the MC simulation. Deviations due to statist-
ical fluctuations were ~ 5%.

(4) Z=127 a..u.

IV. FREE-ELECTRON TRANSPORT

Free-electron transport is used to test the classica1 sto-
chastic dynamics approach for a case where an exact (nu-

merical) solution to the master equation exists. Monte
Carlo methods have been used primarily for solving
one-dimensional master equations in the separable limit.
The present method treats the full six-dimensional
phase-space evolution. The price to pay is that the statis-
tics per degree of freedom is significantly reduced. Upon
tracing out all unobserved degrees of freedom the agree-
ment with the exact solution for free-electron transport is

excellent.
We have compared the evolved distribution with the

numerical solutions of the Landau and the Goudsmit-
Saunderson theory of energy straggling and angular
straggling [Eqs. (21)—(23)]. The full six-dimensional
phase-space distribution is projected onto the energy and
angle axes. The following limitations in the validity of
this comparison should be noted: The Landau and
Goudsmit-Saunderson theories assume a velocity-inde-

~ ~
0.09 - ~

0.06

0.00
l 3 78 79

FIG. 5. Energy straggling distribution in laboratory frame
for free electrons and path length (a) Z =42.5, (b) Z = 127, and

(c) Z=450 a.u. ; —,Landau theory; ~, Langevin equation
(bin size ATE=01 a.u. ). The zero-scattering peak represents a
probability.
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itially monoenergetic beam of electrons with v, = vp
=12.5 a.u. and the values for the path length Z=42. 5,
127, and 450 a.u. A bin size on the energy scale of
Ac. =0. 1 a.u. is used. For the shortest distance of propa-
gation the plasmon peaks due to o and ~ electrons (at
E =77.2 and 77.8 a.u. ), as well as a shoulder due to the
onset of double plasmon excitation (E =76.1 a.u. ), are
clearly visible. The majority of all test particles (=60%%uo)

remains in the zero-scattering bin corresponding to the
5(U —

U, ) component in the Landau theory. With in-

creasing distance the multiple scattering distribution
dominates while the zero-scattering and single-scattering
plasmon peaks disappear. In all cases the agreement be-
tween the Landau theory and the MC simulation is satis-
factory. Figures 6(a) —6(c) display the angular distribu-
tions for the same distances of propagation. The bin size
in the MC simulation is EI9=0.56'. At small distances
the inAuence of small-angle scattering due to inelastic
scattering is visible. Here the angular distribution pro-
duced by the Goudsmit-Saunderson theory with only
elastic scattering taken into account deviates markedly
from the distribution including both elastic and inelastic

deflections for angles ~ 5'. This is directly related to the
average transverse momentum transfer for inelastic col-
lisions (Pj ) =0.7 a.u. [tan '(DPI I U, )=3.2']. (AP~)
is considerably larger than the longitudinal momentum
transfer responsible for the stopping power
(AP~~ ) = —0.27 a.u. The recoiling (quasi)particles (elec-
trons or plasmons) are therefore emitted at large angles.
Since, on the other hand, the average momentum transfer
for elastic collision ( AP~ ) =2.7 a.u. is large compared to
(hP~ ), the influence of elastic scattering rapidly dom-
inates at larger angles and larger distances of propagation
thereby justifying the separability approximation [Eq.
(22)] for many applications. The overall excellent agree-
ment between the stochastic dynamics calculation and
the solution to the one-dimensional transport equations
lends confidence to the application of the present ap-
proach to the nonseparable transport problem in the
presence of a Coulomb field.

V. COULOMB TRANSPORT

A. Velocity space distributions

1.2

0.6

0.3

0.48

elastic and inelast ic

elastic only

The drastic effect of the presence of the Coulomb field
is illustrated in the two-dimensional velocity distributions
at path length Z =42. 5 and 127 a.u. with and without a
strong Coulomb field (q=18, L=3) (Fig. 7). Each dia-
gram represents ensembles of initially 2000 test particles
each of which is marked by a dot. The most remarkable
difference is a rapid and almost "isotropic" diffusion of
the initial distribution located at vp =12.5 a.u. This key
observation leads to two consequences: First, the motion
in the presence of a Coulomb field displays an increased
instability to which we refer in the following as Coulomb
defocusing. The instability is related to the intrinsically
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FIG. 6. Angular straggling distributions of free electrons for
path length (a) Z =42.5, (b) Z =127, and (c) Z =450 a.u. ;
Goudsmit-Saunderson theory; ———,Goudsmit-Saunderson
theory for elastic scattering only; ~, Langevin equation {bin size
60=0.56').

FIG. 7. Two-dimensional velocity space distributions after a
path length of (a) and (b) Z=42. 5 and (c) and (d) Z=127. (a)
and (c) are for free electrons, {b) and (d) for convoy electrons
with L =3, q = 18. Note that all particles of the zero-scattering
peak are represented by one dot.
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hP=v AP+ +v AP
2

or, equivalently, in the projectile frame by

b,E'=v b,p+bP /2 .

(41a)

(41b)

The first two terms in (41a) are unchanged compared
to free-electron scattering, while the third depends on the
local momentum v(r) of the electron on the Coulomb or-
bit. The local momentum is of the order of the Compton
width q/L [or q/Lv'a, see Eq. (9) and Fig. I]. In con-
trast to the sum of the first two terms, which assures
slowing down (bE &0), the third term is not negative
definite. For large q/L the latter can change the overall
sign of hE resulting in an energy gain. The strong
influence of the Coulomb force is most pronounced at
short distances of propagation. Due to the growing dis-
tance from the center of the Coulomb force the phase-
space evolution becomes increasingly free-particle-like.
Coulomb defocusing effects are therefore transient.
Another important observation related to (4lb) is that for
AE' &0 transitions to negative-energy states in the pro-
jectile, i.e., bound orbits in the moving projectile, become
possible.

A detailed comparison between Coulomb evolution
and free-particle evolution is shown in Figs. 8-11 for en-

ergy and angular straggling distributions. The energy
straggling spectra are completely altered even in weak
fields q/L =0.33 (Fig. g). The zero-loss peak is reduced
since collision events which are energy conserving for
free particles are energy changing in the presence of the
Coulomb field. The peaks due to 0. and m. plasmon exci-
tations are completely smeared out. The reason is that
the Compton width is larger than the characteristic lon-
gitudinal momentum transfer associated with plasmon
excitation [see Eq. (37)]. In order to restore part of the
plasmon structure and to illustrate the smooth transition
from the free-particle to the Coulomb transport we have
chosen in Fig. 9 an unphysically small Compton width
parameter (q/L =0.016 e.g. , q=0. 05, L =3). The rr
plasmon peak is now largely unchanged while the spec-
trum is distorted only in the near vicinity of the zero-loss
peak. Our present results readily explain why all experi-
mental studies of convoy electrons to date, unlike free-
electron emission, do not display any discrete loss struc-
tures despite the available high-energy resolution. '

The energy distributions (Figs. 7 —9) display a high-
energy component of electrons faster than the initial con-
voy velocity v, =v~. This is an additional manifestation

chaotic dynamics of impulsively perturbed atomic sys-
tems. Second, the near isotropic expansion indicates
that collisions can lead to both energy loss and energy
gain. The classification of electron-core and electron-
electron collisions as "elastic" and "inelastic" becomes
obsolete even though we will continue to use this termi-
nology for reasons of convention. The underlying mecha-
nism is the coupling of the collisional momentum and of
the local orbital momentum. The change in energy per
collision as measured in the laboratory frame is given by

bE =
—,'(vp+v+bP) —

—,'(vz+v)

of the Compton width. It is instructive to trace the ori-
gin of the high-energy component v, ) vp. From (41a) it
is obvious that for q/L & vp an energy gain in the labora-
tory frame requires AP to be approximately parallel to
the orbital velocity v(r) and perpendicular to v~. There-
fore the transverse components AP~ of both the elastic
and inelastic collisions cause energy-gaining collisions.
This fact underlines the importance of the transverse
component hP', of the inelastic momentum transfer.
Since ( b P~ ) & ( b Pt ), we expect that the immediate vi-

cinity of the cusp peak v, vz energy gain is primarily
due to inelastic collisions, while large energy gains are as-
sociated with the elastic channel. This expectation is
confirmed by a computer simulation (Fig. 10) where we
have selectively switched off either one of the two col-
lision mechanisms. The inelastic channel displays a pro-
nounced asymmetry of the low- and high-energy wings,
which is the obvious consequence of the presence of the
negative-definite terms in Eq. (41a).

The phase-space distribution is profoundly affected by
another feature not directly visible in the energy and an-
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0.6
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0.4
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(a) Z=42. 5 a.u.

~ 0.3
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(b) Z=127 a.u.
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FIG. 8. Comparison of the energy distribution P(E)AE,
(DE=0. 1 a.u. ) for free electrons ( ) and convoy electrons
[N, (q = 1, L = 3)] after a path length of (a) Z =42.5, (b) Z = 127,
and (c) Z =450 a.u.



1216 JOACHIM BURGDORFER AND JOHN GIBBONS 42

1.0()

0.75

&v

o ().50

0.25

0.00

Z =42.5 R. ll.

74 7r,
I

7G 77

Energy (a.u. )

c]=0
——— q=.05, L=3

II
II
III
I I
I I
I I
I I
I
I IIltI

I I
I I
I
I
I
I

I I
I

I
I
I
I
I
I
I

probability is predominantly due to capture of continuum
electrons into bound states. Note that the inelastic
electron-electron scattering predominantly mediates tran-
sitions into negative-energy states in the projectile frame

and depletes the angular distribution at small angles. The
relative stability of the angular distribution with respect
to Coulomb distortions can be understood with help of a
simple analytic estimate similar to the one given by Eq.
(41). We note first that electron scattering far away from
the Coulomb center is free-electron-like. The largest dis-
tortion is expected for collisions near the pericenter. For
an initial parabolic orbit with its major axis aligned along
the beam axis, the convoy scattering angle in the labora-
tory frame, 8~, can be shown to be

FIG. 9. Comparison of the energy distribution P(E)AE,
(EE=0.1 a.u. ) for free electrons ( ) and convoy electrons

[0, (q=0.05, L =3)] after a path length of Z=42. 5 a.u. The
singular zero-scattering peak is not to scale.

gle distributions of (continuum) electrons: According to
(41b) transitions to negative-energy states in the projec-
tile, i.e., the capture of the continuum electron into a
bound orbit becomes possible for AE'&0. This decay
channel for convoy electrons is important for highly
charged ions with a high density of states below thresh-
old. An analytic estimate for the recapture probability of
convoy electrons has been developed showing that cap-
ture is a universal function of q/L which approaches 0.5
for isotropically distributed hP in the limit

q /L )& ( AP ). The transient trapping of continuum
electrons in negative-energy states determines in the
long-term behavior of convoy-electron attenuation.

In marked contrast to the drastic modification of ener-

gy straggling the angular straggling distribution is largely
unaff'ected (Fig. 11). A notable exception is the distribu-
tion for highly charged ions at small angles and small dis-
tances of propagation where the Coulomb distribution
develops a "hole." This reduction of angular scattering

u (0)+hP
tanOL =— 1— 1

(42)
[ 1+(2gE L 2/q2)]1/2

1.2

09

I I

elastic and inelastic

~ q=18, L=3

0.6
(a) Z=42. 5 a.u.

0.3

0.48 ) Z=127 a u.

c 032

where u~(0)=pc is the tangential velocity at the peri-
center [see Eq. (10)]. In order to maximize the distortion
effect and to exclude capture, hP is assumed to be paral-
lel to u (0). Accordingly,

0.03
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o inelastic

0 ~ 16
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ct ll
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FIG. 10. Wings of the velocity distribution of convoy elec-
trons P(U, )AU, after a path length of Z =42.5; ~, only "elastic"
collisions; 0, only "inelastic" collisions; peak region suppressed
for clarity (bin size EU, =0.2 a.u. ).

FIG. 11. Comparison of angular straggling distributions of
free electrons ( ) and of convoy electrons [0, (q = lg,
L =3)].
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bE'=u (0)bP+hP /2 (43) B. Transport coefKicients

is the energy given in the projectile frame. Expressed in
terms of reduced variables

g =AP/vp,

s =b,P/po,

Eq. (42) becomes

(44)

(45)

1
tan&' =g 1+—L

11—
[1+8(s+s /2)]'

(46)

The corresponding scattering angle for free electrons is
given by

taneI =g . (47)

(48)

The modification due to the presence of the Coulomb
field depends only on s, i.e., the ratio of the transverse
momentum transfer to the characteristic orbital momen-
tum po. The deflection function [Eq. (46)] for diFerent
p0=2q/L as a function of hP is displayed in Fig. 12.
Note that the slope of the deflection function
(d8/d(bP)) ' determines the angular straggling. At
large angles the slope is little affected while an enhance-
ment of d8/d(DP) for small momentum transfers and
consequently a depletion of the small scattering probabili-
ty is observed. In the limit s ~ ~ the maximum enhance-
ment of the convoy scattering angles relative to free elec-
trons can be shown to be

The presence of the Coulomb forces has a dramatic
influence on transport coefficients such as mean free
paths, stopping power, and energy straggling. We em-
phasize that these modifications are transient. Since the
unbound convoy electrons ultimately leave the Coulomb
interaction region, the transport coefficients converge to
the free-particle values as Z ~ ~ (or t ~ &x ). All trans-
port coefficients discussed in the following are measured
at Z=O (or t=0) where Coulomb eFects are maximal.
Figure 13 displays the t =0 elastic and inelastic mean free
paths for convoy electrons. Both display a moderate
enhancement, which is obviously a universal function of
the Compton width parameter q/L. The net enhance-
ment is the result of two counteracting mechanisms:
MFP's for free electrons [see Eq. (29)] in the present ener-

gy range are monotonically increasing functions propor-
tional to vP (1.5 SP&2). Since the local velocity of the
electron in the Coulomb orbit is larger than the corre-
sponding velocity for free electrons, the MFP's are
enhanced. This is partially compensated by the corre-
sponding path-length enhancement associated with the
motion in a Coulomb orbit. It should be emphasized that
the Coulomb-enhanced MFP's are not directly related to

(a)
125-

that is, the amplification of the deflection angle reaches a
saturation value which is independent of q. This
enhancement is, however, responsible only for a small
fraction of probability loss at small angles (Fig. 11), the
reason being that the phase-space density associated with
the most favorable conditions for enhanced angular de-
focusing discussed above is very small. In other words,
chances to find a comet near the pericenter (perihelion) at
the moment the collision occurs are slim.
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FIG. 12. DeAection functions for free electrons (po=0) and

for convoy electrons [po )0, see Eqs. (40) and (41)] as a function

of the transverse momentum transfer.

FIG. 13. Modification of the (a) elastic and (b} inelastic mean
free paths for convoy electrons and an initial distribution given

by Eq. (10) as a function of the reduced variable q/L; 0, L =1;
o, L=2; X, L=3.
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the previously reported enhanced "MFP's" for convoy
electrons. " Precisely speaking, the latter are attenua-
tion lengths which will be considered in Sec. VC. A
characteristic time constant within which Coulomb
modifications persist can be estimated by the transit time
through the region r & r, [see Eq. (7}]to be of the order of

(velocity) distribution around the cusp peak in contrast to
the pronounced asymmetry predicted by models based on
free-electron transport. ' ' As expected from our
analysis of the angular distributions, the angular strag-
gling coefficient agrees with the free-electron value within
the statistical uncertainty.

a L a
4 q 4co~

(49)

For a= 10 and most cases of interest t, «(b, l ), i.e.,
the strong modifications are confined to a time interval
smaller than the interval within which the first collision
occurs. The enhancement of the MFP's is therefore of
little relevance for the comparison with the experiment.

Dramatic changes can be observed for the stopping
power and energy straggling displayed as a function of
the reduced variable q/L (Fig. 14). Both stopping power
and energy straggling converge to the free-electron limit
as q/L~O. The stopping power [Fig. 14(a)] becomes
negative for q/L ~4. This change of sign is an immedi-
ate consequence of the presence of the heavily weighted
v ) vz component in the energy straggling distribution
for highly charged ions (Fig. 7}. While the value of the
stopping power itself changes rapidly within t, [Eq. (49)],
the effects of an initially negative stopping power are
clearly visible for much larger periods of time and are of
importance for the velocity distribution of convoy elec-
trons. For large q/L energy straggling is enhanced by
factors ~ 10. It is the size of the straggling parameter
that is responsible for the complete smearing-out of the
plasmon peaks and the approximately symmetric energy

I, f ~A, ,

where the total mean free path is given by

(50)

(51)

Equation (50) follows from the fact that scattering events
ejecting the electron out of the collection volume consti-
tute a proper subset of all collisions which determine A, .
In the following a near-cubic collection volume with
volume =(2bU) centered about vz,

v&
—b v ~ v, ~ vp+hv,

0&8, &Ho=tv/Up,
(52)

C. Convoy attenuation

The experimentally accessible transport length for con-
voy electrons is the attenuation length I, . It is defined by
the distance with which the number of convoy electrons
within a given collection volume has decreased to e ' of
the initial value. The corresponding attenuation of free
electrons is denoted by If . The attenuation length
satisfies the inequality
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FIG. 14. (a) Stopping power and (b) energy straggling param-
eter for convoy electrons [initial distribution Eq. (lo}]as a func-
tion of the reduced variable q /L; ~, L = 1; o, L =2; X, L =3.
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FIG. 15. Attenuation of free electrons (0 ) and convoy elec-
trons (~ ), (q = 18, L = 3) for a collection volume with hv =0.25.
Also shown is the attenuation (5) of phase-space correlated
electrons (i.e., convoy electrons plus bound electrons).
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is chosen. Accordingly, the inequality (50) approaches
equality in the limit AU ~0. The concept of the attenua-
tion length tacitly assumes an exponential depletion of
the initial intensity. For free electrons an exponential de-
cay law is appropriately observed (Fig. 15). In the pres-
ence of a Coulomb field a drastically different picture
emerges. The convoy electrons are initially depleted ex-
ponentially but at a faster rate than free electrons, which
is a direct consequence of Coulomb defocusing. For large
path length (or larger evolution times) the decay pattern
changes dramatically. A long-time tail develops which is
due to both the delayed release of the recaptured elec-
trons in subsequent ionizing collisions and the redistribu-
tion and slowing down of high-energy continuum elec-
trons with velocities v, U p. Both effects are directly re-
lated to the presence of the strong Coulomb field and can
be identified as a "focusing" effect. The result is the
suppression of convoy-electron attenuation at large path
lengths. The effect of Coulomb focusing can be made
more obvious by studying the attenuation of all phase-
space correlated electrons, i.e., the sum of all bound and
convoy electrons, also shown in Fig. 15. The correspond-
ing attenuation length l„ is considerably larger than I&..
In the present case we have l„/1& ——2. 6.

The deviation from a monoexponential decay law for
convoy electron occurs only at distances where the con-
voy intensity is reduced by a factor = 10 . In spite of the
difficulties discussed, the attenuation length I, therefore
provides a meaningful description for convoy-electrons
extinction. The dependence of l, on the size of the collec-
tion volume is displayed in Fig. 16 for different q/L l, is.
found to be close to the mean free path k for large q/L.
In view of Eq. (41) and the results for energy straggling,
this can be easily understood in terms of Coulomb de-
focusing: The enhanced energy transfer per collision due
to the coupling to the local momentum in the Coulomb
field causes the removal of electron from the collection
volume in a larger number of collisions than for free elec-

80-

trons. The present results lead to two important con-
clusions: The convoy attenuation length is reduced and
for small collection volumes approximately equals the to-
tal MFP of a free electron contrary to the notion of an
enhanced attenuation length. Interpretation of experi-
mental findings " requires the analysis of the approach
to excitation equilibrium instead. Furthermore, the con-
voy yield as a function of collection volume (Fig. 16) may
provide direct and easily accessible evidence for Coulomb
defocusing. The increase of attenuation length with in-
creasing AU is strongly suppressed for large q/L. We
therefore propose an experimental study of the yield as a
function of collection volume and path length.

VI. CONCLUDING REMARKS

We have analyzed the solution of a phase-space master
equation describing electron transport in the presence of
a Coulomb field provided by an ion in the near proximity.
We have tested the method of test-particle discretization
and solved a stochastic differential equation by compar-
ison with the free-electron transport problem for which
exact numerical solutions of the master equation are
feasible. We found excellent agreement lending
confidence in the present approach.

The presence of the Coulomb field induces profound
changes of the transport behavior which can be summa-
rized as Coulomb (de)focusing effects. Defocusing effects
include a drastic enhancement of energy straggling, the
averaging-out of plasmon loss structures, and the reduc-
tion of zero-scattering peak and of the attenuation length.
Coulomb focusing effects manifest themselves as an ini-
tially increased MFP, a negative stopping power, the
buildup of a bound-state population, and an enhanced
correlation length. Other aspects presently under investi-
gation include dynamical screening field effects, the ap-
proach to charge state and excitation equilibrium, and
quantum effects on the transport behavior.

We finally note that the present approach has a
broader scope than just the application to the ion-solid
interaction. With minor modifications the theory can be
applied to a variety of problems in different subfields such
as the l mixing and destruction of Rydberg atoms in am-
bient gases and the injections of comets out of the
Oorth cloud into the solar system under the infiuence of
gravitational encounters.
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APPENDIX
FIG. 16. Attenuation length as a function of the linear di-

mension, AU of the collection volume for different po =2q /L. ; ~,
po =0; X, po =0 033 ' po =0 67' & po = 12

Using the same notation as in Eq. (10) the Kepler equa-
tions for elliptic orbits (E (0) are given by~
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0=u —e sinu,

r(u) =a(1 —e cosu ),
x(u) =a(cosu —e),
y(u)=a(1 —e )' sinu,

tl 3n

q sinu
v, (u)= ——

n 1 —ecosu

U~(u)= —(1 —e )'
n 1 —ecosu

The eccentricity is given by
1/2

2EI 2
E'=

q

the effective Bohr radius by

a=n /q,
and the energy by

(Al)

(A2)

(A4)

(A5)

(A6)

(A7)

(AS)

(A9)

q-

2n

Similarily for hyperbolas (E )0) we have

O=e sinhu —u,
r(u) =a(ecoshu —1),
x(u) =a(e —coshu ),
y(u) =a(e —1)' -sinhu,

n
n

q sinhu
U„(u) = ——

n (e cosh u—1)

q 2, r2 coshu

n e coshu —1

Equations (AS) and (A9) remain unchanged while

2n
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