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A fully numerical multiconfiguration Hartree-Fock program has been modified for performance
of calculations on atomic quasibound states using the complex-coordinate (dilation) technique. We
present single-configuration calculations for the lowest 2P° states of Be , Mg ™, Ca™, Sr™, and Ba™,
along with results of some small-scale multiconfiguration investigations of the Mg resonance. An
instability originating in difficulty satisfying orthogonality constraints prevents a full
multiconfiguration treatment of this resonance. Single-configuration dilated Hartree-Fock calcula-
tions predict 2P° shape resonances for all these systems, though recent extensive calculations show
the Ca, Sr, and Ba ions to be bound. Nonetheless, we think it is significant that the dilated numeri-
cal method can easily carry out fully variational computations on these heavy atoms, and our re-
sults, in conjunction with those of other studies, shed light on the importance of electron correlation
in its effect upon the resonance parameters and its variation with progressively heavier alkaline-
earth atoms. We also establish the feasibility of accounting for important correlation effects
through the use of multiconfiguration approximations, though we have not attempted an accurate
calculation in this work. Our Be, Mg, and Ca results agree well with previously published single-
configuration dilated basis-set calculations, but no such calculations have been carried out for Sr or
Ba. Finally, we investigate the dilational stability of the numerical method since this has been an
important consideration in basis-set calculations. A simple exercise based on Cauchy’s theorem
shows that analyticity of the Hartree-Fock radial wave functions implies that the energy and other
physical quantities are independent of the dilation parameter, and a high degree of such indepen-
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dence is demonstrated in our numerical results.

I. INTRODUCTION

The method of complex coordinates (dilation method)
has been widely applied in atomic resonance calculations,
having been incorporated into several calculational pro-
cedures, including the self-consistent field (SCF) tech-
nique. In this procedure the complex energy
E . =e—iy/2, which gives both the position ¢ (relative
to the target energy), and the width y of the resonance, is
calculated self-consistently as the complex eigenvalue of
the dilated Hamiltonian. Most dilated SCF applications
have been carried out in the basis-set scheme, in which
there arise problems attributed to the difficulty of
representing highly oscillatory functions with finite-basis
expansions. In order to avoid these difficulties, most
basis-set calculations are performed using a partially di-
lated basis set, and, as a result, the computed energies ex-
hibit a significant dependence upon the dilation parame-
ter 3. One then uses an auxiliary variational procedure
in which the energy calculation is performed over a range
of dilation parameters, and the results (the *‘¢ trajecto-
ry”’) are analyzed in order to find a stationary point of the
energy. This stationary value of the energy is then as-
sumed to give the best approximation to the exact reso-
nance energy. These problems can be avoided in the nu-
merical scheme since it does not rely upon basis-set ex-
pansions and since all radial coordinates are dilated. The
calculated energies therefore exhibit a high degree of sta-
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bility in the dilation parameter, as we show here. The
feasibility of numerical complex-coordinate calculations
and improved dilational stability was first demonstrated
by Frye and Armstrong,! but it appears that no other di-
lated numerical SCF studies have been published. Futher
development of this approach is reported here.

The formal development of this technique is adequately
presented in the literature,”> so we give only a brief
description of it in Sec. II. In Sec. III, the results of our
calculations are presented and compared with other pub-
lished results. The question of analyticity of the solutions
and stability in the dilation parameter are treated in Sec.
IV, and a summary is given in Sec. V.

II. THE DILATION METHOD

The method of complex coordinates was rigorously
formulated in terms of analytic continuation of a unitari-
ly transformed Hamiltonian,® but, in practice (and with
some loss of generality), one may proceed simply by re-
placing each radial variable r in the nonrelativistic
scattering Hamiltonian with the complex coordinate
z=re'?, where 0 < < /2 is the dilation parameter. The
dilated Hamiltonian resulting from this transformation is
non-Hermitian and possesses isolated complex eigenval-
ues of the Gamow form, e=iy /2, with €¢>0 and y >0,
corresponding to quasibound resonance states that con-
tain continuum elements but are, remarkably, normaliz-
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able. This comes about in the following way. It is well
known that the wave functions describing scattering reso-
nances satisfy Siegert boundary conditions,

. ik
llmPk[~el r,

r—» oo

with complex momentum,
k=kg—ik;, kg>0, k;>0.

Applying the dilation transformation, we have e'*"—e'%?,

the argument of the exponential being
ikz=ir(kg —ik;)(cosd+i sin)
=r[i(kgcos?+k sind) — (kgsind —k;cosd)] .

Thus the wave is oscillatory but decays exponentially at
large r, provided that ¢ is chosen such that

(kgsind—k;cos?)>0 .

This fact makes possible the application of square-
integrable SCF methods to the study of these resonance
states. Note that the bound orbitals, which, of course,
decay exponentially at large r, are also oscillatory because
of the presence of the complex coordinate z in the argu-
ment of their exponential damping factors.

Experimentally, resonance states appear as rapid fluc-
tuations in scattering or photoabsorption cross sections
and are characterized by a position € and a width y, usu-
ally considered as parameters of a Breit-Wigner profile
for the resonance. In the case of electron-scattering reso-
nances, the resonance position is the energy of the reso-
nance state as measured, usually, from its parent state in
the target, and it gives the projectile energy at which the
resonance signature appears in the cross section. The res-
onance width is inversely proportional to the lifetime of
the resonance state and gives the width of the resonance
signature.

In the standard formulation’ of the dilated SCF
method, the variational principle is applied to an energy
functional constructed with the dilated Hamiltonian. It
proceeds almost exactly as in the real case (that is, for
bound-state systems), and it leads to an analogous set of
coupled, complex differential equations for the radial fac-
tors in the one-particle spin orbitals. The major
difference between the real and complex procedures is
that the complex radial functions are not complex conju-
gated when they appear in inner products. The SCF
functions determined in this way yield a stationary, com-
plex energy that approximates the eigenvalue of the dilat-
ed Hamiltonian. Since the order relations, less than and
greater than, do not hold in the complex plane, this ener-
gy cannot be said to be an extremum, unlike its real
(bound-state) counterpart, which gives an upper bound
for the eigenvalues.

In the basis-set scheme, the dilated SCF procedure
leads, as in the real case, to a Rayleigh-Ritz calculation of
the SCF wave functions. In the numerical scheme it
leads to dilated Hartree-Fock (HF) equations that differ
from the real equations* only in that z appears in the
place of r, and complex quantities replace real ones.
Thus in atomic units (used throughout, unless otherwise
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noted), the dilated Hartree-Fock equation for the radial
function P,(z) is

d?P,(z)
= | G Az Y@ ey |Pat2)
+gn[(Z) > (1)

where A=1(/+1), I being the angular momentum quan-
tum number; Z is the nuclear charge; Y, (z) is the nu-
clear screening function; and €, ,; is the (complex) diago-
nal Lagrange multiplier, which ensures that the radial
function P, (z) satisfies the normalization condition
(P,,P,)=1. The inhomogeneity &,,(z) contains the ex-
change function and terms of the form e, ,,P, (z),
where €, ,, is the (complex) off-diagonal Lagrange multi-
plier, which ensures satisfaction of the orthogonality con-
dition (P,;,P,;)=0 in the case of n'#n. The screening
function and the inhomogeneity for P,; depend, in gen-
eral, upon all the other radial functions, P, so these
equations form a coupled system that must be solved
iteratively and self-consistently.

In anticipation of obtaining solutions that are holo-
morphic (i.e., Cauchy analytic) in z, we rewrite the equa-
tions in the form
dZP,,,(r;ﬁ) A ZQA

i )
o o " [Z—~Y,,1(r;19)]+e’2'9£,,,y,,,

XP,(r;3)+G,(r;d), )

where the new notation indicates that ¢ is considered to
be a parameter, and where G,; =¢'*’9, ;.

We have solved these equations for atomic scattering
resonance systems using an extensively modified version
of the multiconfiguration Hartree-Fock code of Fischer.’
In our single-configuration calculations for the Be and
Mg resonances, the starting functions were dilated hydro-
genic orbitals. For the heavier systems, the resonance
calculation was initiated with dilated functions obtained
from a calculation of the targets, the starting function for
the resonance orbital being dilated hydrogenic. In the
multiconfiguration calculations, the starting functions
were taken from earlier results whenever possible, and di-
lated hydrogenic functions were used otherwise. The
boundary conditions to be satisfied by the radial func-
tions (including the resonance orbital) are

P,,(0;3)=0 lim P, (r;83)=0. (3)

r— oC

In practice, however, the second of these boundary con-
ditions must be replaced by a specification of the asymp-
totic behavior of P,, because the equation is solved only
over a finite range of . Thus for the scattering orbital,
some attention must be given to the form of the Siegert
boundary conditions appropriate to the resonance system
under study

lim Pn[(z)~expr[kz~l77/2+lq/k In(2kz)+n, ] ’ 4)

r— oc
where k is the (complex) outgoing wave momentum, g is
the net charge of the atomic residue, and 7, is the
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partial-wave phase shift. For all the cases examined

below, we have ¢ =0.

III. RESULTS FOR THE ALKALINE-EARTH
TARGET ATOMS

In dilated SCF calculations, the resonance parameters
are determined by subtracting the total SCF energy of the
target from the total SCF energy of the resonance state;
the result is e—iy /2. As is well known, HF methods
poorly account for electron correlation. Furthermore,
the correlation energy is different for the target than for
the resonance state. In the dilated Hartree-Fock method,
this complicates the determination of the resonance posi-
tion because of difficulties in balancing correlation in the
resonance with that in the target. Since the target and
resonance correlation energies are different, they do not
completely cancel each other when the subtraction is per-
formed to obtain €. Correlation balancing does not enter
into the determination of the width since the target, being
a bound state, has a real energy (zero width).

Since the resonance orbital interacts weakly with all
but the outermost target orbitals, we might expect core
correlation to cancel, leading to reasonably good single-
configuration results. We find, however, that correlation
effects are often as large or larger than the resonance pa-
rameters we are trying to calculate. Thus it is important
that we be able to perform multiconfiguration studies for
these systems in order to account for correlation.

In the tables below, we compare our results with those
of other dilated SCF calculations, with some results ob-
tained by standard, nondilational, methods, and with
available experimental values. Conversions from a.u. to
eV were made using 1 a.u.=27.211396 eV, and all SCF
values are single-configuration results, unless otherwise
noted. Our calculations reported in this section were per-
formed with 3=0.3 rad. All of our radial functions are
complex-valued functions of r, parametrized by 4 (in Sec.
V we present reasons for supposing that our functions are
holomorphic functions of z), and our calculations are ful-
ly variational, that is, all radial functions are determined
self-consistently.

A. Single-configuration calculations

The alkaline-earth target atoms have closed-subshell
configurations ns? and the 2P° shape resonances are
formed when low-energy continuum electrons are cap-
tured and retained temporarily in the empty np subshells
of these atoms by an angular momentum barrier (see Fig.
1). These temporary negative ions may be described as
ns’np, but we distinguish the resonance orbital from
bound orbitals by writing ns’ep, where ep denotes a p
electron with energy ¢ in the continuum. These reso-
nances are formed without excitation of the targets, and
their parent states are therefore the target ground states.
The resonance state decays when the extra electron tun-
nels through the barrier and escapes to the continuum,
leaving the neutral atom in its ground state. This mode
of decay is energetically favored because the shape reso-
nance lies above its parent state, usually by a few eV or
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FIG. 1. Real parts of the beryllium resonance function, its
effective (direct) potential, and the angular momentum term.
The angular momentum term dominates the effective potential
at both large and small radius. In particular, it produces an an-
gular momentum barrier in the potential within a few Bohr ra-
dii of the nucleus. The vertical axis is marked in atomic units
(ay '”? for the radial function and a; ? for the potential and an-
gular momentum curves).

less. Since the angular momentum barrier is responsible
for the temporary retention of the scattering electron, s
electrons do not form shape resonances.

The Be ™ 2P° shape resonance, which has not been ob-
served experimentally, as far as we know, has been calcu-
lated by various theoretical techniques, and selected re-
sults from these calculations are given in Table I. An ex-
tensive listing of the available data for this resonance has
been given recently by Krylstedt et al.® In Fig. 1 we
show the real parts of the normalized resonance function,
its effective (direct) potential,

id
v, =MD 2207 v ron|, (5)

&P — r2 r

and the angular momentum term, /(/ +1 )/r?, illustrating
the origin of the angular momentum barrier.

TABLE 1. Results for the Be~ 2P° resonance.

Study Method e (V) vy (eV)
Present Numerical dilated HF 0.6879 0.5100
Frye, Armstrong® Numerical dilated HF  0.680  0.490
McNutt, Basis-set dilated HF:

McCurdy® single-configuration 0.688 0.510
configuration 0.323 0.296

interaction
Phase shift analysis:
static exchange (SE) 0.75 1.64
SE plus polarization 0.14 0.13
R matrix plus QDT 0.254  0.206

Kurtz, Jordan®

Kim, Greene®

?Reference 1.
PReference 7.
‘Reference 8.
9Reference 9.
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The single-configuration approximation for this reso-
nance is 1s%2s2ep, and our calculation converges to order
10~ ® (maximum pointwise change in the functions) after
30 iterations. The resonance parameters were determined
using the single-configuration Hartree-Fock energy for
the neutral beryllium atom, Ep, = —14.573023 a.u. as
the target energy. We obtain this result from a dilated
calculation, ¢#=0.3 rad, of the ground state; the same re-
sult is obtained for 3 =0.0 (see Table VI).

The close agreement of our result with that of Frye and
Armstrong is to be expected since our calculation is
essentially the same as theirs (dilated numerical Hartree-
Fock), though significant improvements have been made
in our program. The agreement with the single-
configuration basis-set result of McNutt and McCurdy
confirms the adequacy of their basis set for the represen-
tation of this resonance. Since rapid oscillations in the
asymptotic regions of the core electrons is often cited as a
source of difficulty in basis-set calculations, our results
are of interest in that regard. In an examination of the
normalized 1s and 2s functions (real parts), we find that
the oscillations in the tails are of small amplitude and fre-
quency and are relatively unimportant features (see Fig.
2, where the real parts of the three radial functions are
plotted together to display the difference in character and
extent of the bound and continuum orbitals). The 2s
function has only five nodes in the range 8 <r <60a,.
The peak amplitude between the first two of these nodes
is slightly less than 0.009, and the next maximum is less
than 5X 1074 The 1s function has only two nodes in the
range 1 <r <S5a, and it falls quickly to zero thereafter;
the maxima following these two nodes are ~0.006 and
~2X1075,

For narrow resonances, such as these, correlation
effects can be of utmost importance. This fact is suggest-
ed by the large effect that the addition of a phenomeno-
logical polarization potential has upon the static ex-
change results of Kurtz and Jordan. The width shows
much greater sensitivity to this long-range potential than
does the position, and both of them decrease when polar-
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FIG. 2. Real parts of the s, 2s, and ep radial functions for

the beryllium resonance. The vertical axis is marked in units of

ag '\

ization is included. We note that the static exchange
method does not account for relaxation of the core orbit-
als. This effect, which is accounted for in our fully varia-
tional calculation, arises from penetration of the core by
the resonance orbital and should increase the depth of the
effective potential well for the resonance orbital, thus de-
creasing the resonance position.

An alternative method of accounting for polarization
and other correlation effects is to use multiconfiguration
approximations to the wave function in SCF or
configuration-interaction (CI) calculations. The Slater-
basis CI calculation of McNutt and McCurdy involved
745 configurations including single, double, and triple ex-
citations out of the 2s and ep orbitals. Excitations out of
the 1s2 core were not included. Their CI orbital basis
was formed by orthogonalizing Slater functions to orbit-
als from a (Slater basis) single-configuration SCF calcula-
tion of the resonance state and to each other. If we as-
sume that this calculation accounts for most of the elec-
tron correlation, then the error in the single-
configuration results is about 0.37 eV for the beryllium
resonance position and about 0.21 eV for the width. It is
remarkable that these errors are as small as they are con-
sidering the fact that the single-configuration HF correla-
tion energy for the Be ground state is about 2.62 eV, or
about 0.66 eV per electron (see Ref. 10 for the experimen-
tal ground state energy).

The Mg~ 2P° shape resonance has been observed ex-
perimentally and so provides a test for theoretical
methods. The single-configuration wave function is con-
structed as 3s’ep’P°. Data for this resonance are
presented in Table II; a more extensive listing has been
given by Krylstedt et al.® Our results were computed us-
ing the single-configuration Hartree-Fock energy for the
Mg target, —199.614 636 a.u. The single-configuration
approximations, basis-set and numerical, agree well
again, and they overestimate both the position and the
width. The results of Kurtz and Jordan again demon-
strate a high sensitivity to polarization, more pronounced
for the width than for the position. Taking the experi-
mental values as accurate, the single-configuration errors
are seen to be larger than the resonance parameters them-
selves: we estimate them at about 0.36 eV for the posi-
tion and 0.41 eV for the width.

The single-configuration HF approximations, ns’ep,

TABLE II. Results for the Mg~ *P° resonance.

Study Method e V) y (V)
Present Numerical dilated HF 0.5055 0.5520
McCurdy et al* Basis-set dilated HF: 0.505 0.542

Kurtz, Jordan® Phase shift analysis:
Static exchange (SE) 0.46 1.53
SE plus polarization 0.14 0.24
R matrix plus QDT 0.161 0.160

Experimental 0.15 0.14

Kim, Greene*
Burrow et al.4

*Reference 11.
"Reference 8.
‘Reference 9.
9Reference 12.
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with n =4,5, 6 for calcium, strontium and barium, respec-
tively, predict shape resonances, and we present our re-
sults in Tables III, IV, and V. We have used single-
configuration results for the target energies:
—676.758 186 a.u. for Ca —3131.545 687 a.u. for Sr, and
—7883.543 827 a.u. for Ba. For calcium, basis-set and
numerical calculations are again in good agreement.
However, recent studies of these heavy alkaline-earth
atoms have shown that the lowest 2P° ionic states are
bound. In an extensive multiconfiguration calculation
supplemented by relativistic corrections, Froese Fischer
has determined that Ca™ 4s24p, Sr— 5s25p, and Ba~
6526p are bound. For calcium, this finding has been cor-
roborated experimentally by Pegg et al. and theoretically
by the R matrix plus quantum defect theory (QDT) calcu-
lation of Kim and Greene, who point to the increasing
polarizability of the heavier alkaline-earth atoms to ex-
plain the stability of these negative ions. These values
have been given as negative in our tabulations since we
measure the ion energy relative to that of the neutral
atom.

Since single-configuration Hartree-Fock takes no ac-
count of correlation effects, our calculations for these
highly polarizable systems are not expected to give accu-
rate results. We note, however, that the trend is correct:
the position € drops with increasing atomic number, the
downward steps decreasing in size. Our results match
those of Kim and Greene within about 26% in this trend,
except in the first step, going from Be to Mg, in which
case our decrease is twice as large as theirs. Our results
for the widths also indicate a strong tendency toward in-
creasing stability (lifetime of the state tending toward
infinity).

Because ¢ is computed by subtracting the resonance
energy from the target energy, the errors in our reso-
nance positions largely reflect correlation effects in the
outer region of the ionic system. We can estimate the
size of these effects and gauge the trend with increasing
complexity of the system by comparing our results with
those of Kim and Greene. We find that the errors de-
crease as the targetlike core comes to represent a larger
proportion of the total ionic system. For Be and Mg, in

TABLE III. Results for Ca™ 2P°.

Study Method e (eV) vy (eV)

Numerical dilated HF

Basis-set dilated HF:
Single-configuration

Phase shift analysis:
Static exchange (SE) 0.24 0.54
SE plus polarization 0.06 0.10

Present 0.2270 0.1595
McCurdy et al?
0.225 0.162

Kurtz, Jordan®

Fischer® Multiconfiguration HF ~ —0.062
Kim, Greene® R matrix plus QDT —0.070
Pegg et al’ Experimental —0.043

*Reference 11.
"Reference 8.
‘Reference 13.
9Reference 9.
‘Reference 14.

TABLE IV. Results for Sr™ 2P°.

Study Method € (eV) v (eV)
Present Numerical dilated HF 0.1788 0.1140
Fischer® Multiconfiguration HF ~ —0.106
Kim, Greene® R matrix plus QDT —0.108

#Reference 13.
®Reference 9.

which the cores are more strongly affected by the extra
electron, the errors are 0.434 and 0.345 eV. In the larger
systems the core is better isolated, and the effect of outer
correlation is more nearly constant, as one would expect
since the outer electron interacts mainly with valence
electrons; the errors, in eV, are 0.297 (Ca), 0.287 (Sr), and
0.275 (Ba).

B. Multiconfiguration investigations

The importance of accounting for correlation effects in
resonance states is clear from the results presented above,
and we have therefore attempted to develop fully varia-
tional multiconfiguration capability with the dilated nu-
merical method. Though we have encountered some
difficult problems in this attempt, we believe the results
we have obtained in some small-scale calculations are
sufficient to demonstrate both the feasibility of this ap-
proach and its advantages.

In the construction of a multiconfiguration wave func-
tion for the magnesium resonance, we examined low-
lying configurations that represent important correlation
effects. Such effects represented by s —d replacements
are often large; accordingly, we added to the reference
configuration, 3s2£p, the configuration state 3s3d(°D )ep,
which was found to be important in Fischer’s investiga-
tion'? of Mg ™. This addition takes partial account of the
polarization of the 3s valence orbitals by introducing
higher multipole interactions into the coupling of the res-
onance orbital with the target, but it introduces no addi-
tional orthogonality constraints involving the resonance
orbital. Its inclusion in the wave function produces a
dramatic reduction in both the width and the position,
having a much larger effect on the width. Such an effect
might be anticipated on the basis of the results of Kurtz
and Jordan, mentioned above. The two-configuration re-
sults are €=0.311 eV and y=0.073 eV. The
configuration mixing coefficients, which are complex,

TABLE V. Results for Ba™ 2P°.

Study Method € (eV) v (eV)
Present Numerical dilated HF 0.0985 0.0336
Fischer? Multiconfiguration HF —0.148
Kim, Greene® R matrix plus QDT —0.176

?Reference 13.
bReference 9.
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were calculated self-consistently as 3s%ep: (0.986, 0.006)
and 3s3d(3D )ep: (0.172,—0.034).

It is important to note that addition of terms to the res-
onance wave function tends to produce decreases in the
position, but their effects upon the width are not predict-
able: the width varies nonmonotonically with the addi-
tion of new configurations. These tendencies, which may
also be seen in the CI calculation of McNutt and McCur-
dy,7 and in dilated numerical multiconfiguration studies
on a lithium resonance,'® suggest that the SCF result for
the position—but not the width—is an upper bound;
however, this has not been demonstrated theoretically.

We then added a third configuration state 4s’ep, which
introduces no orthogonality constraints involving the €p
orbital. At convergence we obtain £=0.236 eV and
y=0.030 eV, the new configuration mixing at only
(—0.074,0.004), thus its effect upon the resonance pa-
rameters is insignificant.

Because the 3p%('S) configuration is important in ac-
counting for interelectron repulsion between the 3s elec-
trons in the target expansion, it is expected to play an im-
portant role in the ion as well. In addition to 3p%('S)ep,
the 'D and P terms of 3p? can also contribute to the res-
onance, though not to the target. Normally, the 3p and
gp orbitals would be required to satisfy an orthogonality
relation, but we have found that this constraint intro-
duces an intractable instability in the Mg case. A four-
configuration calculation including the reference
configuration and all three intermediate couplings of 3p>
converges well if the orthogonality constraint is dropped.
Because of unbalanced correlation, the resonance energy
drops below that of the single-configuration target ener-
gy. Thus we switch to the two-configuration
(3s2+3p?'S) Hartree-Fock value for the target energy,
—199.646074 a.u.; the resulting resonance parameters
are €=0.484 eV and y=0.206 eV. The configuration
mixing coefficients are found to be (0.939, 0.032) for 3s Zep
and (0.340, —0.070), (0.048, —0.013), and
(0.098, —0.054) for the 'S, 'D, and 3P intermediate cou-
plings, respectively, of 3p’ep. The (complex) overlap of
the 3p and ep functions is quite large upon convergence:
(P3,,P,)=(0.95, —0.19). The 3p orbital sits inside the
ep orbital, their average radii (real parts only) in units of
the Bohr radius being 3.9a, and 5.3a@,. When ortho-
gonality is required, the ep orbital tends to become ex-
tremely diffuse, its average radius reaching into the
thousands of Bohr radii, and the calculation becomes un-
stable, failing to converge.

We suspect that this difficulty with orthogonality ap-
pears in this case because the constraint applies to a vir-
tual orbital in a configuration of major importance, while
the role to be played by that orbital in the resonance sys-
tem is not so easily determined as in the target. In an ex-
pansion of the target wave function, the 3p virtual orbital
represents the effects of correlation upon the 3s valence
electrons and has an average radius of about 3.0q,, that
of the 3s orbitals being about 3.2a,. The role to be
played by the 3p orbital in the resonance is difficult to
predict, since the resonance orbital itself is, nominally, a
3p, and the 3p2ep configuration may represent virtual ex-
citations of the valence electrons into the resonance orbit-

al. Inclusion of configurations such as 3p* and ep* along
with 3p2ep in an attempt to define better the roles of the
two orbitals did not improve the stability sufficiently for
convergence. Various attempts were also made, without
success, to introduce a 3p orbital that would represent
inner correlation (that is, for the valence orbitals, as in
the target expansion) and a 3p’ or 4p orbital that would
represent outer correlation (that is, for the diffuse part of
the wave function).

We have found that the lithium resonance, 15%2s ep 3pe,
is not susceptible to this problem, probably because the
2s2p’ep configuration states mix much less strongly
(~0.04 for the 'S coupling, which is the largest contribu-
tor) than in the magnesium case. In the lithium reso-
nance, the 2p virtual orbitals are highly contracted,
representing inner correlation, lying only slightly beyond
the 1s orbitals. If the orthogonality constraint is
dropped, the 2p orbitals contract slightly but remain out-
side the 1s shell.

The error introduced by ignoring orthogonality is also
difficult to estimate. Our only clue comes from the lithi-
um case, in which dropping the orthogonality constraint
causes a decrease in both € and y; the decrease is
O(1073), an order of magnitude smaller than the mixing
coefficient of the added configuration.

IV. ANALYTICITY AND STABILITY

It is shown in the rigorous formulation of the dilation
method? that the discrete eigenvalues, both real and com-
plex, of the dilated Hamiltonian are independent of the
dilation parameter (within some bounds that need not
concern us, here). In this section we give the essential
elements of a demonstration that analyticity of the SCF
radial functions implies stability of the energy (and other
physical quantities) in the dilation parameter <. This fact
has long been recognized, but we are aware of no demon-
stration of it in the literature. We follow the proof with
an examination of the J stability of our energy calcula-
tions. It is our contention that numerical integration of
the dilated Hartree-Fock equations produces radial func-
tions that are nearly exact solutions of the coupled
differential equations and that are holomorphic in the
complex coordinate z though we do not attempt a
verification of this, here. The high degree of dilational
stability exhibited by our results does not prove that our
solutions are holomorphic, but it strongly suggests as
much. In contrast, the functions used in partially dilated
basis-set calculations are not holomorphic in z, and, con-
sequently, resonance energies calculated with such bases
exhibit substantial dilational nonstability.

The proof of dilational stability makes use of simple
properties of holomorphic functions, and thus is quite
general. We state it here in a form that is directly applic-
able to the present considerations. We assume that a
function, f(z) is holomorphic on some domain, 2 con-
taining the contour C which is the line segment z=re'’
with 0<r=<R, for some R>0 and 4>0. Then the
derivative of f(z) exists and is continuous on C, as are
the partial derivatives of f with respect to r and ¥.
Furthermore, the Cauchy-Riemann equations are
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satisfied, and it follows that

df _,-wdf _e " 3f
dz or ir 0%

Now we form the integral
af 9
= —_— = Re'V)— 0 s
I=[ dz~=f(Re")=f(0)
and use the relations above to express it as

R, Of . rR, 1 03f
= ——=— dr——- .
T fodrar lfo ry
In the last integral, ¢ appears as a parameter, and we can
interchange the order of integration and differentiation to
obtain

;90 (R, 1.
I= zaﬁfodrrf(r,t‘)).

From this result we see that, if I=f(R;#)— f(0)=0,
then

d R, 1 L9y
aﬁfodrrf(r,ﬁ) 0.

For present purposes, we extend the range of r to
(0<r=<w) under the additional assumption that
limg | f(R;?{)< e, and that the improper integrals ex-
ist. Under the stated assumptions, we have proved, then,
that [f(0)—limg_, . f(R;%)]=0 implies that the in-
tegral, f(’fdr( 1/r)f(r;4) is independent of .

In the dilated HF method, physical quantities such as
the total kinetic and potential energy and the ‘‘single-
particle energies” (the diagonal energy parameters), are
calculated as sums of integrals of the form

[ “dz [ “dz'P,(2)P;(z)OP(2)P,(z")
0 0 J

where O is a differential or multiplicative operator.
These integrals and their integrands can easily be shown
(case by case) to reduce to forms that satisfy the require-
ments of our theorem, provided that the radial functions
are holomorphic on a domain containing the half-line of
integration, vanish at the origin, and decay sufficiently
rapidly as r— o. The boundary conditions imposed
upon the solutions of the dilated HF equations [see Eq.
(3)] ensure the satisfaction of the last two requirements
for the bound as well as the resonance orbitals. We have
the result that dilational stability of the energy and other
physical quantities is a necessary, but not sufficient, con-
dition for analyticity of the radial functions.

The mathematical content of this development is just
that of Cauchy’s integral theorem specialized for our pur-
poses: since the integrand is holomorphic and vanishes at
infinity in ), integration around a closed contour consist-
ing of two rays re ' and re“’z, plus an arc at infinity, will
give zero, provided that the contour lies completely
within 2. Since the integration over the arc contributes
nothing, it follows that the integrations over the two rays
must cancel, and ¢ independence of the integral is thus
established. As Junker has remarked,'® even a crude ap-
proximation to the wave function will yield dilationally
stable results if the function is holomorphic in z. In the

TABLE VII. 9 stability of the Be ™ 1522s%ep *P° energy.

¢ (rad) ReE (a.u.) ImE (a.u.)
0.05 —14.547 743 686 110 804 —0.009 370180477076
0.10 —14.547 743 686 093 196 —0.009 370 180 860578
0.20 —14.547 743 685902 339 —0.009370181617 102
0.30 —14.547 743 685 528 850 —0.009 370 182 302 109
0.40 —14.547743 685023 610 —0.009 370 182 876 527
0.50 —14.547 743 684437 183 —0.009 370 183 339 561
0.60 —14.547743 683793517 —0.009 370183719235
0.70 —14.547 743 683075 353 —0.009 370 184 049 253
0.80 —14.547 743 682228 870 —0.009 370184 325789
0.90 —14.547 743 681 183 459 —0.009 370 184 500 227
1.00 —14.547 743 679905 232 —0.009 370184 450735
1.10 —14.547 743 678 396 239 —0.009 370 184 001 181
1.15 —14.547 743 677248913 —0.009 370183 184 738

tables below, we demonstrate the dilational stability of
our calculated energies for the Be bound-state and shape
resonance.

From these tables (see, for example, Table VI, right-
hand column) one can clearly see evidence of a small er-
ror that varies with ¢. This error is far too small to affect
our results for the resonance parameters, and we may ig-
nore it.

As noted in earlier sections, we have calculated single-
configuration target energies using ¢=0.3. It is clear
from the results given in Table VI that ordinary Hartree-
Fock energies could have been used just as well. Our
0 <9 <0.6 rad results for Be, for example, reproduce the
real Hartree-Fock result through at least six decimal
places (cf. Ref. 4, p. 28).

As 4 is increased, convergence is more difficult to
achieve. In Table VII, the results for angles greater than
0.7 rad are set off from the others as an indication that
those sets were run using starting functions from the
#4=0.7 rad set (which converges from dilated hydrogenic
starting functions, as do the sets at the smaller angles)
and working up to larger angles.

V. SUMMARY

In this paper we have reported further development of
a fully numerical dilated Hartree-Fock method for the in-
vestigation of atomic resonance states, after the feasibility

TABLE VI.  stability of the Be 15225 energy.

J (rad) ReE (a.u.) ImE (a.u.)
0.00 —14.573023 171519479 0.000 000 000 000 000
0.10 —14.573023 171473565 —0.000000000 583 754
0.20 —14.573023 171346417 —0.000000001 145013
0.30 —14.573023 171 162906 —0.000000001 678 996
0.40 —14.573023 170943 826 —0.000000002 207 723
0.50 —14.573023 170683 654 —0.000000002 774518
0.60 —14.573023 170333 851 —0.000000003 423 363
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of this type of calculation was demonstrated by Frye
and Armstrong.! Correlation error is inherent in
any Hartree-Fock calculation so we expect single-
configuration results to be inadequate if correlation
effects are large; we have estimated the errors in our reso-
nance parameters as being less than 0.5 eV, but this error
is of the same order as the parameters themselves. Thus
multiconfiguration capability is required so that correla-
tion effects may be accounted for.

Although instabilities originating in an orthogonality
requirement have prevented a full multiconfiguration de-
velopment of the Mg resonance, our small-scale
multiconfiguration calculations demonstrate the feasibili-
ty and effectiveness of dilated numerical multicon-
figuration studies as a means of accounting for electron
correlation, this being particularly important for narrow
resonances in polarizable targets. Aside from the insta-
bility that is encountered in this case, these fully varia-
tional numerical multiconfiguration calculations can be
performed with little more difficulty than in ordinary
nondilated Hartree-Fock calculations, giving well-known
advantages over dilated CI calculations. The lowest 3pe
shape resonance of Li~ is not susceptible to this instabili-
ty, and an extensive multiconfiguration treatment of that
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system is currently in progress.

With the numerical method we have avoided some of
the difficulties met in calculations using partially dilated
basis sets. In particular, we have demonstrated a high
degree of dilational stability, thus eliminating the need to
undertake the construction of a ¢ trajectory for the ener-
gy and a search for a stationary point on it. We can per-
form such numerical calculations using simple starting
functions, and we avoid the problem of choosing and op-
timizing a basis set. We have shown that analyticity of
the SCF radial functions implies such dilational stability,
supporting our supposition that our functions are holo-
morphic.
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