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Nuclear quadrupole moments of S and S
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The nuclear quadrupole moments of "Sand "Sare studied using numerical multiconfigurational
Hartree-Fock (MCHF) calculations on S ( P3/2). A newly developed finite-element MCHF pro-
gram allowing very large configuration-interaction expansions is used. The 3p valence correlation
decreases the electric field gradient with about 12%, but core-valence polarization increases the
electric field gradient with about 14% of the Hartree-Fock value. The final values for the nuclear
quadrupole moments of "Sand 'S become —0.0678(13) and 0.0471(9) b, respectively.

I. INTRODUCTION

The nuclear quadrupole moment Q may be obtained by
combining the experimentally determined nuclear quad-
rupole coupling constant eqQ/h with theoretical values
for the electric field gradient (EFG) q at the nucleus. By
using the accurate conversion factors of Ref. 1, the equa-
tion for obtaining Q (in barns, lb=10 m ) from the
experimental eqQ/h (in MHz) and the theoretical q (in
a.u. ) becomes

Q = —( eqQ /h ) /( 234. 964 730q ) .

Accurate values for the nuclear quadrupole moments of
Li and Li have been determined by combining the ex-

perimental eqQ/h and the theoretically calculated EFG
of LiH (Ref. 2) and LiF. The nuclear quadrupole mo-
ment of ' N has been obtained by combining atomic and
molecular quadrupole coupling constants with theoreti-
cally calculated electric field gradients.

From a computational point of view, sulfur is more
complicated than lithium and nitrogen since the electrons
of the open 3p shell will polarize the 2p electrons. This
distortion will contribute significantly to the EFG at the
nucleus. To get reliable results, it is necessary to describe
valence as well as core-valence correlation effects.

An experimental method for estimating the nuclear
quadrupole moment is to combine the experimental
eqQ/h with an EFG deduced from the anisotropic mag-
netic hyperfine parameter (spin-dipolar term) and
corrected for quadrupole shielding using a semiempirical
Sternheimer correction. This method has been used for
determining the nuclear quadrupole moment of ' N with
an accuracy of about 4% from the hyperfine structure of
N+ in the 2p 3p 'P, state. Recently, Trainham, Jopson,
and Larson' measured the electric and magnetic
hyperfine coupling constants of S ( P3/2) with an accu-
racy of 1% and 0.1%, respectively. A nuclear quadru-
pole moment of —0.07 b for S was deduced from the
experiment. They used a Sternheimer factor of 1.052 to
correct for quadrupole shielding. In the absence of reli-

II. METHODS

In this numerical multiconfigurational Hartree-Fock
method the radial parts of the occupied orbitals,
Coulomb potentials, and exchange potentials are confined
to the interval [O,R,„]and the domain is divided into a
number of subdomains, elements, each one containing n
local basis functions. We currently use Lagrange interpo-
lation polynotnials of fourth order (n =5) as these local
basis functions. The Lagrange interpolation polynomials
have the value 1 at one grid point and 0 at all the others.
With this choice of element functions, the expansion
coefficients of the orbitals and potentials become the arn-
plitude of the functions in each grid point.

In this numerical basis we construct an energy function

E=yh, ,r„+-,' X g„„,r„„, ,
i,j,k, I

(2)

where h," and g; kl are the one- and two-electron in-
tegrals, respectively, and I; and I, -kl are the elements of
the one- and two-particle density matrices. The energy is
optimized with respect to the expansion parameters of
the orbitals, i.e., the amplitude of the orbitals in each grid

able ab initio calculations, this is probably the best avail-

able value for Q( S). Earlier values of —0.062 and
—0.084(8) b for Q( S) were deduced from ab initio
Hartree-Fock calculations on OCS, H2S, and SO& using

double-g-quality Gaussian basis sets, " and from experi-
ment on the F9/2 and D7/2 states of S+, ' respectively.

In this work, an ab initio determination of the nuclear
quadrupole moment of S is presented by combining the
calculated electric field gradient and the measured eqQ/h
of Ref. 10. The electric field gradients are calculated us-

ing a large-scale numerical multiconfigurational Hartree-
Fock (MCHF) method' ' based on the complete or re-
stricted active space (CAS or RAS} model. "' The nu-
clear quadrupole moment of S is determined by using
the ratio Q( S}/Q( S)= —0.695. '
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point, and with respect to the expansion parameters of
the configuration state functions, i.e., the configuration-
interaction (CI) coefficients, with imposed orthonormality
constraints on the occupied orbitals and the CI vector.
In the orbital optimization, the optimization parameters
constitute the nonredundant set of angles of rotations
from the virtual space into the occupied orbitals. In a
RAS calculation also some occupied-occupied rotations
are nonredundant. In the multiconfigurational self-
consistent field (MCSCF) procedure both the orbital and
CI coefficients are optimized. The CI problem is solved
using a Slater determinant-based direct CI algorithm' in

D„& symmetry. The o vector is constructed in a Slater
determinant basis from a CI expansion in the same basis.
For the Davidson diagonalization, the vectors are
transformed into the configuration state basis. The cou-
pling between the orbital and CI parameters is partly tak-
en into account by using the Broyden-Fletcher-
Goldfarb-Shanno (8FGS) quasi-Newton optimization
technique. ' ' When the CI problem is solved, the densi-

ty matrices of Eq. (2) are constructed from the CI vector.
The one- and two-electron integrals are recalculated after
every change of the orbitals.

We use both the CAS SCF (Ref. 15) and the RAS SCF
(Ref. 18) methods. In the CAS method the orbital space
is divided into three subspaces: the inactive, active, and
virtual spaces. The inactive orbitals are doubly occupied
in all configurations, the virtual orbitals are unoccupied
and play their role in the optimization of the occupied
ones. A full CI is carried out in the active orbital space.
The RAS method is an generalization of the CAS idea.

q= + &16~/5( YP(;)'II Ypl Yi "' &&y;lr, 'ly, &r„. (3)

In Eq. (3), I; are the elements of the one-electron density
matrix and Fl are the spherical harmonics.

III. RESULTS AND DISCUSSION

The electron configuration of S ( P) is
1s 2s22pe3s23ps The experimental EFG, deduced from
the magnetic hyperfine parameters and corrected for
quadrupole shielding, is 1.6 a.u. ' This value is equal to

The orbital space in the RAS method is divided into five

subspaces: the inactive, virtual, and three active spaces
RAS I, RAS II, and RAS III. The inactive orbitals are as
in the CAS method doubly occupied in all configurations;
the virtual orbitals are used only for optimization of the
inactive and active orbitals. A lower limit is given for the
allowed number of electrons in RAS I, while an upper
limit is given for the allowed number of electrons in RAS
III. No separate restrictions are given on the allowed
number of electrons in RAS II. The RAS II space is rem-
iniscent of the active space in the CAS method. The
RAS I space will normally consist of core- and deep
valence shells; the RAS II space consists of valence shells
and the shells of RAS III are introduced to allow for
dynamical correlation and polarization. The complete
numerical procedure is discussed in detail in Ref. 13.

The electric field gradient is evaluated from

TABLE I. The electric field gradient at the nucleus of "S {'P3/2) obtained from the five-electron
valence correlation calculations.

Method'

HF
HF
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS
CAS

Active space

3s 1p//1p
3s 1p//1p
3s 1p//1s 1p
3s 1p//1 s 2p
3s 1p//2s 2p
3s 1p//2s 3p
3s 1p//2s 4p
3s 1p//2s 5p
3s 1p//1 s 1p 1d
3s 1p//1 s 2p 1d
3s 1p//2s 2p 1d
3s 1p//2s 3p 1d
3s 1p//2s4p 1d
3s 1p//1s lp2d
3s 1p//2s 2p 2d
3s 1p//2s 3p 2d
3s lp//3s 2p 2d
3s 1p//1s 1p 3d
3s 1p//1s 1p 1d 1f
3s 1p//1s2p 1d 1f

CSF'

1

1

3
60

114
609

2216
6305

140
668

1044
3135
7716
1240
5032

11 428
6796
5255
2092
5358

EFG

1.6092
1.6092
1.6068
1.4337
1.4335
1.4771
1.4586
1.4639
1.5413
1.4116
1.4118
1.4541
1.4374
1.5361
1.4019
1.4444
1.4013
1.5359
1.5269
1.4017

Energy

—397.538 435
—397.538 431
—397.539 606
—397.566 469
—397.566 572
—397.569 960
—397.570 592
—397.570 778
—397.606 257
—397.629 293
—397.629 565
—397.632 215
—397.632 696
—397.610971
—397.634 873
—397.637 505
—397.634 914
—397.611 325
—397.617 111
—397.639 969

'HF, Hartree-Fock; CAS, complete active space. The number of grid points is 301.
The double slash separates the inactive and active spaces. For example, in the 3s 1p//1s lp CAS calcu-

lation 3s 1p shells are kept inactive, while the 1s 1p are active. All shells are optimized.
'Number of CSF's in D & symmetry.
The number of grid points is 201.
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TABLE II. The electric field gradient at the nucleus of ' S ( P3/p) obtained from the core-valence

correlation calculations.

Method' Active space CSF' EFG Energy

RAS
RAS
RAS
RAS
RAS
RAS
RAS
RAS
CAS
CAS

3s 1p/1s 1p-1s 1p
3s 1p/1s 1p-2s 1p
3s 1p/1s 1p-2s 2p
3s 1p/ls 1p-1s2p
3s 1p/1s 2p- 1p
3s 1p/1s 2p-2p
3s 1p/1s 2p-3p
3s 1p/2s 2p-2p
3s//3p
3s//4p

1762
3922

23 875
13 377

7092
37087

135085
60 484

1122
56 272

1.4990
1.4997
1.7725
1.7709
1.7342
1.7056
1.6878
1.7072
1.8772
1.6938

—397.580 568
—397.580 782
—397.591 415
—397.590 853
—397.588 823
—397.592 694
—397.593 433
—397.594 956
—397.606 060
—397.632 994

RAS, restricted active space; CAS, complete active space. The number of grid points is 201.
The slash separates the RAS I and RAS II active spaces, while the hyphen separates the frozen and op-

timized shells. For example, in the 3s 1p/1s 1p-2s2p RAS calculation only single excitations are allowed

from the frozen 3s 1p RAS I space. The RAS II space consists of the frozen 1s 1p and optimized 2s2p
shells. The frozen shells are obtained from a 3s lp//1s 1p CAS calculation. The RAS III space is emp-

ty.
'Number of CFS's in D z symmetry.

TABLE III. Relativistic (Rel. ) corrections to (r ),r calculated in the DF-HF approximation (in

a.u. ). NR denotes nonrelativistic.

Atom NR Rel. Rel./NR

S ( P&/z)
Cl('P„, )

AI ( S~/2 )

4.0227
6.7684
8.9743

4.0260
6.7902
9.0083

1.000 83
1.003 22
1.003 79

TABLE IV. Contributions to the electric field gradient of S in the P3/2 state (in a.u.).

Contribution EFG (a.u. ) Q (b)

Hartree-Fock
Valence sp limit'
d-shell correction'
f-shell correction"
Valence value'
Core-valence correlation correction
Relativistic correction
Final value

1.609
1.462

—0.033
—0.010

1.419
0.226
0.001
1.646

—0.0694
—0.0764

—0.0787

—0.0678

'1s, 2s, 3s, and 2p inactive and five active electrons.
Change of the EFG when two d shells are added to the active space.

'Change of the EFG when one f shell is added to the active space.
Additional contribution from the 2p shell.
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TABLE V. The nuclear quadrupole moments of "Sand "Scompared with literature values (in b).

Systems

Six molecules
OCS, H2S, SO2
S+( D7/~q F9/2 )

S ( p3/2)
S ('P3/, )

Theoretical
method

Semiempi rical
HF (DZ basis)
Magnetic hfs

Magnetic hfs'
Numerical MCHF

Q( 'S)

—0.064
—0.062
—0.084(8)
—0.07
—0.0678(13)

g( 'S)

0.045
0.043

0.0471(9)

Reference

21
11
12
10

Present work

'Includes a Sternheimer correction. The reversed sign was reported in the original paper.

the theoretically determined EFG in the Hartree-Fock
approximation. The main valence correlation effects to
the EFG will arise from a 3p to 3p' excitation, where
3p* is a 3p correlating shell, but, as will be seen later in
this section, the 2p to 2p* correlation effects are as im-

portant as the valence correlation.
When numerical methods are used, the number of basis

functions per symmetry is equal to the number of grid
points. In Table I, one sees that Hartree-Fock calcula-
tions with 201 and 301 grid points yield the same EFG,
which shows that the basis set truncation error is negligi-
ble.

The valence correlation effects to the electric field gra-
dient were determined by adding valence correlation
shells of s and p symmetry until the EFG became station-
ary. The obtained sp limit for the EFG became 1.462(1)
a.u. To estimate the efFect on the EFG of d and f shells,
CAS calculations with d and f shells in the active space
were performed. The valence correlating d and f shells
reduced the EFG with —0.033(1) and —0.010(2) a.u. , re-
spectively. In Table I, the five-electron valence CAS cal-
culations are summarized.

As mentioned earlier, the 2p shell may be distorted
from the spherical symmetry by the polarization effects of
the hole in the 3p shell. Excitations from the 2p shell to a
correlating 2p* shell may be important for the electric
field gradient. These correlation effects were studied by
using the RAS approach. Starting from a valence CAS
calculation, all shells obtained from the CAS calculation
are kept frozen. A number of 2p-correlation shells,
which are optimized in the RAS calculation, are added to
the active space. The core-polarization effects are es-
timated by allowing single excitations from the 1s, 2s, 2p,
and 3s shells. The valence shells from the CAS calcula-
tion plus the additional core-correlating shells constitute
a full CI space (RAS II space). These RAS results are
presented in Table II. To check whether the RAS ap-
proach yields reasonable results, CAS calculations with
2p included in the active space were performed. In these
CAS calculations the number of active electrons is 11, so
the size of the CI expansion increases rapidly with the
number of active orbitals. The 3s//4p CAS calculation
yields approximately the same result as the largest RAS
calculation. The consistency of these results indicates
that the sp limit is reached, and that the contribution
from the polarization of the 3s shell is sma11.

The relativistic correction to the EFG is estimated by
comparing Dirac-Fock and Hartree-Fock results. These
calculations are performed using Desclaux's multi-
configuration Dirac-Fock (MCDF) program. In Table
III, the relativistic and nonrelativistic values for (r ) 3p

of S, Cl, and Ar are given. Calculations on Cl and Ar
were performed to check the reliability of the average of
configuration method. The finite nucleus correction of
(r ')3~ for S is 0.0002 a.u. , which may be neglected.
The final value for the EFG is obtained by adding the d-
and f-shell contributions from the valence correlation
calculations to the sp limit of the core-polarization calcu-
lations and correcting for relativity. The core-valence
correlation correction to the EFG is 0.226(10) a.u. In
Table IV, the different contributions to the EFG are
shown, and the corresponding nuclear quadrupole mo-
ments of S are given.

The literature values for Q( S), deduced from the
measured hyperfine constants of S+, ' must have larger
error bars than reported. The measured quadrupole cou-
pling constants are 50(7) and 56(7) MHz for the D7&z
and I'9/2 states, respectively. The accuracy of the exper-
imentally determined nuclear quadrupole moment cannot
be more accurate than the sum of the relative errors of
the magnetic and electric hyperfine coupling constants.
The molecular values for Q( S) of —0.062, —0.051, and—0.065 b, which are reported in Ref. 11, are obtained
from experimental hyperfine coupling constants and
Hartree-Fock calculations on OCS, SO&, and HzS, respec-
tively. These calculations are performed using a double-
(-quality basis set, which is too small for a reliable deter-
mination of the electric field gradients. Furthermore, the
correlation effects, which are shown to be important in
this work, are not taken into account in those calcula-
tions. In Table V, the present values and those from the
literature for the nuclear quadrupole moments, Q(33S)'
and Q ( S), are compared.

While Trainham, Jopson, and Larson' do not discuss
the sign of the obtained nuclear quadrupole moment,
Bird and Townes ' conclude that the sign of Q( S) must
be negative. Rothenberg and Schaefer" also report nega-
tive nuclear quadrupole moments for S, deduced from
Hartree-Fock calculations and experiments on H2S, SO2,
and OCS. In this paper it is therefore assumed that the
sign of the quadrupole moment reported in Ref. 10 is in-
correct.
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IV. CONCLUSION Q( S)/Q( S)= —0.695, ' the nuclear quadrupole mo-
ment of the S becomes 0.0471(9) b.

The present calculations illustrate the feasibility of nu-
merical multiconfigurational Hartree-Fock calculations
with very large CI expansions. The present MCHF cal-
culations gave a value of 1.646(14) a.u. for the electric
field gradient. This value, combined with the experimen-
tally measured quadrupole coupling constant of 26.24(23)
MHz, ' yields a nuclear quadrupole moment of
—0.0678(13) b for S. By using the ratio

ACKNOWLEDGMENTS

The research reported in this article has been support-
ed by a grant from the Swedish Natural Science Research
Council (NFR) and by IBM Sweden under a joint study
contract. All calculations have been performed using the
CRAY X-MP at the Finnish Centre for Scientific Com-
puting.

E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 17,
1795 (1988).

D. Sundholm, P. Pyykko, L. Laaksonen, and A. J. Sadlej,
Chem. Phys. Lett. 112, 1 (1984).

G. H. F. Diercksen, A. J. Sadlej, D. Sundholm, and P. Pyykko,
Chem. Phys. Lett. 143, 163 (1988).

4D. Sundholm, P. Pyykko, L. Laaksonen, and A. J. Sadlej,
Chem. Phys. 101, 219 (1986); I. Cernusak, G. H. F. Dierck-
sen, and A. J. Sadlej, ibid. 108, 45 (1986).

5T. K. Ha, Z. Naturforsch. 41A, 163 (1986).
S. Gerber and H. Huber, Chem. Phys. 134, 279 (1989).

7P. L. Cummins, G. B. Backsay, N. S. Hush, and R. Ahlrichs, J.
Chem. Phys. 86, 6908 (1987).

SG. E. Scuseria and H. F. Schaefer III, J. Chem. Phys. 87, 4020
(1987).

H. Winter and H. J. Andra, Phys. Rev. A 21, 581 (1980).
R. Trainham, R. M. Jopson, and D. J. Larson, Phys. Rev. A
39, 3223 (1989).
S. Rothenberg and H. F. Schaefer III, J. Chem. Phys. 53, 3014
(1970).

'2M. Elbel and R. Quad, Z. Naturforsch. 41A, 15 (1986).
J. Olsen and D. Sundholm (unpublished).
D. Sundholm, J. Olsen, and P. A. Malmqvist, and B. O. Roos,
in Numerical Determination of the Electronic Structure of
Atoms, Diatomic, and Polyatomic Molecules, edited by M.
Defranceschi and J. Delhalle (Kluwer, Dordrecht, 1989), p.
329.

' B. O. Roos, Adv. Chem. Phys. 69, 399 (1987), and references
therein.
J. Olsen, B. O. Roos, P. Jgfrgensen, and H. Aa. Jensen, J.
Chem. Phys. 89, 2185 (1988).

' T. Wentink, W. S. Koski, and V. W. Cohen, Phys. Rev. 81,
948 (1951).

' J. Olsen, D. L. Yeager, and P. Jdrgensen, Adv. Chem. Phys.
54, 1 (1983).

'9R. Fletcher, Practical Methods of Optimization (Wiley, New
York, 1980), Vol. 1.
J. P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).
G. R. Bird and C. H. Townes, Phys. Rev. 94, 1203 (1954).


