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The relativistic shift, including the corrections to the binding energy due to vacuum polarization,
the hyperfine splitting, and nuclear finite-size effects have been calculated for the (J =1,v=1) states
of ddu and dtu. The corrections have been determined by first-order perturbation theory using the
nonrelativistic wave functions determined by Alexander and Monkhorst [S. A. Alexander and H. J.
Monkhorst, Phys. Rev. A 38, 26 (1988)]. The results show rapid convergence with basis-set size.
The overall convergence of the calculations is better than 0.01 meV. The accuracy of the total
correction to the binding energies is estimated to be =0.5 meV.

I. INTRODUCTION

Ever since Vesman suggested the possibility of the res-
onant formation of ddu via the loosely bound state with
quantum numbers J=1 and v= 1,' the theoretical study
of loosely bound states in both ddu and dtu has greatly
intensified, resulting in molecular wave functions and
binding energies with increasingly higher precision. The
nonrelativistic binding energies for these states is now
known to an accuracy of 0.1 meV.2~* The relativistic
corrections to the binding energies, however, exceed the
required accuracy by several orders of magnitude. It
therefore becomes imperative to include relativistic
effects at least to lowest order in perturbation theory. In
addition, due to the much smaller Bohr radius of the
muonic system, the small distance corrections to the
Coulombic potential originating from radiative correc-
tions (QED) as well as finite size and internal degrees of
freedom —such as nuclear polarizability—of the nuclei
may rise well above the desired level of accuracy (0.1
meV). In this work the relativistic shift, the hyperfine
splitting, the correction to the Coulombic potential due
to finite nuclear sizes and vacuum polarization are evalu-
ated perturbatively using the very accurate wave func-
tions obtained by Alexander and Monkhorst.? The re-
sults converge rapidly with basis-set size to well within
the required accuracy of 0.1 meV.

II. THEORY

A. Basis set

The nonrelativistic wave functions used in this work
were computed by Alexander and Monkhorst.? The
wave functions are expanded in a basis set of explicitly
correlated Slater-type geminals. The exponential param-
eters in these geminals are calculated using random
tempering formulas. Both the linear and the nonlinear
parameters are variationally optimized so as to minimize
the total energy. For the J=1 states of dtu the wave
function has the form

K
\Pdlﬂ,]=1= 2 (cizl +Ei22 )e

i=1

—la;ry+B;irytv,ryy)

, (1)

where r; and r, are the distances between the muon and
nuclei 1 and 2, respectively, r,= |r1—r2|, and
z,=rcosf, and z, =r,cos6,. For ddu one has
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If we rewrite both wave functions in the form
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B. Relativistic three-particle Hamiltonian

The relativistic Hamiltonian for three-particle systems
including only electromagnetic interactions can be ap-
proximated as

1
Hrelz 2 H”” ’ (6)
n=0

with H" =0 (a?®"). We will demand that H'® represents
the nonrelativistic Hamiltonian (corrected for nuclear
finite-size effects) and that this relativistic Hamiltonian
contains no three-particle interactions. In such a case the
relativistic correction terms can be derived from the rela-
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tivistic scattering amplitude by solving the Lippman-
Schwinger equation for the scattering amplitude.’~’ The
nuclear finite-size effects can be incorporated into the
Hamiltonian by means of form factors.®® For particles
of spin s <3 the general form of the electromagnetic
current matrix element (involving the form factors of the
particles) has been found by Glaser and Jaksi¢.!® This
method will yield a Breit-Pauli Hamiltonian for the
three-particle system. !'> We can write
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where i and j number the particles. The operators T,"
are the kinetic energy and the relativistic recoil or mass-
velocity operator, and have the forms
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The potentials U,.(j"’ depend only on the positions, mo-
menta, and spins of particles i and j:
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Here we have used the notations

I;;=r,—°r;,

ij

_ mp;—m;p,
P;j mi+m_“—j ) (13)
Pij:pi+pj >

where m,, r;, p;, and s; are the mass, position, momen-
tum, and spin of particle i, respectively. The potential
U.? is—as required—the Coulomb potential, which is
corrected for the inclusion of the nuclear finite-size effects
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The function g(y,(r;;) expresses the effect of the finite size
of the particles on the interparticle Coulomb potential
(see Appendix A). The first-order correction to the po-
tential can be written as a sum of a number of terms
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Ui(jl)= Ui(jD) + U:'(jRMC)+ Ui(jvp)+ U’KjF)+ UiEiSO)+ Ui(jT)
+U2, (16)

with (the units A=e=1 are used throughout)
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the Darwin term (here y; is the magnetic moment of par-
ticle 7 in units e#i/2M;c),
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ri
the relativistic mass correction, which expresses the rela-

tivistic retardation of the interparticle Coulomb interac-
s 12
tion,
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the Uehling potential, !* with y =m,c /4%,
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the Fermi contact term,

_ ZIZ] (l‘ij Xp,-)'si

Ui(jso)=a2 : s Z,-sz (r,.jxl;,j).sj
2m; rij 2m] r
2mim;s; rs-

 Zij (rXpy)s on
2m;im;s; rs-

the spin-orbit interaction,

Uh=— LZ_ I K
4r; | mis; m;s;
3(r;;-s; )(r;:°s;)
_’J‘Z—U_(si.sj) (22)
ri

the spin-spin dipole interaction, and
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the quadrupole interaction (Q; being the particle i elec-
tric quadrupole moment). In addition, we will use the
operators U, and U/, which represent the Darwin
and Fermi corrections without nuclear finite-size effects.

The operators T,", UN), UP), URMS, and U/'® are
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TABLE 1. Physical constants used in this calculation.
Masses are given in units of m,, magnetic moments in units of
e#i/2M;c, and the quadrupole moment in units of fm?.

TABLE II. Proton, deuteron, and triton form-factor parame-
ters. A’s are given in MeV/c. Values are taken from Ref. 26.
For symbols, see Appendix A.

General constants

Constant Value
1/a 137.035989 5
Rydberg 13.605698 1

Particle Properties

Property muon proton deuteron triton
Mass 206.7686 1836.1515 3670.481 5496.918
Magnetic 1.00117 2.792 846 1.7139 9.819
moment
Quadrupole 0.286
moment

the spin-independent terms and the remaining terms in
(16) are the spin-dependent terms. The first set of opera-
tors causes a shift in the binding energy, the last one
causes the hyperfine splitting. The quadrupole interac-
tion will only be included for particles with s; = 1. Note
that the finite-size effects are only included in the &-
function-type contributions, i.e., the Darwin and the Fer-
mi contact terms, and in the Coulomb potential. All oth-
er contributions are one order of magnitude smaller than
the 8 terms. The small corrections to these due to the nu-
clear finite size can be neglected. '*

III. PRACTICAL CONSIDERATIONS

The matrix elements of the operators in the preceding
section can all be expressed in closed analytical form.
However, the expectation values do not converge well.
This difficulty is due to numerical instability of the
analytical expressions and is caused by large cancellation
effects in the elementary matrix elements themselves. In
contrast to the numerical instability caused by the near-
linear dependency of the geminal basis set encountered in
the determination of the nonrelativistic wave function,?
these instabilities cannot be removed by performing the
calculations in 128-bit precision. The only terms that can
be calculated analytically in our basis set are the &-
function terms and those which show 8-function-like be-
havior, like the nuclear finite-size correction integrals.

Nuclear

Particle form factor Wijs Ay Lijs
p Dirac 0.789 852 2
0.211 2095 2

Pauli 0.437 770 3

0.563 1194 3

d Charge 0.350 374 5
0.663 707 5

—0.013 1980 5

Magnetic 0.389 381 5

0.611 756 5

Quadrupole 0.561 444 5

0.439 798 5

t Dirac 1.654 701 5
—0.654 848 5

Pauli 1.533 522 3

—0.533 697 3

The determination of the vacuum polarization contribu-
tion is done with a mixed technique in which three of the
four integrations are performed analytically and one is
done numerically (see Appendix B). All other contribu-
tions to the relativistic corrections for the muonic mole-
cules are determined by numerical integration. The tech-
nical details of this integration are discussed by Bakalov'
and Alexandrov and Bakalov.!® All of the numerical in-
tegrations have been performed in 64-bit precision.

Tables I and II give the numerical values of the physi-
cal constants used in the calculations. !’

IV. RESULTS

Tables III-VI give results of our calculations for dtu,
Tables VII-XII for ddu. The hyperfine splitting levels
are given with respect to the weighted center of the spec-
trum. The corrections to the binding energy are calculat-
ed using the definition Ag,; =AETClecule —AEalom  AJ] re-

TABLE III. Convergence with basis-set size K of the contributions to the relativistic shift for dtu

(J=1,v=1)in meV.

K D D RMC T'" VP NFS Total
100 —2.49 —2.44 —0.07 4.14 15.92 3.11 20.67
200 —2.26 —2.26 —0.38 3.49 15.87 11.40 28.03
300 —2.34 —2.35 —0.45 3.60 16.41 13.37 30.58
400 —2.48 —247 —0.45 3.84 16.77 13.29 30.98
500 —2.46 —2.47 —0.45 3.83 16.72 13.31 30.94
600 —2.38 —2.39 —0.45 3.69 16.60 13.38 30.83
800 —2.42 —241 —0.45 3.72 16.61 13.33 30.80
1000 —241 —2.41 —0.45 3.73 16.62 13.31 30.80
1200 —2.41 —242 —0.44 3.74 16.61 13.30 30.79
1400 —241 —2.42 —0.44 3.74 16.61 13.29 30.78
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TABLE IV. Convergence with basis-set size K of the hyperfine splitting for dtu (J =1,v=1) in meV.
State quantum numbers (&£IS)
K 021 221 131 1Lo0 111 211 0l1 132 332 232
100 —164.82 —164.78 —164.74 52.53 53.63 53.80 53.80 55.87 56.15 56.21
200 —148.38 —148.31 —148.22 43.96 46.36 46.77 46.85 51.72 52.39 52.52
300 —144.01 —143.95 —143.84 41.38 44.44 4493 45.05 50.60 51.25 51.52
400 —143.73 ~—143.67 —143.57 41.26 44.33 44.33 44.95 50.51 51.16 51.45
500 —143.71 —143.64 —143.54 41.25 4433 4481 4493 50.50 51.16 51.44
600 —143.84 —143.77 —143.67 41.30 44.37 44.86 4498 50.54 51.20 51.48
800 —143.87 —143.80 —143.70 41.32 44.39 44.88 44.99 50.55 51.20 51.48
1000 —143.89 —143.83 —143.73 41.33 44.40 44.89 45.00 50.56 51.21 51.49
1200 —143.90 —143.84 —143.74 41.34 44 .41 44.89 45.01 50.56 51.21 51.49
1400 —143.91 —143.85 —143.74 41.34 4441 44.89 45.01 50.56 51.21 51.49

TABLE V. Convergence with basis-set size K of the hyperfine splitting for dtu (J =1,v=1) in meV (including nuclear finite-size

effects).
State quantum numbers (FIS)
K 031 231 131 110 111 211 0l1 132 332 232
100 —162.88 —162.84 —162.80 51.91 53.00 53.17 53.17 55.21 55.48 55.54
200 —147.43 —146.54 —146.45 43.17 45.80 46.21 46.30 51.09 51.66 51.89
300 —142.29 —142.22 —142.12 40.89 4391 44.39 42.52 49.98 50.63 50.91
400 —142.02 —141.95 —141.85 40.78 43.80 44.30 44.42 49.90 50.55 50.83
500 —141.99 —141.93 —141.82 40.76 43.80 4428 44.40 49.89 50.55 50.83
600 —141.99 —141.93 —141.82 40.76 43.80 44.28 44.40 49.89 50.55 50.83
800 —142.16 —142.10 —142.00 40.84 43.86 44.35 44.47 49.94 50.59 50.87
1000 —142.18 —142.11 —142.01 40.85 43.87 44.35 44.47 49.94 50.59 50.88
1200 —142.18 —142.12 —142.02 40.85 43.87 4436 44.48 49.94 50.60 50.88
1400 —142.19 —142.12 —142.02 40.85 43.88 44.36 44.48 49.95 50.60 50.88

TABLE VI. Converged hyperfine splitting and mixing amplitudes for dtu (J=1,v=1) in meV

(K=1400). These numbers include the nuclear finite-size effects.

amplitudes B; s

4 IS €4,1,5 B0 B Bssa B,

0 % 1 —142.19 0.00000 0.559 62 0.828 75 0.00000
% 1 44.48 0.00000 0.82875 —0.559 62 0.000 00

1 % 1 —142.02 —0.001 14 0.557 67 0.83006 —0.00226
% 0 40.85 0.995 36 —0.064 96 0.045 54 —0.05319
% 1 43.88 0.084 59 0.824 06 —0.55328 0.08747
-;- 2 49.95 0.04578 —0.07472 0.05297 0.994 74

2 % 1 —142.12 0.00000 0.556 49 0.83085 —0.001 24
11 44.36 0.000 00 0.83082 —0.55649 —0.008 16
% 2 50.88 0.00000 0.007 47 —0.003 51 0.999 97

3 % 2 50.60 0.00000 0.00000 0.00000 1.000 00
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TABLE VII. Total relativistic correction to dtu binding en-
ergy in meV.

TABLE IX. Convergence with basis-set size K of the
hyperfine splitting for ddu (J =1,v=1) in meV.

Contributions to relativistic shift

Darwin correction —2.42

Relativistic mass correction —0.44

Recoil 3.74
Total relativistic shift 0.86
Vacuum polarization (Uehling potential) 16.61
Nuclear finite-size correction to Coulomb potential 13.29
Lowest hyperfine state 35.22
Total correction 65.98
Additional corrections

Deuteron polarizability® —2.2

Molecular finite-size effect® 0.29
Total correction to binding energy 64.1

2Value from Bakalov (Ref. 7).
®Value from Scrinzi and Szalewicz (Ref. 29).

sults are in meV. As can be seen from these tables, all
numerical values converge to well within the desired ac-
curacy of 0.1 meV. For ddu the convergence is much fas-
ter than for dtu. This trend is analogous to the conver-
gence of the binding energy’ and interparticle dis-
tances. '8

The influence of the inclusion of nuclear finite size on
the Darwin correction is seen to be almost negligible.
The effect on the hyperfine splitting is larger, i.e., it
reduces the total splitting by almost 2 meV for dtu and
0.4 meV for ddu. However, the atomic hyperfine split-
ting is also reduced, and therefore the correction to the
binding energy is only slightly reduced by nuclear finite-
size effects. For dtu the correction to the binding energy
due to the hyperfine splitting is changed =1 meV by nu-
clear finite-size effects and hence has to be taken into ac-
count in order to arrive at the desired accuracy.

Previous calculations of the interparticle distances for
dty (J =1,v=1) indicate that it can be considered as a tu
atom with a loosely bound deuteron.!® Therefore the
main contribution to the hyperfine splitting should come
from the ty Fermi interaction. The grouping of the
hyperfine states—three levels with a total weight of 9

State quantum numbers (&£IS)

I St T LA L I
100 —16.32 —16.09 7.74 8.01 8.32
200 —16.36 —16.13 7.75 8.04 8.34
300 —16.35 —16.12 7.74 8.04 8.33
400 —16.35 —16.12 7.74 8.04 8.33
500 —16.35 —16.11 7.74 8.04 8.33
600 —16.35 —16.11 7.74 8.04 8.33
800 —16.34 —16.11 7.74 8.04 8.33

1000 —16.35 —16.11 7.74 8.04 8.33

centered around —142.1 meV and seven levels with a to-
tal weight of 27 centered around 47.4 meV —indicates
the dominant role of this interaction. Interestingly, the
ratio of these averages is 1:3 as expected from the atomic
Landé rule, but their value is reduced by 20%. The addi-
tional splitting is mainly due to the du Fermi interaction
and to the spin-orbit coupling.

For ddu the situation is more complicated, but similar
relations can be observed. Here the splitting is also
grouped in two structures, which are separated by ap-
proximately half the atomic hyperfine splitting.

The dtu hyperfine structure is naturally described ac-
cording to the following particle spin coupling scheme:
F=s,+s,, s=F+s,; while the ddu hyperfine structure
better fits the coupling scheme I=sdl +sd2, s=I+s,.

Comparison with other recent calculations!®™?! is

made in Table XIII. The agreement with the results from
Bakalov and co-workers is striking. It is a consequence
of the application of the same operators in the calculation
of the corrections. The wave function they employed is
different, but apparently has the same global quality as
the one we have used here. The difference with the scalar
correction calculated by Myint et al.?° is mainly due to
the use of a different charge form factor for tritium.
Recently Myint et al.?® argued that the triton charge
form factors used by Bakalov are based on outdated re-
sults and are not very accurate. Use of more recent ex-
perimental data?? resulted in a nuclear finite-size correc-
tion for dtu that differed as much as 2.9 meV from the re-
sults obtained by Bakalov using form-factor data derived
from experiments reported in 1967 by Griffy and Schiff. 3

TABLE VIII. Convergence with basis-set size K of the contributions to the relativistic shift for ddu

(J=1,v=1)in meV.

K D D RMC T VP NFS Total
100 —1.09 —1.06 0.48 2.16 11.00 —1.83 10.75
200 —0.83 ~0.80 0.46 171 8.56 ~1.40 8.53
300 —0.91 —0.88 0.46 1.86 8.68 —1.53 8.59
400 —091 —0.88 0.46 1.86 8.64 -1.52 8.56
500 —0.91 —0.88 0.46 1.87 8.65 —1.53 8.57
600 —0.91 —0.88 0.46 1.87 8.66 —1.53 8.58
800 —091 —0.89 0.46 1.87 8.66 —1.54 8.56
1000 —0.91 —0.89 0.46 1.87 8.66 —1.54 8.56
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TABLE X. Convergence with basis-set size K of the
hyperfine splitting for ddp (J=1,v=1) in meV (including nu-
clear finite-size effects).

State quantum numbers (FIS)

S I St TN T
100 —16.11 —15.88 7.63 791 8.22
200 —16.14 —15.91 7.64 7.93 8.23
300 —16.13 —15.90 7.64 7.93 8.22
400 —16.13 —15.90 7.64 7.93 8.22
500 —16.13 —15.90 7.64 7.93 8.22
600 —16.13 —15.90 7.64 7.93 8.22
800 —16.13 —15.90 7.64 7.93 8.22

1000 —16.13 —15.90 7.64 7.93 8.22

Using the more recent form factors and fitting them to
generalized dipole functions—see Appendix A —indeed
changes the value of the nuclear finite-size correction
from the old value of 13.3 meV to a value much closer to
the number obtained by Myint et al., e.g.,, 10.9 meV.
The difference between their value and ours is caused by
a considerable deviation of the contribution of the finite
size of the deuteron. In Ref. 20 the du contribution to
the total energy of dtu (11) is quoted to be 4.2 meV,
whereas we find for the same contribution a value of 4.7
meV. This is consistent with the difference in the atomic
corrections for du: they find 213 meV, we find 215 meV.
The reason for the latter discrepancy is unclear, but
might be due to the use of a theoretical form factor by
Myint et al.?® rather than the experimental one we use.?*

The reliability of the calculated corrections is more
difficult to assess, since it requires knowledge of the size
of higher-order corrections as well as information about
the errors of the experimental parameters, such as nu-
clear form factors and deuteron polarizability. Because
the higher-order corrections will be approximately two
orders of magnitude smaller than the first-order effects,
we expect these not to alter the present results
significantly. The uncertainty in the size of the deuteron
polarizability effect limits the reliability of the current
value of the total correction to the binding energy to 0.5
meV. The deuteron polarizability correction to the bind-
ing energy of dtu obtained by using a phenomenological
model fitted to experimental data by Bakalov was —2.2
meV. Kamimura obtained a more accurate value by us-
ing first-principles methods. The value he obtained is

TABLE XI. Converged hyperfine splitting and mixing ampli-
tudes for ddu (J =1,v=1) in meV (K= 1000), including nuclear
finite-size effects.

amplitudes B; 5

& IS €418 Biin Bisn

% 1 % —15.90 0.999 87 —0.01606
1 % 7.64 0.016 06 0.999 87

% 1 % —16.13 0.999 94 —0.01140
1 % 7.93 0.01140 0.999 94

% 1 % 8.22 0.000 00 1.00000

TABLE XII. Total relativistic correction to ddu binding en-
ergy in meV.

Contributions to relativistic shift

Darwin correction —0.89

Relativistic mass correction 0.46

Recoil 1.87
Total relativistic shift 1.44
Vacuum polarization (Uehling potential) 8.66
Nuclear finite-size correction to Coulomb potential —1.54
Lowest hyperfine state 15.99
Total correction 24.55
Additional corrections

Deuteron polarizability® —0.1
Total correction to binding energy 24.5

2Value from Bakalov (Ref. 7).

—2.0 meV.?® However, he argues that the correction
due to the triton polarizability is approximately 0.4 meV
and should hence be included. In addition, the error bars
on the physical constants in Table I as well as the remain-
ing uncertainty in the nuclear finite-size effects are such
that further improvement of the results beyond the level
of 0.1 meV can only be obtained provided more accurate
values of these experimental constants have been deter-
mined.

For ddp it is possible to compare the final results with
experimentally determined binding energies. The experi-
mental binding energy excluding hyperfine splitting is
—1965.9(5) meV,2® the calculated value in this work is
—1966.4 meV.
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APPENDIX A: FINITE-SIZE EFFECTS

According to Bakalov?* the electromagnetic form fac-
tors can be expanded in terms of a set of generalized di-
pole functions

n
J Wijs

Figh=3 ———,
s=1(1+q% /A%

(A1)

where i refers to the particle and j, 1 <j <2s;+1, labels
the different form factors (charge, magnetic, etc.) of parti-
cle i. The parameters w;;, A, and /;; are fitted to ex-
perimental form factors obtained from elastic scattering
experiments. In the relativistic three-body Hamiltonian
used in this work three types of form factors appear, e.g.,
g(12)7(r), &2)(r), and g3,(r). These functions are defined
by
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TABLE XIII. Comparison of results for dtu from different authors.

Bakalov Korobov Myint

(Ref. 19)? (Ref. 21)? (Ref. 20)° This work?® This work®
Scalar terms® 30.0 30.7 28.5 30.8 28.3
Lowest hyperfine state 35.9 35.2 35.2 35.2
Total 65.9 65.9 66.0 63.5

#Results using form-factor data from Ref. 23.
®Results using form-factor data from Ref. 22.

“Does not include deuteron polarizability and molecular finite-size effect.

dk ik- 47
(r=1-r e*"—-G,(k?), n=1,2,2',3
B vy ey’ Kk
(A2)
and similarly
A g(m(r)
g(,,)(r)=——r'——47T[g(,,,(r)‘l]8(r) (A3)
The functions G,,,(k?) are defined as
G =F,Fj ,
Z.F, —(p; /s;)Fp
Gy= _ i1
(:u'i/si)
(A4)
-F F_]l—(y’j/sj)F_/Z
2~ Z,—(n,/s;)
G, Fp s
where
(Z,Fyy+ AiFp) /g =4
Fl,= F, s5=1 (AS)
where A,=u,—Z;. Because the muon is considered to

be pointlike and the internuclear effects can be neglected
(being several orders of magnitude smaller than the pu-
nuclear effect), the functions g(,,(r) can be shown to have

g(n) 2 Wl]ta[ r:AUz) ’ (A6)

where the coefficients W, can be found by combining
Egs. (A1), (A2), (A4), and (AS5), and

-1
; k2 41
—1 k- A ~
atr,A)=1—r [ 4K ﬂ)} e | o
-1
=e M3 cl(ANF, (A7)
k=0
with c;=1 and
k 1—1 —_ L — 1)
o) =—2 Cp—k =Dl ¢ k>1.  (A8)
From this we can easily derive that
a;'(r,A)
a(rnA)=——
r
1-2
=Ale M 3 el(Ar) (A9)
k=0
with
k37201 —k —4)
Al —
T —k—2n (A10)

To calculate the effect of the inclusion of these form fac-
tors into the Hamiltonian, one therefore has to evaluate

the form | integrals of the type [using the definition Q,(r)=r"e "]
—(ar, +br,+cr,,)
An+k,1,m:%f d"lf ’2d’2f| 12‘1"12Q (ryle e
. =7f drlf rzdrzf‘ rlzdrlzrle Arle (ar1+br2+crl2). (All)
For k =1 =m=0 this reduces to
7 +r r —\lar r cr
Apoo=t [ ar, [” drzflr drlzrle TAng Tl Tbn el (A12)
This integral can easily be evaluated and gives
(—1)"n! 1 1
A= _ (A13)
0 (b+e)b—c) | (@a+A+b)" (a+A+c)
Because A >>1 we can expand this expression in powers of 1/A, giving
1 1 (n+2) (n+3)
An00= Ty ey aniT | (T DI a kb et 2230243 (b +e)+b 2+ be +c?]
———(———[4a +6a%(b +c)+4a(b*+bc +c?)+(b3+b% +c?b +c3)] (A14)

24A°

J
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For the evaluation of the nuclear finite-size effects for p states, we need the integrals 4, 3,1, 4,+13,1,and 4, 13-
These can be obtained by repeated derivation of 4, ¢ o, with respect to b and ¢ and yields the following expressions [up

to O(1/A" %]

2 (n+2)! , (n+3) |a* bc | (n+4) |ala®—bc)
~——"—— |(n+1)— + - : INE
An,l,l An+2(b +c)3 (n ) A a A2 2 6 A3 6 ( )
_ 2 _ 12(n +2)! (n+3) 2 (n +4) 2 _
A"’3'1~m 12(n +1)! A a+ e ~[6a*+c(c—b)]— —A——a[2a +c(c—b)] |, (A16)
and
2 12(n +2)! (n+3)! 2 (n +4) 2
A s =—————— |[12{n + 1) — a+ 6a“+b(b— +—-———— 2a“+b(b—c)]| . (A17)
mUIT AR +c)’ A o el ]
|
For the J=1 states of dtu and ddu the basis functions We can now use the explicit forms of ¢/ and ¢} to ob-
can be written as |i ) =z,|i,1)+£z,|i,2) (see Sec. I). We tain the relations
;liiecri(:{‘;r& :ya;ieto calculate three types of integrals. Ex- lil ke Cin+ 1)U +(n +1)/2) A2
“k C(1+(n +1)/2)0(])
<i’1|nn‘j’l>—'l_6371—An+3ll ’ (A18) and
8 3 eltkornn= T (A2
<i’l‘nn|j’2)=T(An+3,l,l+An+1,3,l_An+l.l,3)’ k=0 "
We can now evaluate the matrix elements of the two
(A19) finite-size operators occurring in the relativistic Hamil-
and tonian. For the nuclear finite-size correction to the
Coulomb operator we find [up to O(A~2) and ignoring
(,2Q,1j,2)=—2 167 y . (A20) the fact that we have to take linear combinations of
’ 3 Tntbid operators], withg = 3, ¢/ A"Q,
J
872 31(1+1) 4
Ci,llg(r)/r ,1)~-—— , (A23)
lg(r)/rilj A* (b +c)
47 31(1+1) 4 4[6a*+c(c—b)]  4[6a*+b(b—c)]
(g r)/rlj,2) =— + - , (A24)
lg(ri)/milj 3 A | (b+ep (b +c)’ (b +c)’
and
1 48] 47 (2] +1) a 121(1 +1) [6a’+c(c—b)]
(i,2|g(ry)/ ,2>~ - + (A25)
b2lg(r)/nlj 3 A |(b+e® QDA (b+e) A2 (b +c)
The matrix elements of the nuclear finite-size corrections to the 8 functions we find equivalently, with §=g"'/r
817 6l 4
1 , A26
(L 1grplj, 1) = 3 a2 TERY (A26)
a7t 6l 4 4 4
(i,1lg(r)]j,2) = —— 6a+c(c—b)]— 6a*+b(b—c)]|, (A27)
gl 3 A |rer hrer. e :
and finally
CAlA . 87 48 221 —1)!!  48a 6l 4[6a*+c(c—b)]
,2|8¢ ,2)~—— — - , (A28)
208Dl 2~ | T T Gl 2A bt T AT (b ey

where a, b, and c are the appropriate combinations of ex-
ponential parameters. The expressions for g(r,) and
g(r,) are easily obtained by exchanging parameters a

f

with b, and labels 1 with 2 in all expressions. The finite-
size corrections for the internuclear terms are at least one
order of magnitude smaller and can thus be neglected.
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APPENDIX B: MATRIX ELEMENTS
OF THE UEHLING POTENTIAL

The Uehling potential for particles of charges Z, and
Z, and distance r is given by!?

Upp(n=222122y ()
vp\r)= 37 uv\r
_2az.:2, [ (x2—=1)2(1+1/2x2)e ¥
= dx .
37r 1 x2
(B1)

This leads to integrals of the type
L= [ [dvido,Vylrip)rirfrie

In a basis of Slater geminals the integration over the
volume elements can easily be performed for
l=m=n=-—1,

—(ar, +bry+cry)

. (B2)

J

—64g? IFim+int1 [I+1 | Im+1| [n+1
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I __lex’ [° dx[1+1/(2x)](x2=1)'7
“LELT (g +b) Y x%a+c+2yx)b+c+2yx)
16w
=T +b)I_l’_"_1 . (B3)
The last integral can be integrated to give
. _ —4
I_, =
(@a+c+2y)b+c+2y)
X[2Gy1,1(p,9)+Gy11(p,q)] (B4)

with p=(a+c—2y)/(a+c+2y),
(b+c+2y),and

1 dt tz(t2—1)2K+L+M_l

g=(b+c—2y)/

Grrupa)=[ (BS5)

@ (24 1)K 2—p)l(2—g)™

The general expression can then be found by
differentiation with respect to a, b, and c. This results in

(0 —i+k+1Dm+n+2—k =)

1, =T .
bmn ™ (a +b) 050 ! J k

X[2Go 4k +2,m+n+3-kPD TGy 11k 42,m+n+3-kPP] -

The integrals Gk ; p(p,q) can be evaluated analytically,
but the expressions become numerically highly unstable
for p=q and are therefore calculated by numerical in-
tegration.

APPENDIX C: MATRIX ELEMENTS
OF SPIN OPERATORS

In general, the relativistic operators are spin depen-
dent. Averaging over space and spin variables, however,
can be separated, for both the zeroth-order perturbative
wave function and the relativistic Hamiltonian can al-
ways be factorized in a space-dependent part and a spin-
dependent part. After the space integration has been per-
formed an effective spin Hamiltonian is obtained contain-
ing only spin and angular momentum operators.?”?® The
matrix elements involving spin and angular momentum
operators can be expressed using the Wigner-Eckart
theorem. The spin functions for the three-particle system
are considered to be coupled as follows. First the nuclear
spins s; and s, are coupled to I. Then I and s; are cou-

1S
(sisy;1's5;8'T'; FM'|R-S9s 5,3 I53;8T ; FM ) =8 40 48 gy g — 1) TS F7 {J

Here R%-S? denotes the scalar product of two tensor
operators and rank a, and (I'S’||S%|IS ) and (J'||R%||J)
and reduced matrix elements of the involved tensor
operators.

The relativistic operators introduced in Sec. II involve

(a+b)i+j(a+c+27)1-—i+k+2(b+c +2,y)m+n+3—k—j

(B6)

[

pled to the total spin S. Finally the total spin is coupled
to the orbital angular momentum J to give the total
momentum &. The total wave function can then be ex-
pressed as

M) =|s5,5,;I54;ST ;M) . (C1)

In the nonrelativistic case these states form a degenerate
set. This degeneracy is lifted by the spin-dependent rela-
tivistic interactions. In first-order perturbation theory
the stationary hyperfine states are eigenvectors of the
effective spin Hamiltonian and can be found as linear
combinations of the functions |IS#) that have a definite
value of I and S:

|#N)= 3 BlIS#) , (C2)
1S

where N numbers different states with the same & with ei-
genvalues € g, and B7Y'=(IS#|#N ). The latter have to
be determined by diagonalizing the effective spin Hamil-
tonian.

The matrix element of any scalar operator with respect
to these wave functions can then be written as

’

(I'S'||SYS T IRTY . (C3)

a
J &

|
only three different types of spin operators, i.e., scalar
operator products

Fij=<s'1s’2;1'5'3?5'||si'sj||5132§153;S) ) (C4)

vector operators



S;=(s55;1'sy;S"|Is;|Is1525153;8 ) (C5)
and tensor operators of rank 2
T,-j=(s',s'l;I’sg;S'H(s,-@sj)(2)|ls,s2;1s3;S) . (Cé6)
Using the notations
R, =(s/||s;|Is;? =85‘_,,S'_\/s,-(s,-+l)(2s,- +1), (€7
My,..=VQa+1)2b+1)2c+1)(--) -, (C8)
and
o=s,+s,+5;+8S, (C9)
we find for the scalar product operators
i s, 1 s,
Fyy=8gs(— 1) FI I cR)R '
3= 08ss(—1) st p g1
I 1 1
X s3 8 s | (C10)
172
, (25, —1)(2s,+3) 51
T, =(—1ftl+e 1 l MypssRy e
6 1
172
, (25, —1)(2s5,+3) S2
Ty=(—1)"*e 2 : mwss Rz |
6
172
I+S'+s (2S3—1)(233+3)
Ty =8;(—1) ’ 5 ss'R3
I s
5, 1 s 3
I'+s, +s5,+1 2 2
T23=(_1) ! 2 HII'SS'2R2R3 I s] I, 1 1
I S3
I s
s; 1 s 3
I+s +s,+1 1 1
T13=(—1) ! 2 HII'SS'2R1R3 I sz I; 1 1
I S3
s, s, 1
_ I'+S+s, 2|t
le—(_l) HII'SS'ZR]RZ Sl S3 S 1 1 2
S1 5
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s; 1 s
Fi3=38gs(—1)° "I 1.5R Ry I s, I'
11
XL3 S s, [° (C11)
‘s S, 18,
for the vector operators
r4r sp Losijir 1 1
S\ == yssRo Vs, 1S s, s7)
(C13)
s; 1osyf(r 1 1
—(__1yo+2r
Sz_’( 1) HII'SS'RZ I S] Ir ) S 33 SI )
(C14)
, S3 1 S3
Sy=8,(—1*" T T Ry N o s']’ (C15)
and for the tensor operators
[
2 s1||s" 2 S
2 50|82 S
s, I[11 s3 1'[° (c17m
2 s,
I S]’ (C18)
S
2 t, (C19)
SI
N
21, (C20)
S!
(c21

For muonic molecules both s, and s, are less than or equal to 1 and s;=4. This can be used to reduce the 9; symbols
occurring in the last three expressions to more easily calculated combinations of 6 symbols.
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