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Relativistic Dirac-Fock and diagrammatic many-body perturbation-theory calculations have been

performed on He, several He-like ions, Ne, and Ar. The no-pair Dirac-Coulomb Hamiltonian is

taken as the starting point. A solution of the Dirac-Fock equations is obtained by analytic expan-
sion in basis sets of Gaussian-type functions. Many-body perturbation improvements of Coulomb
correlation are done to third order.

I. INTRODUCTION

Atomic physics has entered a time of renewed interest
in few-electron systems, i.e., highly ionized high-Z
ions. ' The interest has been sparked by the develop-
ment of ion sources and high-energy accelerators. Re-
cently, parity nonconservation in heavy atoms, e.g. , Bi,
Cs, and Tl, has also generated interest in many-electron
systems. ' Ultimately these experiments will have a
bearing on the theoretical methods developed to describe
many-electron atoms.

Many-body perturbation theory (MBPT), introduced
into atomic physics by Kelly, has proven to be a power-
ful and efficient technique for calculation of atomic and
molecular properties. A relativistic version of the
MBPT, which accounts for both relativistic and electron
correlation effects, was developed by Das et al. using a
finite-difference Dirac-Fock self-consistent field (DFSCF),
and by Johnson and Sapirstein using a "local" basis
(Spline basis) expansion DF-SCF. Beck has developed
a relativistic configuration-interaction method to calcu-
late spectroscopic transition properties and binding ener-
gies.

Theoretical methods developed to describe the elec-
tronic structure of truly many-electron atoms must be
able to account for relativistic, electron corrrelation, and
QED effects. They will have to yield wave functions that
can be refined to account for these effects to high accura-
cy. They must be computationally efficient because they
will have to describe eventually electronic states in very-
high-Z neutral atoms. And lastly, they should be capable
of being extended in a straightforward way to the study
of molecules. The present work is one such approach,
the solution of the DF-SCF equations by expansion in a
"global" basis set of Gaussian-type functions (GTF) and
MBPT improvement of the solutions.

The following section outlines methods for determining
DFSCF wave functions and of improving them to ac-
count for Coulomb correlation energy. In Sec. III, re-
sults on He, He-like ions, Ne and Ar will be presented
and compared with previous nonrelativistic and relativis-

tic MBPT results obtained by numerical finite-difference
methods.

II. BASIS-SET EXPANSION
DF-SCF AND MBPT REFINEMENT

A. The Dirac-Fock basis-set expansion method

In the DFSCF scheme, the behavior of an electron in a
central field potential V is described by a radial Dirac
equation of the form

Hrlnk ~nk4nk

where

(la)

H„=

with

c~k V —2c
(lb)

and

+k/r
dp'

Here

+k/r .
df'

Numerical finite-difference solutions of the nonrela-
tivistic and relativistic atomic SCF equations have been
developed by a number of workers. ' ' To date, the
majority of relativistic calculations of the electronic
structure of atoms and ions have been done using finite-
difference numerical methods. ' ' Recently basis-set ex-
pansion DFSCF methods, employing both "local"' and
"global"' ' basis sets, which approach numerical
finite-difference calculations in accuracy, have been
developed. The unbounded nature of the Dirac Hamil-
tonian, however, imposes more severe restraints on ad-
missible forms of basis functions than does the
Schrodinger Hamiltonian.
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P„k(r)
nk Q (r)

The radial functions P„k(r) and Q„k(r) are referred to as
the large and small components, respectively. c is the
speed of light. P„k(r) and Q„k(r) may be expanded in sets
of basis functions.

Kim, in his pioneering work on the basis-set expan-
sion DFSCF method, revealed a tendency for calculated
energies to fall below the variational limit. The origin of
this "variational failure" is associated with an improper
relationship between the basis sets' ' ' ' which represent
the large and small components of the wave function and
with failure to insure that the wave function behaves
properly in the region near the nucleus. ' The failure
of the basis-set expansion DF method can be avoided if a
well-defined set of constraints is used in the definition of
"global" basis sets. The constraints impose physical
boundary conditions on the four-spinor solutions of the
DF equations ' ' and ensure that the basis sets in which
the large and small components are expanded may be sys-
tematically extended to completeness. Analysis shows
that the failure to impose the correct constraints on the
large and small component basis sets results in a
deficiency in the computed kinetic energy as well as the
appearance of spurious solutions among the physical
ones 19 23

Among the types of functions employed in basis-set ex-
pansions have been exponential or Slater-type func-
tions' (STF), piecewise polynomials, ' orthogonal
Laguerre functions, and Gaussian-type functions
(GTF). No type is yet preeminent in relativistic atomic
calculations as STF are in atomic and GTF in molecular
nonrelativistic calculations, but the advantages and
disadvantages of each are understood.

STF are employed in nonrelativistic atomic calcula-
tions because, in the point nucleus approximation, they
correctly represent the wave-function singularity at the
origin. They have also been used successfully in relativis-
tic atomic calculations but, in these, noninteger quantum
numbers are employed in order to fit the more severe rel-
ativistic cusp condition. ' In heavy atoms, the point
representation of the atomic nucleus is better replaced by
a finite model. %'ith the finite nucleus, the cusp condition
changes and the use of STF as basis functions loses some
relevance. Basis sets of STF are also prone to near-linear
dependence. This characteristic is more significant for
matrix DF equations than for Hartree-Fock equations.
In recent work, Goldman has employed orthogonal
Laguerre functions. This type of basis set was shown to
be free of linear dependency and therefore promising.

Piecewise polynomial basis sets ' ' are largely free of
computational linear dependence problems because of
their "local" nature. Basis sets of 8 splines have been
successfully used by Johnson and Sapirstein in relativis-
tic DF and MBPT calculations. Hermite interpolation
functions have also been employed as basis functions in
relativistic calculations. A restriction on the use of
piecewise polynomial basis sets in relativistic atomic cal-
culations is the difIiculty in imposing the proper relation-

P„k(r)= g r'"exp( gk, r )g„—k, , (2a)

N~

Q k(")= g r e"P( 0k'r )9 k (2b)

where m = —k. Here Nk is the number of GTF in the
basis set. For k &0 states,

P„k(r)= g r"'exp( —
gk r2)g„k, , (3a)

Q (") X" exp( 4" )'9 k

/.

+ g r +'exp( (k, r')~„k~, —
g =1

(3b)

where m =k +1. The tg„k, ], Ig„k, I, and Ice„k~ I are
linear variation parameters.

GTF are chosen to satisfy the condition of kinetic bal-
ance and relativistic boundary conditions associated with
a finite nucleus. ' ' In previous numerical studies, these
expansion schemes have achieved accuracy comparable
to that attained with the finite-difference DF method. In
the present study, we have also performed DF basis-set
calculations using expansions (2) and (3).

B. Relativistic MBPT refinements

The starting point for our development of relativistic
MBPT calculations is the relativistic "no-pair ' Dirac-

ship between the "local" basis sets for the large and small
components in order to avoid variational failure.

Basis sets of Gaussian functions have a number of ad-
vantages in relativistic SCF calculations: (i) Although
GTF are at a disadvantage with respect to STF in nonre-
lativistic calculations because they behave improperly
near a point nucleus, the advantage of STF dissipates in
heavy-atom systems when a finite nucleus is employed.
In fact, when the nucleus is modeled as a finite body of
uniform proton-charge distribution, the wave function
near the origin is Gaussian. ' ' (ii) Basis sets of GTF are
less prone to near-linear dependence than are basis sets of
STF. The use of large basis sets of GTF has been shown
to be feasible in relativistic calculations. ' (iii) In com-
parison with piecewise polynomial basis, fewer GTF are
needed to attain accurate energies. (iv) The ease with
which multicenter two-electron integrals over GTF are
evaluated makes their use in molecular calculations pre-
ferred. (v) The Fourier transform of a GTF is Gaussian,
of possible use in calculations of QED and related
dynamical effects directly in momentum space.

In recent studies, we have performed DF Gaussian
basis-set expansion calculations on one- and many-
electron systems with a finite nucleus model.
These studies have explored ways of accelerating conver-
gence of the basis-set expansions. In those studies, the
large- and small-component radial functions, P„k(r) and

Q„k(r), respectively, were expanded in GTF, for k (0
states, as
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Coulomb (DC) Hamiltonian, ' originally introduced to
avoid the continuum dissolution" problem associated
with relativistic many-body calculations:

N N0 = g hD(i)+L+ g 1 (4)

where L+ =L+(1) L+(N}, with L+(i) the projection
operator onto the space spanned by the positive-energy
eigenfunctions of the DF operator.

Negative-energy states, as part of the complete set of
states, play a role in many-body calculations. However,
contributions from the negative energy states due to
creation of virtual electron-positron pairs are small, of
the order e, and are neglected in the present study.
Neglecting interactions with the filled negative-energy
sea, i.e., neglecting virtual electron-positron pairs in sum-
ming the MBPT diagrams, we have a straight-forward
extension of nonrelativistic MBPT. The "no-pair"
Dirac-Coulomb Hamiltonian may be expressed in terms
of normally ordered products of the spinor operators,
[r+s] and [r+s+ut],

Hz= g f„,[r+s]+—'g (rs~~tu )[r+s+ut]
P, S

t, u

where

& rs
II
t" &

=
& rs

I tu &
—

& rs
I
ut &

and

(5)

(rs~tu ) = J dx, dx2$„(x&)P,(xz)r &z'4, (x&)4„(x2)

C. Computation

For He and He-like ions, even-tempered basis sets of
GTF were used. In basis sets of even-tempered GTF, the
exponents, [gk; ) are given in terms of the parameters a,
P according to the geometric series

Here f„, and (rs~~~tu ) are, respectively, one-electron DF
and antisymmetrized two-electron Coulomb interaction
matrices over the DF four-component spinors, r, s, t, and
u. Normal ordering implies that, in the vacuum state,
annihilation operators are moved to the right of creation
operators as if all anticommutators vanish. The Fermi
level is shifted to the highest occupied positive-energy
state. The creation operator then appears to the right of
a normally ordered set when it refers to an occupied
positive-energy state, while the annihilation operator
remains on the right for a positive-energy virtual state. '

In this form the no-pair Hamiltonian is restricted to con-
tributions from the positive-energy branch of the spec-
trum.

The correlation energy induced by the Breit interaction
is significant for inner-shell spinors of heavier sys-
tems. ' In the present study, however, we neglect the
Breit interaction along with radiative corrections, mass
polarization, and reduced-mass effects.

gq;=aP' ', i =1,2, . . . , Nk .

In DF calculations on He and He-like species, the param-
eters a and P are optimized until a minimum in the DF
total energy is found. The optimal a and P values thus
determined for He are, respectively, 0.12449 and 2.3905:
for Sn+ (Z =50), they are 170.5065 and 2.47641, re-
spectively. For the Ne and Ar atoms, well-tempered
GTF basis sets of Huzinaga were chosen because of
their compactness. In this case, the exponents are initial-
ly energy-optimized in terms of four parameters, a, P, y,
and 5 according to the formula

gi„=up' '[1+y(i/Nk)5], i =1,2, . . . , NI, .

The exponents thus determined are further optimized in-
dividually in nonrelativistic Hartree-Fock calculations.
The exponents for atoms up to Kr are tabulated in Ref.
39. They are employed without further optimization in
our DFSCF and MBPT calculations. The radial func-
tions that possess different k quantum number but with
the same I quantum number are expanded in terms of the
same set of basis functions (e.g. , the radial functions of
p]&2 and p3/2 symmetries are expanded in the same set of
p-type radial GTF). The speed of light used in calculat-
ing the relativistic energies was 137.037 a.u. A value of c
of 10000.0 a.u. was chosen in the calculations which
simulated the nonrelativistic limit.

The nuclei were modeled as spheres of uniform proton
charge in every calculation. The model has been dis-
cussed in Ref. 27. The atomic masses used for the He,
N + (Z =10), Ca' + (Z =20}, Zn + (Z =30), Zr
(Z =40), Sn + (Z =50) ions, Ne, and Ar are, respective-
ly, 4.0, 20.18, 40.08, 65.37, 91.22, 118.71, 20.0, and
39.948.

In the present MBPT calculations, Goldstone dia-
grams have been summed to compute Dirac-Coulomb
correlation corrections up to third order. Single-
configuration Dirac-Fock wave functions were used as
reference states for the MBPT refinements. Second- and
third-order Coulomb correlation corrections were com-
puted by systematically enlarging the virtual space. Vir-
tual spinors used in the study were generated in the field
of the nucleus and all electrons (V potential). The
basis-set exponents for the virtual spinors were taken
from a single, "saturated" set of GTF exponents used in
the DFSCF calculations.

III. RESULTS AND DISCUSSION

Table I shows the DF energies as well as the second-
order (Ez) and third-order (E3) electrostatic correlation
energies for He and for several He-like ions which have
nuclear charge Z up to 50. Dirac-Fock and second- and
third-order correlation energies computed with three
GTF basis sets, 14slOp8d7f6g, 14slOpgd7f6g5h, and
14s 10p 8d 7f6g 5h 4i, respectively, are presented in rows
A, 8, and C. The basis-set exponents used for these cal-
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TABLE I. Energies of He and He-like ions (a.u. ) ~ Square brackets denote powers of 10.

Z=2

Z =10

Z =20

Z =30

Z =40

Z =50

C

C
A

B
C

B
C
A

B
C
A

B
C

EDF

—2.861 812

—93.982 693

—389.665 326

—892.065 124

—1609.865 286

—2556.308 720

—3.6911[—2]—3.7059[—2]
—3.7132[—2]
—4.4055[—2]
—4.4215[—2]
—4.4294[—2]
—4.4949[—2]
—4.5104[—2]
—4.5180[—2]
—4.5293[—2]
—4.5444[ —2]
—4.5517[—2]
—4.5716[—2]
—4.5864[—2]
—4.5936[—2]
—4.6439[—2]
—4.6587[—2]
—4.6661[—2]

—3.898[—3]—3.815[—3]—3.772[—3]
—1.099[—3]
—1.081[—3]
—1.072[—3]
—5.925[—4]
—5.836[—4]
—5.791[—4]
—4.187[—4]
—4.130[—4]
—4.101[—4]
—3.334[—4]
—3.292[—4]
—3.270[—4]
—2.845[—4]
—2.811[—4]
—2.794[—4]

E2 from
pair equation'

—3.6965[—2]

—4.4095[—2]

—4.4922[—2]

—4.5113[—2]

—4.5320[—2]

—4.5832[—2]

'Second-order electrostatic correlation energies obtained by using the relativistic pair equation
(L,„=4): Ref. 41.

culations are tabulated in Table II. The DF energies
computed with the three basis sets are identical because
all of them contain the same 14s GTF's. They differ only
in the order of partial-wave expansion, L,„, the highest
angular momentum of the spinors included in the virtual
space.

Lindroth ' used relativistic pair equations to compute
second-order energies of He and He-like ion s using
L,„=4. For all the systems considered, our second-
order results obtained with L,„=4agree well with those
reported by Lindroth. For lower-Z cases, in particular,
the agreement is excellent. Thus the error in the second-
order energies due to basis-set truncation is small (0.15

and 0.10%, respectively, for the Z =2 and 10 cases).
With increasing Z, however, there is a systematic devia-
tion between our E2 and those obtained by Lindroth.
This deviation may be attributable to the fact that our
calculations treat the nucleus as a finite body of uniform
proton charge distribution, whereas Lindroth uses a
point nucleus approximation.

Along the entire He isoelectronic series, the second-
order electrostatic correlation energy remains almost
constant, with a slight increase in magnitude as nuclear
charge increases. The magnitude of the third-order ener-

gy, however, decreases dramatically as Z increases, indi-
cating that the perturbation series converges faster at

TABLE II. Basis-set composition for He. '

10 362.85

4335.033
1813.450
758.6100
317.3450
132.7531
55.533 86
23.231 16
9.718 158
4.065 342
1.700 631
0.711 415
0.297 602
0.124 494

S 1/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

I 1/2
3/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

d3 /2
5/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

Symmetry

fsyz
7/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

9/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

h 9/2
11/2

B,C
B,C
B,C
B,C
B,C

111/2
13/2

C
C
C
C

'3, 8, and C specify the exponents of the basis sets, 14s 10p 8d7f6g, 14s 10p 8d7f 6g 5h, and 14s 10p 8d 7f6g 5h 4i, respectively.
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TABLE III. The effects of the basis-set size on the second-
order energy in He (a.u. ).

Basis set hE,

10 12

14s 10p 8d 7f6g 5h

16s10p8d7f 6g5h
14s12p8d7f 6g5h
14s10p 10d7f6g 5h

14s 10p 8d 9f6g Sh

14s10p8d7f 8g5h
14s 10p 8d 7f6g 7h

—0.037 059 3
—0.037 059 3
—0.037 059 4
—0.037 059 5
—0.037 059 9
—0.037 061 9
—0.037 068 9

0.000 000 0
—0.000 000 1

—0.000 000 2
—0.000 000 6
—0.000 002 6
—0.000 009 6

FIG. 1. Third-order Goldstone diagrams.

higher Z. For highly ionized species (Z ) 30), the
second-order perturbation correction alone is capable of
accounting for over 99% of the correlation energy, and
the third-order correlation correction may not be neces-
sary at all for correlation corrections in most applica-
tions. The DF independent-particle approximation is an
accurate approximation to the exact N-particle eigen-
function of the no-pair Hamiltonian in highly ionized
species.

We have explored the dependence of the partial wave
contributions on the number of basis functions per k
value for up to L,„=5. Table III shows the effect on
the second-order energy in He of using a larger basis set
for each symmetry species. AE2 represents the increase
in second-order energy due to the use of a larger basis set.
The reference E2 used for the comparative study is the
value obtained by using 14s10p8d7f 6g5h basis given in
row B, Table I, which is reproduced in the first row of
Table III. The effect on the E2 of using, respectively, 16s,
12p, and 10d instead of using 14s, 10p, and Sd is seen to
be negligible. This implies that the basis sets used for
these symmetry species are nearly saturated. However,
the effect of using larger basis sets in f, g, and h symme-

try is noticeable, the improvement in E2 being on the or-
der of 10 a.u. The basis sets used for f, g, and h sym-
metries are not saturated. This is a consequence of using
smaller basis sets for the f, g, and h partial-wave expan-
sions.

Table IV displays results for He atom together with the
numerical limits calculated by Blundell et al. Our
DFSCF total energy and nonrelativistic limit agree well
with the results of Blundell et al. In particular, the
difference between the DF energy and the nonrelativistic
limit, E„~—E„„,is in excellent agreement with the nu-
merical limit.

The Coulomb correlation corrections computed with
the 14slOp8d7f 6g5h4i set (L,„=6)do not appreciably
improve on those obtained with the 14slOp8d7f6g set
(L,„=4). E2+E, obtained in both these calculations
account for approximately 97% of the limiting electro-
static correlation energy of —0.042043 a.u. The results
of Blundell et al. (Ref. 42, Table V) show that improve-
ment in the computed all-order correlation energy ob-
tained using a partial wave expansion with L,„=7over
that obtained with L,„=4is only 0.4%. The relativistic
MBPT correlation corrections, then, would probably not
improve with a higher-order partial-wave expansion
(L,„)6). The [2/1] Pade approximant, E(2&,1, im-
proves the computed correlation correction by another
1%, thereby accounting for 98.3% of the total correla-
tion correction. Obtaining the remaining fraction of the
correlation energy of the He atom requires perturbation
corrections of fourth or higher order.

Tables V and VI show results for Ne and Ar computed
with increasing L .,„. For both Ne and Ar, the second-
and third-order electrostatic correlation corrections im-
prove noticeably as L,„ increases. Basis-set composi-
tions of some representative GTF basis sets for Ar are
given in Table VII. Table VIII summarizes the relativis-

TABLE IV. Comparison of calculated MBPT energies of He with the numerical limits (Ref. 42).

Present work'
DF energy
Eq+E3
E[2/1]

—2.861 812 04
—0.040 904 16
—0.041 330 63

—2.861 678 74
—0.040 904 97
—0.041 330 98

rel nr

—0.000 133 30
0.000 000 81

Numerical limit
DF energy
Correlation

—2.861 813 34
—0.042 043 15

—2,861 679 99
—0.042 044 39

—0.000 133 35
0.000 001 24

'Computed with a 14s 10p8d7f 6g5h4i GTF basis set.
Reference 42.
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Basis set

TABLE V. Calculated energies of the neon atom (a.u. ) (Refs. a and b).

E E3

14s 10p 8d
14s 10p 8d 6f
14s10p8d6f Sg
14s 10p 8d 6fSg4h
14s10p8d6f Sg4h4i

Relativistic

—0.322 010
—0.358 897
—0.372 847
—0.378 067
—0.380 411

Nonrelati vistic

—0.321 735
—0.358 646
—0.372 607
—0.377 832
—0.380 180

Relativistic

+0.001 400
+0.000 410
+0.001 099
+0.002 058
+0.002 652

Nonrelativistic

+0.001 358
+0.000 366
+0.001 054
+0.002 015
+0.002 609

'DF energy and the nonrelativistic limit (c =10 a.u. ) computed with GTF basis sets are, respectively, —128.691639 and
—128.546 839 a.u.
DF energy and the nonrelativistic limit computed with the numerical finite difference computer program of Desclaux are, respective-

ly, —128.6919 and —128.5471 a.u.

tic MBPT results for these systems and results of previ-
ous non relativistic calculations in which correlation
corrections have been calculated. In contrast to the He
case, the [2/1] Pade approximants do not improve the
correlation energy. Convergence of the perturbation ex-
pansion is good. More accurate correlation energies for
these systems require higher-order partial-wave expan-
sion calculations rather than higher-order perturbation
corrections. That is gratifying because, for truly many-
electron systems, such as Ar, computation of the fourth-
order perturbation correction becomes time consuming.

Using a finite-difference pair equation approach,
Lindgren and Salomonson computed the nonrelativistic
second-order correlation energy of Ne using a partial-
wave expansion with L,„up to 6. A V potential was

employed in their calculations. With L,„=6, they ob-
tained E2 = —0.383 55 a.u. This value is to be compared
with our nonrelativistic limit, —0.380 180 a.u.

Jankowski et al. " used a large basis of STF to calcu-
late nonrelativistic second- and third-order correlation
energies for the Ne atom. Our nonrelativistic correlation
correction, E2+E3 (

—0.377 57 a.u. ), compares well with
their reported value of —0.37980 a.u. obtained with a
partial-wave expansion employing up to i-type STF. Das
et al. have estimated the "experimental" correlation en-

ergy of Ne to be —0.3890 a.u. Our computed correla-
tion energy accounts for 97%%uo of this estimated energy.

Quiney et al. have computed the second-order
Dirac-Coulomb correlation energy of Ar. They used a
large basis set of 17 STF of noninteger quantum number
in each symmetry with up to f-type basis functions. A
V potential was used to generate virtual spinors up to

L,„=3. The point nucleus approximation was em-
ployed in the calculations. Ez thus obtained was
—0.639 424 a.u. This is to be compared with our
second-order energy, —0.633 833 a.u. obtained with
L,„=3. Assuming that the effect on E2 of treating the
nucleus differently is small, the discrepancy of 0.0056 a.u.
between the two results is best attributed to basis-set
truncation error in our calculations. Expansion of a GTF
basis set to a size necessary to eliminate truncation as the
primary source of error effectively restricts the MBPT
calculations to second order without the use of a super-
computer. Recalling that accurate correlation calcula-
tions on this system require inclusion of a partial-wave
expansion with L,„&&3, evaluation of even the third-
order term may be expected to be time consuming.

Cooper and Kelly performed a nonrelativistic MBPT
study on the Ar atom. In their numerical finite-difference
Hartree-Fock scheme, a V ' potential was used to gen-
erate the virtual single-particle states with a partial-wave
expansion of L,„ through 3. A correlation energy of
—0.685 a.u. was determined. This value includes an esti-
mate of the fourth-order four-body contribution of —0.01
a.u. This value may be compared to our Dirac-Coulomb
correlation energy (E2+E3) of —0.695 126 a.u. , obtained
with a partial-wave expansion of L,„ through 5.

Taking the first eight ionization potentials reported by
Moore together with theoretical results on Ar+ report-
ed by Sherr et al. , Cooper and Kelly estimated the
correlation energy of Ar to be —0.73 a.u. In another
study, Clementi estimated the value to be —0.692 a.u.
Taking into account errors of basis-set and partial-wave
expansion truncation, we estimate that our computed

Basis set

TABLE VI. Calculated energies of argon atom (a.u. ) (Refs. a and b).

E3
Relativistic Nonrelativistic Relativistic Nonrelativistic

16s 1 1p 9d
16s 1 lp9d7f
16s 1 lp9d7f 6g
16s 1 lp9d7f 6g Sh

—0.542 645
—0.633 833
—0.669 685
—0.682 257

—0.541 450
—0.632 753
—0.668 673
—0.681 283

—0.009 512
—0.014 637
—0.014 770
—0.012 869

—0.009 571
—0.014 721
—0.014 858
—0.012 953

'DF energy and nonrelativistic limit obtained with GTF basis sets are, respectively, —528.681 482 and —526.815 735 a.u.
DF energy and nonrelativistic limit calculated with the numerical finite difference program of Desclaux are respectively, —528.683

and —526.818 a.u.
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TABLE VII. Basis-set composition for Ar (Ref. a).

1192038.6
176 715.15
40 309.619
11 089.577

3461.2322
1163.6413
409.93944
153.084 37
60.6375 11
25.040 039
10.550 746
4.571 726
2.015 611
0.836 350
0.332 530
0.125 515

S 1/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

P 1 /2
3/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

Symmetry

3/2
5/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

fsyz
7/2

A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C
A, B,C

9/2

B,C
B,C
B,C
B,C
B,C
B,C

h9/,
11/2

C
C
C
C
C

8, and C specify the exponents of the GTF basis sets, 16sllp9d7f, 16sl lp9d7f6g, and
16s11p9d7f6g5h, respectively.

Coulomb correlation energy of argon is accurate to
within 4%.

Table VIII also shows the breakdown of E3 into hole-
hole (h-h), particle-particle (p-p), and hole-particle (h-p)
contributions. For both Ne and Ar, h-p contributions are
as large as the sum of p-p and h-h in magnitude, but with
opposite sign. Cancellation of terms makes F3 an order
of magnitude smaller than the h-p contributions. Table
IX shows the breakdown by diagram of E3 of argon. See
Fig. 1.

For all the systems studied, the Coulomb correlation
energies computed with the Dirac-Coulomb Hamiltonian
are different from those computed at the nonrelativistic
limit, simulated by setting the speed of light c to 10 . The
difference represents the "interference" between relativis-

tic and correlation effects. Comparison of the He, Ne,
and Ar results shows that nonadditivity increases in mag-
nitude with increasing Z. In helium the nonadditive con-
tribution is about 10 a.u. , increasing in argon to 10
a.u.

IV. CONCLUSIONS

The aim of this study has been to develop a relativistic
MBPT scheme which can practically be applied to truly
many-electron atoms and molecules. The Gaussian
basis-set calculations have yielded accurate results for
highly ionized systems, and show none of the signs of
near linear dependence problems reported with Slater

TABLE VIII. Coulomb correlation energies of Ne and Ar (a.u. ).

Ne' Ar

ED
E
E3(h-h)
E3 (p-p)

E3 (p-h)

E2+E3
E(2/1)
Previous work

Relativistic

—128.691 639
—0.380411
+0.040 030
+0.052 307
—0.089 684
+0.002 652
—0.377 759
—0.377 777

Nonrelativistic

—128.546 839
—0.380 180
+0.039 974
+0.052 257
—0.089 622
+0.002 609
—0.377 571
—0.377 588
—0.379 80'
—0.3890

Relativistic

—528.681 482
—0.682 257
+0.056 905
+0.083 854
—0.153 629
—0.012 869
—0.695 126
—0.695 373

Nonrelativistic

—526.815 735
—0.681 283
+0.056 882
+0.083 862
—0.153 696
—0.012 953
—0.694 236
—0.694487
—0.685'
—0.73'

'Computed with 14s 10psd6f 5g4h4i basis set.
bComputed with 16s11p9d7f6g5h basis set.
'Reference 44.
Reference 45.

'Reference 47.
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Diagram of Fig. 1

1

2
3
4
5

6
7
8

9
10
11
12

Value (in a.u. )

+0.133614 6
+0.088 651 1

—0.181 727 0
—0.190691 0
+0.153 447 8

+0.013 597 5
—0.031 746 2
—0.049 760 3
+0.061 960 9
+0.061 960 9
—0.036 088 9
—0.036 088 9

'Computed with a 16sllp9d7f6g5h GTF basis set.

TABLE IX. Third-order correlation energies of Ar {Ref.a). suffices for highly ionized species. For Ne and Ar, the
remaining error is due more to truncation of the partial-
wave expansion than to termination of the perturbation
expansion.

In the present study, the Breit interaction has been
neglected; the two-electron interaction has been treated
"nonrelativistically" as the instantaneous Coulomb repul-
sion. The leading effects of transverse photon exchange
may be included in the Hamiltonian by adding the
frequency-independent Breit operator to the instantane-
ous Coulomb operator. Such an approach has been taken
in recent studies by Johnson et al. ,

' Lindroth, ' and
Quiney et al. As argued by Sucher, such an ap-
proach has the advantage that all effects through order o.
are included in the zero-order Hamiltonian. Work along
these lines is already in progress.

function basis sets. ' ' Thus the use of GTF basis sets in
relativistic SCF and MBPT calculations on atoms and
molecules seems more appropriate that STF. The results
reported in the present study indicate that a moderately
large GTF basis set is suScient to account for 97%%uo of the
total electrostatic correlation energy for the species con-
sidered in the present study. Third-order MBPT has
proven to be adequate to recover almost all electrostatic
correlation energy in neutral atoms, and second order
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