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Three-center Gaussian-type-orbital integral evaluation using solid spherical harmonics
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An analysis of various approaches to evaluating overlap and Coulomb rnatri. x elements involving
Gaussian-type-orbital primitive functions whose angular parts are solid spherical harmonics is

given. Direct (angular momentum) coupled, direct uncoupled, and recursive evaluations are con-
sidered. The direct uncoupled evaluation involves some remarkably simple and transparent expres-
sions. Using n-j symbols on a computer requires enough intermediate summations that uncoupled
methods are best, particularly for higher angular momentum. Recursive methods may be competi-
tive for low angular momenta.

I. INTRODUCTION

The Gaussian-type-orbital (GTO) approach to the cal-
culation of the electronic structure of molecules within
local-density-functional (LDF) theory is well estab-
lished. ' Because the one-electron potential is fitted to
a single-center GTO expansion in these approaches, they
require only three-center integ rais, a considerable
simplification over ab initio approaches, which require
four-center integrals. (The electron-nuclear term is al-
ready three-centered and neglected in the following. )

Furthermore, these methods are simpler than hybrid
GTO methods in which only the LDF approximations to
the exchange and correlation functionals are fit, because
the electron-electron Coulomb repulsion problem itself is
four-centered.

Two reasons drive three-center GTO LDF methods to-
ward routinely including higher angular-momentum basis
functions than are routinely included in GTO ab initio
methods. First, fitting the entire potential greatly
reduces the number of integrals to be processed. This al-
lows larger atomic basis sets of each angular momentum,
but relatively early in the process of augmenting these
basis sets for the molecular environment it becomes more
efficient to add polarization functions, which typically
have one unit higher angular momentum. Second, fitting
the potential can involve basis functions having twice the
angular momentum of orbital basis functions, unless off-
center functions are used.

To see the second point, consider the linear-
combination-of-atomic-orbitals (LCAO) philosophy itself.
In the LCAO approach the optimal orbital angular
dependences are the spherical harmonics of orbital angu-
lar momentum appropriate to each electronic subshell.
Because a central potential is required for atomic orbitals
to be eigenstates of angular momentum, a philosophically
consistent LCAO approach to fitting the potential would
yield a superposition of spherically symmetric atomic
central-field potentials. As implemented in either the
muffin-tin or self-consistent-charge approximations,
such an approach yields a simple and quite reliable
description of molecules. An exact solution, however, re-

quires either more centers or nonzero-angular-
momentum functions.

To get some idea of the range of nonzero-angular-
momentum functions that might be necessary to fit
molecular potentials accurately, consider the treatment
of atoms beyond the central-field approximation. The
most important and difficult term in the potential to fit is
the electron-electron Coulomb potential because it is the
largest and the most rapidly varying part of the electron-
electron potential. The highest angular variation of the
charge density is easily established. The charge density,
being the sum of the magnitudes squared of the orbitals,
has components having twice the angular momentum of
the open-shell molecular orbital of highest angular
momentum L. The angular variations of the charge den-
sity are preserved upon integration of Poisson's equation;
therefore, the Coulomb potential also has components up
to this same limit 2L. Either fit must be variational in the
high accuracy limit. Although it is possible to varia-
tionally fit the electron-electron Coulomb potential
directly, ' '" the most efficient calculations at high accu-
racy fit the charge density instead, because it is easier to
determine an appropriate radial GTO basis.

In other words, given this increased simplicity of
three-centered GTO methods, it is natural to consider
larger and higher-angular-momentum basis sets. Using
these larger and more complex basis sets leads to in-
creased accuracy in the one-electron orbitals. In order to
ensure that this increased accuracy manifests itself in an
equally accurate total energy (apart from questions of
overcompleteness which are not addressed here) one must
have the possibility of using high-angular-momentum
fitting functions in the charge-density fitting basis. A
reasonable upper limit on fitting-function angular
momentum is twice the maximum orbital angular
momentum on each center.

In considering higher angular momentum, it is
beneficial to switch from Cartesian Gaussians' ' to solid
spherical harmonic Gaussians. ' '" The first advantage in
doing so is to eliminate unwanted basis functions such as
r~ from the d shell and xr, yr, and zr from the f shell.
But there are additional advantages. First, the basis
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functions have the same angular dependences in both po-
sition and momentum space, in contrast to the
Cartesian-Gaussian —Hermite-Gaussian ' Fourier trans-
formation pairs. Second, the recursion relations yielding
all solid spherical harmonics are essentially as simple as
those relating Hermite-Gaussian functions. Finally,
vector-coupling coefficients can be used to write compact
expression for matrix elements. '

While vector-coupling coefficients enable compact ex-
pressions for matrix elements such expressions are not
necessarily optimal for machine computation. This is be-
cause in efficient quantum chemical calculations one
needs to minimize the number of machine operations per
usable integral. If vector-coupling coefficients are com-
puted individually as they are needed, then their compu-
tation on average requires too many rnachine cycles. So
they must be precomputed as a transforming array, ' '
which rapidly becomes large. For f electrons and four
centers the number of distinct matrix elements and thus
the transforming array dimension, N, is 7 =240 1 . (For
three centers, one of which has twice the angular mornen-
tum of the other two f centers, N is only a factor of 4
smaller. } The transformation to the coupled space costs
several N operations after which (for scalar matrix ele-
ments) one faces a computation that is simplified by at
most the modest factor of the ratio of the number of ways
four angular momenta can be coupled to zero total angu-
lar momentum to the number of all possible angular cou-
plings.

There is another reason to consider an uncoupled ap-
proach, beyond the fact that the computational saving
due to an angular momentum coupling is not overwhelm-
ing. Coupling two solid spherical harmonics to a specific
final angular momentum yields a result that is propor-
tional to the result of coupling two spherical harmonics
with different angular momentum quantum numbers but
the same sum of L and M quantum numbers to the same
final total angular momentum�. Thus the order in which
the angular mornenta are coupled becomes unimportant.
This special feature of the spherical harmonics lies out-
side a direct application of angular momentum theory
and affords numerous relationships between special n-j
symbols. ' Such simplifications are easier to see in an un-
coupled or partially coupled approach. This work ex-
plores efficient means to evaluate the uncoupled high-
angular-momentum three-center integrals that might be
used in self-consistent-field (SCF) LDF molecular calcula-
tions.

II. PRELIMINARY DETAILS

A practical Gaussian basis set for three-center GTO
LDF calculations is Gaussians multiplied by a solid
spherical harmonic ' to give the appropriate angular
dependence. Including an extra factor of (

—1 ) in the
definition of the solid spherical harmonics,

1 /2

[aA+PBj"= g A, +p A,
—p

APL —A.

[ AjA. ~BjL
—

A.

This expression, written in its simplest form, does not ob-
viously display the fact that both sides of the equation
transform like Y'"( 0,$ ) under rotations of the coordi-
nate system. The coefficient,

L M
1 /2

L +M L —M

where Yz~(8, $) is the spherical harmonic of Edmonds'
and C~ '( 8,$ ) is the corresponding spherical tensor,
yields p-like real solid ha™onicshaving a familiar fo™,
+x, +y, and +z, for L = 1. Conventionally ' the com-
plex solid harmonics are denoted by an italic Y. Prirnari-
ly to have more compact equations, they will be denoted
by curly braces, t r j ~, and the corresponding real solid
harmonics by angular braces, ( r )M, herein. The real
solid spherical harmonics corresponding to the complex
harmonics of Eq. ( 1 ) are given in Table I. In the table
m = 1 corresponds to complex M= 0 in Eq. ( 1); otherwise
m =2M and rn =2M + 1 give &2 times the real and
imaginary parts, respectively, of the complex M & 0 solid
harmonics. The [r j ~ for all M form a complete set of
linearly independent homogeneous polynomials of rank L
in three dimensions

The (unnormalized) complex basis functions under
consideration can be written in two ways:

( r —c j ~exp[ —a( r —c)']
=

t V, j ~exp[ —a(r —c) ]/(2a), (2)

where V, is the gradient with respect to the center at c.
A related equality holds for any rotationally invariant
function of r —c. This equality is a consequence of the
fact that ( r j, , where the dot stands for any magnetic
quantum number, is proportional to r multiplied by itself
L —1 times, each time coupling to highest angular
momentum. If any one of the powers of V, on the right-
hand side (rhs) acted on other than the exponential term,
then two powers of r would be lost and maximum cou-
pling could not be achieved. Using differential operators
and interchanging differentiation and integration allows
all higher-angular-momentum matrix elements to be writ-
ten as derivatives of s-type matrix elements. (This ap-
proach and much of the work herein can be extended to
any type of basis function. ). In general, two-, three-,
and four-center integrals become, respectively, products
of two, three, and four solid spherical harmonics of V
about the various centers operating on an s-type integral.

A few simple formulas are all that are necessary in or-
der to compute the general three-center matrix elements
in the uncoupled approach. Most important is the addi-
tion theorem for solid spherical harmonics, '

1 /2
L +M L —M

4m=( —1 )

—
( 1 )MrLC(L)(g y)

"Yr~(' 4)
however, contains precisely the magnetic quantum num-
ber dependence of the appropriate vector-coupling
coefficient, '
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TABLE I. The real solid harmonics ( r )' are defined in Eq. (1).

1(3 2 2)
2

&3xz
&3yz

&3/4(x —
y )

&3xy

2z(5z —3r )

v'3/8x(5z —r )

&3/8y(5z —r )

&15/4z(x2 —y')
&15xyz

&5/8x(x' —3y )

&5/8y(3x —y )

1

2
3

4
5

6
7
8

9
10
11

-'(35z —30r z +3r )

&5/8xz (7z —3r ')
5/8yz(7z —3r )

5/16(x y )(7z r )

&5/4xy(7z —r )

&35/8xz(x —3y )

&35/8yz(3x —y )

&35/64(x —6x y +y )

&35/4xy(x —y )

-'z(63z —70r z +15r )

&15/64x(21z —14z r +r )

&15/64y(21Z —14z r +r )

&105/16z(x —y )(3z —r )

&105/4xyx ( 3z' —r ')
v'35/128z(x —3y )(9z —r )

&35/128z (3x ' —y ')(9z' —r')
&315/64z(x —6x y +y')

~315/4xyz(x' —y')
&63/128x(x —10x y +5y")
/63/128x ( 5x —10x y +y" )

L I
p

' 1/2
2L

(A]u (L —
A, )(M —p)ll(L —k) LM),

Using these definitions Eq. (3) can be written in coupled
form,

1/2
2L

A+PB j
L —g ]PL iL

( {A j
i

{Bj
I —il.

}J

that is needed to make Eq. (3) transform properly. The
symbol defined by Eq. (4) can be distinguished from the
binomial coefficient by its four, not two, arguments. The
special vector-coupling coefficients encountered in this
work are particularly simple —a single-term
expression —because they describe maximal angular
momentum coupling. Proving Eq. (3) is simplified by us-

ing the fact that both sides transform as spherical tensors
under rotation of the entire coordinate system. Writing
the appropriate coupled equations is aided by additional
notation,

(L]M] L2M2IL]L2 JM){ Ajl' {Bj]]r', ,
M), M2

where dots have been used to unobtrusively indicate the
summation over magnetic quantum numbers of the right
hand side of this equation. If its left-hand side (lhs) is
desired in uncoupled form, as will generally be the case in
integral evaluation, the well-known orthonormality prop-
erties of the vector-coupling coefficients can be used, '

= y (L,M, L2M2{L,L2 JM)({Aj. '{Bj,')~ .

(7)

(8)

{rjt=(x+]y) V (2L)!/(2L)!!,

and for such solid harmonics the rhs of Eq. (3) only in-
volves such solid harmonics.

As a special case, Eq. (3) gives the result of a solid har-
monic of V operating on a product of functions,

{Vjlf,(r}f,(r)
= {v]+v2lMf](r}fi(r)

L M
{v] jp{v2 jM ]J](r}f2(r}—

1/2
2L

( {v, j'. {v, j'. -')Mf, (r)f2(r), (10}

Equation (8) appears slightly more complicated when
written in coupled form, because of the vector-coupling
coefficient implicitly required here, which in general
would require a summation for its evaluation. This
difference indicates that it is worth investigating whether
or not it is more advantageous to evaluate high-angular-
momentum matrix elements without coupling their angu-
lar momenta.

One need only establish Eq. (3) or Eq. (8) for a particu-
lar value of M. For M =L the solid spherical harmonics
are simplest,
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where the subscripts 1 and 2 indicate which of the two
functions is to be operated upon. The convention for the
rest of this section will be to express each equation in two
ways, a coupled version and an uncoupled version. The
uncoupled version of each pair will appear above its cou-
pled counterpart.

Using the uncoupled version of Eq. (10) for d, f, and g
solid harmonics of V is aided by Tables II and III.
Operating with a single L&0 spherical harmonic on a
product of two functions of r yields two trivial terms at
least. The first trivial term is to operate on the first factor
alone, and the second trivial term is to operate on the
second factor alone. These trivial terms are omitted from
the tables. For L ) j. nontrivial, cross terms arise. An en-

try in Table II means that the corresponding d or f solid
harmonic of V from the left-hand column of the table
acting on a product of functions includes a cross term in

I

which a p function from across the top of the table acts
on one of the two product functions while the entry in

the table acts on the other. Unless the two spherical har-
monics in the decomposition are identical, a second term
must be included in which the two factors of the original
spherical harmonic each act on the opposite function of
the original product. For the g solid harmonics of Table
III, two types of cross terms arise that are distinguished
by the two separate parts of the table. The first three
columns include the terms in which harmonics having
three units of angular momentum act on one function
while harmonics having one unit of angular momentum
act on the other. The last five columns include terms in
which the angular momenta are divided equally. A use of
these tables is to evaluate the action of & V ), on the prod-
uct f, (r)f~(r),

( V )sf, ( r )fz ( r ) = ( V, )sf, ( r ) ( V~ )ofz ( r ) + & V, )Of, ( r ) ( V z )Lfz ( r )

+&14[(V, )sf, (r)( Vz) zf&(r)+ ( V, )zf, (r)( Vz) 6f&(r)]
—&14[(V,)7f, (r)(vz)3fz(r)+ & V, )If, (r)& Vz)~f &(r)]

+&35[(V, )4f, (r)( V~)4f~(r)+ & V, )5f~(r)( V, )g~(r)] .

The two complex solid spherical harmonics correspond-
ing to the real (V)s and (V)9 are (V}+4. For both of
these Eq. (10) gives five terms rather than the eight terms
of Eq. (11).

The final two basic relationships used in this work in-
volve differentiation of the solid harmonics. The first is
the solid harmonics of V operating on the solid harmon-
ics of r,

where QIJ is one if I =J and zero otherwise. Apart from
the double factorial the coeScients of the uncoupled ver-
sions of Eqs. (3) and (12) involve the same coefficients.
The final relationship,

[aA+pB}LM=A!g ~ [ A}„"[aA+pB}M
c)a p

Ir}M ~JL —h. ~

L M
([V}„')"[r}M=(2~—I)" g [r}M-'„

p

([V}.jr}.)M=( —1) (2X—1)!!
' 1/2

2L +1
X

(12)

([ A}".[a A+pB}. )M,

(13)

is particularly important in the GTO LDF approach,
where integrals of the total electron density are fit.
Atomic charge densities have shoulders in the radial
direction caused by the electrons in filled inner shells.

TABLE II. Nontrivial terms in differentiation of a product of functions with respect to the d and f
real solid harmonics of V from Eq. (10).

&v)'
(v)',
(v),'
( v).'
&v&'

&v)',
(v),'
(v),'
( v),'
&v),'
&v&,'
(v&',

& v),'

2& v),'
&3& v &,

'

v'3(V),'

3(v)'
&8& v &,

'
~8&v&',
&s( v),'
&s&v)',

&v&,'

-(v&,'

v'3& V &,
'

&3&v&,'

—v'3( V &'

&6& V &', —v'I/2& V &',

—JI/2& v)',
&s&v&',
&s&v&'

&15/2( V )4

&15/2( V )',

(v&,'

-(v),'

—v'3& V &,
'

—&3&v)'
—& I /2( V ) 5

&6(v)', +&I/2& v&',
—&s&v)'
&s&v&,'

—&Is/2( v &'

&15/2(v)4
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Fitting such densities to a sum of simple s-type Gaussians
results in sign alternation among the coefficients and less
numerical stability than adding enough r fitting func-
tions,

2= a(r —c) exp[ —a(r —c) ]=— exp[ —a(r —c) ],Ba
(14)

0

0

20

C5

Vt
V

bQ
V

0
V
V

~ baal

0
V

0
O

0
C4
c5

0
0

~ Tel

05
~ &
C
V

'a
~ W

6

05
~ W

~ %~+I

0

~ evW~

I

tV W cv vl

WCV

tV E4

I I

C4 ~ tV hl hl & A 4

I' ~+~

iO V1

I

+ &
W CV

I

~mv

I&

iO

a. ~m ~an [m ~m lr lr-

to give s-type fitting coefficients that are all positive, at
least for the large exponents that dominate the core re-
gions of the atoms.

Equation (13) does not trivially follow from Eq. (8).
The fact that the coefficients are the same apart from k
factorial is the result of the fact that

L
( I r }'[r}' ')M =

t r }xr g

' 1/2
2L
2A,

(15)

which in turn is a special case of spherical harmonic
product formula,

Li L2 J
Ir}~', [r}M',= X(—1) [J] p p p

J,M

L, L2 J
x I }

(16)
Li L2 J

(Ir} '[r} ')M=( —1)'&[~]
() () ()

&'"Ir}M

where [L l, L2, . . . ]=(2L, + 1)(2L2+ 1) . Unless J
equals L, +L2 —2n where n is some integer, the 3-j sym-
bol' that is common to both equations vanishes. In that
case the lower of these two equations is trivial.

Equations (3), (10), (12), and (13) are all that are neces-
sary in a direct (uncoupled) computation of&all higher-
angular-momentum matrix elements from s-type matrix
elements involving any number of centers. No limits on
the summations are given in these equations because the
angular momentum triangular conditions of angular
momentum theory are preserved through the binomial
coefficients of Eq. (4) that obviously vanish outside the al-
lowed ranges.

Because the magnetic quantum number dependences in
the uncoupled versions of the equations to follow will
occur only in the combination,

L M
M Ir}„'= g (17)

this special symbol is conveniently defined. The right su-
perscript is the subtrahend angular momentum A, , rather
than the resultant angular momentum L —k. This choice
makes apparent the scalar (under rotation of the coordi-
nate system) nature of the various products of the sub-
trahend angular momenta that will occur. The scalar
coupling occurs even though the equations are written in
uncoupled form.

The principal advantage of the uncoupled approach is
now immediately obvious. The final magnetic quantum
number dependence of any matrix element wi11 be given
simply by the multiplication of an intermediate quantity
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by this matrix, Eq. (17). The disadvantage of the uncou-
pled approach is the proliferation of solid harmonics,
e.g., Eq. (10), which grows rapidly with the number of
centers. The uncoupled approach is clearly better for up
to three centers, even without the simplifications that are
described in the following sections.

III. TWO-CENTER OVERLAP INTEGRAL

such integral, the two-center overlap integral. Apart
from a position-independent factor, the two-center s-type
overlap integral is another Gaussian,

Iexp[ —a(r —a) ]exp[ —P(r —b) ]dr
3/2

exp — (a—b) . (18)a+

It is most convenient to begin a study of the relative
merits of computing GTO LDF matrix elements in their
coupled or in their uncoupled forms with the simplest

I

Therefore, the two-center overlap integral of arbitrary
angular momentum can be expressed in uncoupled form,
using the uncoupled forms of Eqs. (10) and (12),

' LI+L~ —
A,

IV, j~ IV&jM'exp — (a —b) =exp — (a —b) g( —1) '
(2A, —1)!!a+ a+

A, ~p,
a+

x M', Ia-bj„M, ta-bj (19)

where V, is the gradient with respect to a. For each subtrahend angular momentum, A, , the summation over p, yields a
coupled quantity that is invariant under rotation, as must be the case for this overlap integral to be consistently calcu-
lated in any coordinate system. Note that this equation factors into a product of the matrices of Eq. (17).

Equation (19) can be extended to other functional forms,

f VjM' tV jM F(/r+a/ )= g( —I)"(2A,—1)!!I'Ir+aj„sr' [r+aj"„2 ' ' F ' ' (/r+a/ ), (20)
A, ,p

where
N

F ( r+a~ )= F(~r+a~ ) .a
alr+al'

(21)

Now the phase factor is simplified because the two V
operators are the same in Eq. (21), but equal to the nega-
tive of each other in their effect in Eq. (20). Although
this expression is valid for any function F( ~r+a~ ) that is
invariant under rotation of the entire coordinate system
(including the coordinates of every atom), it is simplest

for Gaussians. For Gaussians, F(r ) =exp( r), and—
F =( —1) exp( r)—, (22)

thus for the products of Gaussians and indefinite in-
tegrals of products of Gaussians that are met in the GTO
methods, no inverse powers of r or other singularities
arise from the operation of Eq. (21).

The other approach to the two-center overlap integral
is to couple the angular momenta of the two solid har-
monics of V, using Eq. (16),

L] L2 J
([Vj. 'IV j. ')srF(ar )=(—1) +[J] 0 0 0 V "tV jF(ar )

L] L2 J n (J+n ——')!
=( —1) 2"(2a) +"v'[J]

0 0 0 g, (2ar )'[rjsrF ' ' (ar ), (23)

where

(n —
—,')!=I(n+ —,')/I ( —,'),

and n is defined as before. This expression appears quite
different from Eq. (20). Compared to the former, it has a
single advantage, which is that one, rather than two, solid
spherical harmonics appear in the RHS. Counterbalanc-
ing this advantage are three disadvantages. First, and
most importantly, the magnetic quantum number depen-
dence of Eq. (23) cannot be factored after uncoupling the
two angular momenta using Eq. (6). Second, in general

the latter equation requires a summation over ~. Third,
the solid spherical harmonics of this equation have larger
angular momenta, because J ranges up to L, +L2.

The relative advantage of Eq. (19) over Eq. (23) is not
so strong as to rule out a hybrid approach. The A, =O
term of Eq. (19) is trivial and should always be computed
separately and used to initialize the matrix-element ar-
rays in the computer. The A,AO terms of Eq. (19) could
then be coupled to yield highest angular momentum
L

&
+L2 2, which is two units less than would have to be

evaluated in the direct coupled approach, Eq. (23).
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The three-center overlap integral,

I~Bc= exp —a r —a exp r —b

Xexp[ —y(r —c) ]dr, (24)

IV. THE SYMMETRIC THREE-CENTER OVERLAP
INTEGRAL

product of two (C!Iaussians,
' 3/2

exp — (a—b)ap
a+pIABC

2

y(a+P) aa+Pb
X exp ca+p+y a+p (2&)

is necessary for fitting LDF expressions for exchange and
correlation. This integral is most often expressed as a

The exponential factors of this equation can be symmetri-
cally expressed,

exp — (a —b) exp — c—aP 2 y(a+P) aa+Pb
a+ a+ +y a+

2

(26)

only as a product of three Gaussians. Differentiating either expression extends Eq. (19) to the three-center overlap in-
tegral for the case in which one of the centers has zero angular momentum associated with it,

IV IM [Vb]M IABc IABC
2a(P+y )

a+p+y
2P(a+y)
a+p+ y

X g (
—I )"(2A,—1)!!

2(P+y)(a+y)

A, Ll

Mi

A. L2
Pb+ yc
P+y P M2

aa+rc
a+r (27)

Fquation (27) is not as important in practical calculations as one might expect, however. The problem is that the argu-
ments of the two solid spherical harmonics are differen. The first 1s only 1ndependent of a, and the second 1s only 1n-

dependent of p. Therefore, two sets of solid spherical harmonics must be computed for each triplet of exponents.
A coupled version of Eq. (27) follows from the coupled forms of Eqs. (10) and (12), together with the evaluation of the

special 6-j symbol, '

L,
P

L2-~ L
2

2L i 2L2
2] u

1/2

L j +L2+J+ l L1+L2 J
2i 2A,

(28)

The coupled form of Eq. (27) is

2a(P+y )
( t Va I I Vb I )MIABC IABC

L)
2P(a+y )

a+p+y

L2

X g (2A, —1)!!
2(P+y)(a+y)

L) +L2+J+ 1 L]+L2 J

Pb+ yc
p+y

' L —A.
1 aa+rc

a+r
L —iE' J2

(29)

To complete this analysis of symmetric three-center matrix elements, one must consider the effect of operating on the
matrix elements of this section with [V, j M . Coupling the angular momentum of this third operator to the lhs of Eq.

3

(29) leads to a very complicated expression. In fact, the uncoupled approach is required if one wants to display the sym-
metry of the three-center overlap integral, under permutation of the various solid spherical harmonics of V. That ap-
proach first requires extending Eq. (20) to three V operators,
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2 A3

IVIM' IVJM' IVIM «~r+a~')= X (» ' ' ' «+')"
P1 P2 P3

]pk27X3

P] P2 P3

Ar2 k3

p p p Mi I aIpI

(3P)

where A=A, , +X2+A,3 and A/2 must be integral or the second 3-j symbol vanishes. The first 3-j symbol imposes the
constraint that the subtrahend angular momenta must couple up to be a scalar under rotation of the coordinate system.

Equation (3p) is easily extended to give the general three-center overlap integral in symmetric form,

L] 'L3
2a(P+y) 2P(a+y) 2y(a+P)
a+p+y a+p+y a+p+y

a+p+y
2

(A+ 1)!!
~2 ~3(p+y) '(a+y) '(a+

L2
'

A2 L3+
M a+y

p)

aa+Pb
a+pP2 M3

k3 k1 k2 k3
x

P1 I2 I 3 0 0 0
]' 2' 3'

P] P2 P3

A/2 L]

M]

Pb+ yc
p+y

(31)

Note that the L; and M; dependences of this equation can
be factored into a separate matrix multiplication for each
i. Unfortunately this expression can only be used for the
three-center overlap integral. Including one or two r
functions, Eq. (14), makes an unsymmetric expression for
the three-center overlap integral. For these, and intrinsi-
cally unsymmetric three-center integrals, such as the
Coulomb matrix element, another approach is required.

V. NONSYMMETRIC THREE-CENTER INTEGRALS

The alternative approach to the three-center overlap
integral does not treat the three centers a, b, and c
symmetrically. This second approach is necessary in

treating the unsymmetric Coulomb repulsion integrals.
It is convenient to define symbols for the two important
distance vectors,

aa+Pb
p=a —1, q=c-

a+p

ap 2 y(a+ p»
p )a+p ' a+p+y

%ith these definitions, the Coulomb repulsion integral of
a product of two s-type Gaussians on centers a and 1
with exponents a and p, respectively, repelling a single s-

type Gaussian on center c with exponent y,

exp —a r, —a exp — r, —1 exp —
y r2 —c r1 r2 r,2, (32)

becomes the simple product, exp( —P)F(Q), where

5/2
1

F(Q) = exp( —Qu )du .
(a+p)y [(a+p+ y ) ]'~

(33)

Such integrals are not symmetric in the three exponents, precluding a functional form similar to Eq. (31).
The coupled approach to differentiating exp( P)F(Q) is quite comp—licated and it will be pursued only so far as to

suggest the results of Ref. 15. Each V operator acts on both factors,

' L]

(IV ). [Vb). )Mexp( P)F(Q)= 'V~ Vq ' ' Vp Vqa+ exp( P)F ( Q) . — (34)

The rhs of this expression can be expanded using Eq. (8), and the operators can be regrouped according to which factor
they operate on using the 9-j symbols, '



42 THREE-CENTER GAUSSIAN-TYPE-ORBITAL INTEGRAL. . . 1135

( I V, I. '
I Vb ). ')Mexp( —P)F(Q) =

A, ],A2, J],J2

( 1) ] 2 ]

I ) L~ 2L i 2Lq

2k J 2k2

L 1 ~) ~l L)

X[L„L2,J],J2] L2 A2 A2 L2 .

J) J2 J

(( f V I, ' 'I V J. ' '). '
p( —&)( I V J. 'I V I. '). 'F(Q)) (35)

Within the J, and J2 couplings, the spherical harmonic product formula, Eq. (16), can be used to simplify this expres-
sion a little further. But the appearance of the 9-j symbol alone severely complicates machine computation of coupled
matrix elements. For f electrons (L, =L2 =3) the number of 9-j symbols needed to compute the matrix elements is al-

ready so large (J, and J2 can range up to 6), on the one hand, that they cannot conveniently be stored in current com-
puters. On the other hand, explicit calculation of the 9-j symbol requires a summation to reduce it to a product of three
6-j symbols and then a further summation to evaluate each 6-j symbol. In this case, despite the two maximal couplings
that appear in the 9-j symbol of Eq. (35), few of these summations are limited to one term.

It is much easier to proceed in the uncoupled approach, using Eqs. (10) and (12) as well as Eq. (Al. l) of Ref. 19 to
perform a summation over a magnetic quantum number,

' L]+L2

IV IM tVblM e"p( F)F(Q) ( I) e"p(

1],12'~1'~2

X g (
—1) '(2A] —1)!! ' Iq]„' '

Iq)

(36)

' I ] +12 —
A, ] 2

X
2y(a+ p) d a+p+ y l, +l, 22.,

-
+

a+P+y dQ

This expression confines the exponent of the third center, y, in the final summation. Thus the majority of the evalua-

tion can be precomputed on a computer. The full three-center overlap problem requires only the following relationship,

l] + l2

X3,P l P3

A] A2 A3 A] k2 A3

A /2 —
A,

~

F I 2I] +l2+L] —4+2,
3

I]+lp+L3 —A/2
2y(a+/)
a+P+y

(37)

For the three-center overlap integral, Eq. (31) is an al-

ternative to Eqs. (36) and (37). For this special integral
Eq. (31) requires summing over one less magnetic quan-
tum number and two less angular rnornentum quantum
numbers. On the other hand, solid spherical harmonic
computation can be taken outside the loop over ex-
ponents y in Eqs. (36) and (37).

factor out one power of that distance and commute it
through all other V operators. To that end a single solid
spherical harmonic must be factorized,

2
1/2

1/2

VI. RECURSION

Recursive methods involving solid spherical harmonics
and Gaussians are quite simple because a spherical har-
monic of V operating on a Gaussian is the same spherical
harmonic of some distance vector. A strategy then is to

+ (L +M)(L +M —1)
2L

1/2

+ (L M)(L —M —1)—
2L

] IrlM+]
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&r&~i=z&r&~i
L —1

2L

' 1/2

(x&r&L '+y&r&L3 '),

&r&2M LM z&r&2M +LM (x&r&2M —2 +&r&2M —1)

+LM ( +&r&2M+2 y&r&2M+3)

&r&2M+i=LM z&r&2M+,

+LM (x & r &2M —' i+& & r &zM —'2)

+LM ( X & &2M+3+~ &2M+2

(39)

For the real solid harmonics of Table I, this factorization
has three different cases,

[(L+M)(L+M —1)]'
2L

These equations could be used to generate the solid
spherical harmonics themselves, but more eScient
methods (requiring fewer terms than the five that in gen-
eral are required here) can be found if one allows equa-
tions that include spherical harmonics of three different,
rather than just two different, total angular momenta, al-

though computer times are quite similar if the LM and
LM are precomputed and stored in a short array.

Equation (38) or (39) alone can be used to recursively
generate single-center integrals. Multicenter integrals
also require the commutator,

[[Vb}M, ({a+j'{V. j
'

)M', ]

where

and

0 +(L M)—
L

which, apart from a spherically symmetric factor, is the
general result of operating with a single factor of V, on a
some s-type Gaussian matrix element involving centers a
and b. For the complex spherical harmonics this com-
mutator has three terms,

[[Vb }M ({a+A}~ [V j )M ]~L2 PL2M2L1M1 [Vb }M [V }M

L2 —1 Li —1 L2 —
1 Li —

1

2PL2M2 L,M—, [Vb }M +, [V, }M, 2PL2M2 —L,M, [Vb}M,[V, }M +, ,

(40)

where Eq. (38) and A, = 1 in Eq. (10) have been used. The right-hand side of this expression contains solid spherical har-
monics of the V operators that are both one unit of angular momentum lower than those that appear on the left-hand
side. Thus, if one is willing to compute all matrix elements up to some highest angular momentum, then this expression
can be used to move the result of operating with V„a+Pb, through each V operator to the left, one power and one V
operator at a time,

[{v,j",[v, j.",, ([ +~+~ j'[v. j" ').",]=u[rv. j.",, ([»'[v. j" ').",]rv, j",
+V[{V,}M',([cj.'[V, j. '

)M ]{Vb}M (41)

Applying recursion to the three-center Coulomb repulsion matrix element, or using the r functions of Eq. (14), re-
quires additional coinplete sets of integrals where the s-type integral includes differentiation with respect to Q. The sim-
plest equations result from using recursion involving the simplest V first. This is accomplished by making it the right-
most operation,

}M [ Vb }M, [ V, }M' exp( —~)F"(Q)= [ V. }M', !Vb }M', ( [qj '[ V. j
'

)M exp( —F)F"+'«»

and using commutators to move the effect of operating with a single V, all the way to the left,

[V.j" [V, j"([qj.'[V, j". ')"exp( —F)F""(Q

=([qj.'[V, j". ')M [V.}M [V, }M exp( —P)F"+'«)

+[[V, j
' [V„j ', ([qj.'{V,j. '

)
' ]exp( —F)F"+'(Q) . (43)

It is tedious, but straightforward, to extend this approach
to four centers, thereby extending the method of Ref. 13
from Cartesian Gaussians to spherical harmonic Gauss-
ians.

VII. CONCLUSION

This work has considered various ways of approaching
the GTO LDF problem using an orbital basis of solid
spherical harmonics. In general, this problem involves
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solid harmonics about three centers, one of which may
involve high angular momentum. Coupling the angular
momenta of all harmonics involved in order to evaluate
each matrix element appears impractical at the moment,
because of the high dimension of the matrix needed to
transform back from the coupled representation in which
the matrix elements are computed to the uncoupled form
in which they are used in existing self-consistent-field
methods. Recursion has the advantage of using simple
formulas. Recursion has the disadvantage of requiring
the evaluation of unwanted low angular momentum ma-
trix elements of the type considered, as well as completely
different matrix elements in the case of the Coulomb
repulsion.

In the current version of the LCCTO-LDF computer
code recursion is used sparingly —only when matrix ele-
ments of all lower angular momenta are used. Tables II
and III are heavily used in nonvectorizable computer

code. The use of these tables, however, can be pulled out
of the innermost loop over the primitive exponents of a
given angular momentum about a given center. The
computer code allows g orbital functions and can use up
to 1.=6 functions for fitting the local potential.
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