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The Schrodinger-Infeld-Hull factorization method is extended within the perturbation scheme in

order to treat nonfactorizable Sturm-Liouville eigenequations in the same way as factorizable ones.
It is shown that, provided suitable choices of the expansion basis set for the perturbing potential
and for the associated perturbed ladder function are made, the solution of the factorizability condi-
tion associated with the perturbed eigenequation can be achieved by using an elementary finite

difference calculus. An algebraic manufacturing process allowing the determination of the per-
turbed ladder and factorization functions, capable of handling any order of the perturbation and

any type of factorization (Infeld-Hull types A to E), is given. This procedure, well adapted for com-

puter algebra, allows an analytical determination of the perturbed eigenvalues and eigenfunctions
without calculation of either the excited unperturbed eigenfunctions or any matrix element. This
extension of the exact factorization method within the perturbation scheme can be applied to many

model equations of current interest in quantum physics. Special attention is paid to perturbed fac-
torizations that correspond to unperturbed ladder operators that are linear functions of the quan-

tum number (types A to D). Illustrative applications are given. Particularly, the perturbed
harmonic-oscillator ladder operators and eigenenergies are obtained in closed form.

I. INTRODUCTION

In many problems of current interest in quantum
mechanics, particularly in atomic and molecular physics,
one has to determine wave functions and calculate matrix
elements of Hermitian operators between these wave
functions. In this respect, one is usually led to the solu-
tion of wave equations and, at many stages of the physi-
cal modelization, after exact or approximate separation
of variables, one requires the solution of one-variable
linear second-order differential equations with associated
boundary conditions. In many cases, these equations are,
or are amenable to, factorizable eigenequations. Without
being exhaustive, let us recall that the generalized spheri-
cal harmonics Yl (8,y), the symmetric top functions
D'J'. (y, 9,$), the harmonic oscillator. Morse oscillator,
Poschl- Teller, Manning-Rosen, and Rosen-Morse dia-
tomic vibration-rotation functions, the hydrogenic and
generalized Kepler functions, and more generally the
Gauss hypergeometric and the confluent hypergeometric
functions, can be directly related to solutions of factoriz-
able equations. ' Let us add that Weyl's spherical har-
monics, Dirac's radial functions in the usual Euclidean
space' and also in a space of constant curvature can be
expressed in terms of solutions of factorizable equations.
Hence, when dealing with problems involving these func-
tions, one can apply the Schrodinger-Infeld-Hull factori-
zation method. '

When a given equation is factorizable, one has at one' s
disposal ladder operators that generate the eigenfunc-
tions, step by step, downward or upward, and allow the
determination of any eigenfunction 4 (x) from the
knowledge of the top or bottom eigenfunction 4,, (x), i.e.,

the "key" function, which is the solution of a first-order
differential equation. Moreover, analytical expressions of
the eigenvalues in terms of the quantum numbers are
readily obtained as well as closed-form expressions of the
eigenfunctions involving orthogonal polynomials, and
closed-form expressions of matrix elements are easily ob-
tainable. Let us mention that the factorization
method is closely related to the theory of supersymmetry
quantum mechanics (SSQM): as pointed out recently,
both methods are special cases of an old procedure
developed by Darboux' for generating isospectral
second-order linear differential equations. Particularly, it
can be shown" that the shape-invariance condition for
supersymmetric potentials is equivalent to the factoriza-
bility condition.

If real problems encountered in physics, or even many
sufficiently elaborate model problems, do not lead, at
once, to the solution of factorizable eigenequations, nev-
ertheless, they can be conveniently described by a kernel
potential, corresponding to a factorizable equation, to-
gether with an additional perturbation. In such cases, it
is possible to extend the original range of applicability of
the exact factorization process within the perturbation
scheme. Summarizing grosso modo the principle of the
perturbed factorization technique, one assumes that the
perturbed potential function, as well as the associated
ladder and factorization functions to be found, can be ex-
panded in a perturbation series where the unperturbed
potential leads to a factorizable equation. Then, one tries
to build up the perturbed ladder operators and the associ-
ated factorization functions allowing the factorization of
the perturbed equation at any rank of the perturbation.
Once the "factorization instruments" have been found,
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the exact factorization scheme applies: one obtains
closed-form expressions of the perturbed eigenvalues and
of the perturbed eigenfunctions to the required accuracy
without having to calculate either the excited unper-
turbed functions or any matrix element.

The straightforward extension of the unperturbed
scheme, which tries to determine ab initio the perturbed
ladder operators as a series of powers of the quantum
number m, was recognized early. "' However, this pro-
cedure leads to rather intricate calculations involving
antidifferences in the quantum number. This is probably
why Infeld and Hull have limited their pioneering use of
this procedure to second-order Stark effect calculations.
Many years after, we have proposed several procedures of
determination of the perturbed ladder and factorization
functions which, according to the factorization type un-
der consideration, involve either successive integra-
tions' ' or successive finite summations. ' Unfor-
tunately, the complexity of these integrations (or summa-
tions) rapidly increases with the order of the perturba-
tion.

In the present paper the perturbed ladder operator
method is revisited. An efficient procedure is proposed
for the determination of the perturbed eigenvalues and
associated ladder operators. Indeed, when assuming par-
ticular "ladderlike" properties for the x dependence of
the perturbed ladder functions to be found, general alge-
braic formulas can be derived. These formulas, well
adapted for computer algebra, valid for any factorization
type and at any order of the perturbation, allow an alge-
braic recursive determination of the perturbed ladder and
factorization functions associated with the given pertur-
bation. Hence, closed-form expressions of the "per-
turbed" eigenvalues and eigenfunctions can be obtained
in the same way as within the "unperturbed" exact fac-
torization scheme.

After a brief recall of the exact and perturbed factori-
zation methods (Sec. II), the novel procedure is described
and general formulas allowing the determination of the
perturbed ladder and factorization functions are derived
(Sec. III). The perturbed factorizations (Infeld-Hull types
A to D), which correspond to unperturbed ladder opera-
tors which are linear functions of the quantum number,
are considered in detail and several illustrative applica-
tions are worked out (Sec. IV).

d2
+ U(x, m)+A, +, (x)=0

dx
(2.1)

associated with the boundary conditions (x, ~ x ~ x 2 )

le(x, )l'= le(x, )l'=0, f 'le(x)l dx = 1,
1

(2.2)

where m =mo+1, mo+2, . . . is a quantum number
which takes successive discrete values labeling the eigen-
functions.

Such an equation as (2.1) is factorizable when it can be
replaced by each of the following two difference-
differential equations:

H +)H~+, +J =[A~ L—(m +1)]%'J

H+H 4, =[A, —L(m)]%,
(2.3)

where j is the quantum number associated with the eigen-
values AJ, H =K(x, m)h(d ldx) are the ladder opera-
tors, and L (m) is the factorization function that does not
depend on x.

Owing to the mutual adjointness of the ladder opera-
tors H+ and H, the necessary condition for the ex-
istence of quadratically integrable solutions of Eq. (2.1},
i.e., the quantization condition, is e(j —m) =v equal to a
non-negative integer and e=+ I (or e= —I) according to
whether L (m) is an increasing (or decreasing) function of
m.

The associated eigenvalues are

e 1
A =L j+—+-i 2 2

(2.4)

The normalized eigenfunctions 4 (x) are solutions of
the following pair of difference-differential equations:

K(x, m)+ =JVJ(m)%

(2.5)

K(x, m +1)— %~ =JV (m +1)% +, ,
d

with JV (m)=[A L(m)]'—
These "ladder" equations allow the determination of

any %'~ (x) function from the knowledge of the "key"
function 'PJ~(x) which is the solution of the first-order
differential equation

II. EXACT AND PERTURBED FACTORIZATION
SCHEMES 1 d

K xj+—+——e %' =0.
2 2 dx

(2.6)

In order to set up the definitions and notations, it is
first necessary to brieAy recall the exact and perturbed
factorization schemes.

A. Exact factorization

After exact or approximate separation of variables,
many problems of current interest in quantum mechanics
lead to the solution of eigenequations of the Sturm-
Liouville type. By an appropriate transformation of vari-
able and function, these equations can be reduced to the
standard form

From the comparison of Eqs. (2.3) and (2.1), it is easily
shown that the necessary and sufficient condition to be
satisfied by K(x, m) and L (m) allowing the factorization
of equation (2.1) is

[K(x,m+1}] + K(x,m+1)+L(m+1)= —U(x, m),d

(2.7)
[K(x,m)] — K(x, m)+L(m)= —U(x, m) .2 —d

dx

There are six fundamental types of facto rization
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TABLE I. Infeld-Hull exact factorization types.

Types U"'(x, m) Z(0)(x, m) L' '{m)

D

F

Q
2

[m (m +1)+d +(2m +1)d cos(ax)]
sin ax

Q 2d 2e 2ax+ a 2(2m + 1 )de ax

m(m +1) —b x
x

—b2x'+b(2m +1)
a m(m+1) —2aq cotax

sin ax
m (m +1) ~2

x

ad
am cotax+

sinax
—am +ade'
m—+bx
x

am cotax+ ~
m

x m

a m

—a m2 2

—4bm

—2bm
2

a'm' —q
m

m

(denoted types A to F, within the Infeld-Hull nornencla-
ture) with potential functions U' '(x, m), and associated
ladder and factorization functions K' '(x, m) and L' '(m)
which are summarized in Table I. Closed-form expres-
sions of the eigenfunctions are known and involve classi-
cal orthogonal polynomials (see Table II).

As pointed out by Infeld and Hull, ' when direct factor-
ization is not possible solely because of the inadequate m
dependence of the potential function U(x, m) under con-
sideration, one can resort to "artificial" factorization, i.e.,
one can consider U(x, m) as "embedded" in a new poten-
tial function u (x, m;p) which depends on a supplementa-
ry artificial parameter p such that u(x, m;p) can be
identified in m with a factorizing potential U' '(x, m ) and

that u(x, m;p, =m)=U(x, m). Then, Eq. (2.1) is factor-
ized using u (x,m; p ), and the eigenvalues A, ()M )

=L(j +e/2+ —,';p, ) are determined as well as the eigen-
functions 4 (x;p, ), both depending on the parameter p.
At the end of the ladder procedure (2.5), one merely sets

p =m and obtains the required solutions
AJ. (m)=AJ()u=m ) and %z (x)=%& (x;p, =m). This
artificial or embedded factorization device is widely used
all along the "perturbed ladder" scheme.

B. Perturbed factorization

Now, let us consider the Sturm-Liouville differential
equation (2.1) involving a potential function U(x, m)

TABLE II. Eigenfunctions of Infeld-Hull factorizable equations. P,' '~'( ), L„( ), and H, ( ) are, re-
spectively, a Jacobi, Laguerre, and Hermite polynomial of degree v =e(j —m). j=j+t /2+1/2;
e= + 1 or —1 for class-I or class-II problems; N, is a normalization constant.

Types

a+ [/2 P+ 1/2
~ ax ax

N sinJ 2
cos

2
P' '~)(cosax)

U

Parameters

a=a(m +d +1/2)

P=e(m —d + 1/2)

B N, exp[ ~
(aax Pe'")]L„(Pe'—") a= 2'

P= —2ed

X e(m + I/2)+ I/2eX L e(m + I/2)( +bX2)Jmx exp

D

r

b
N, exp H, [( eb)' 'x]—

E'Qqx
NJ (sinax )' exp P,' '~'( —i cotax )

J
a= —ej —iq/j

P= ei +&a/J—
F N x +'exp LJm ~ +1 U' J

2qx
j+1
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(2.8)

which does not belong to any of the six Infeld-Hull fac-
torization types and let us assume that this potential
function, as we11 as the associated ladder and factoriza-
tion functions K(x, m) and L (m) to be found can be ex-
panded in a perturbation series with a parameter g

U(x, m) = U '(x, m)+rlU'"(x, m)+g U' '(x, m)

+ 0 ~ ~

K(x, m) =K' '(x, m)+riK'"(x, m)+7} K' '(x, m)

+ 0 ~ ~

L(m)=L''(m)+rlL'"(m)+riL''(m)+

where K' '(x, m ) and L ' '(m ) are the ladder and factori-
zation functions allowing an exact factorization of Eq.
(2.1) with U' '(x, m).

Then, one has to satisfy the factorizability condition
(2.7) up to a given power of the parameter ri. The re-

quired K' '(x, m), L' '(m}, and U' '(x, m) are found to
be solutions of the following equations:

N

g K'"'(x, m+1)K' "'(x,m+1)+ K' '(x, m+1)+L' '(m+1)= —U' '(x, m),
U=0 dx

g K'"(x,m)K'" '(x, m) K—'"'(x m)+L, ' '(m)= —U'"'(x, m) .
u=0 dx

(2.9)

These equations will be solved recursively, i.e., when considering the determination of KI '(x, m) and U' '(x, m), it is
assumed that all the K"(x,m), for v =1,2, . . . , N —1, have already been found. Their finite difference aspect deter-
mines the m dependence of the functions while their differential aspect determines their x dependence.

Since, in the present paper, the solution of the factorizability condition (2.9) is worked out by means of finite
difference calculus, it is convenient to introduce the usual first difference 6 operator in m

bF(m)=F(m+1) —F(m) . (2.10)

Then, the difference-differential equations (2.9) can be written again

d N
N —

1

26[K' (x, m)K' '(x, m)]+ [K' '(x, m+1)+K' '(x, m)]= AL' '(m)——b g K"(x,m)K' '(x, m),
dx

(2.11)

U' '(x, m)= d N —1—2K' '(x, m) K' '(x, m) L' '(m—) —g K'"'(x m)K' "'(x,m) . (2.12)

Equation (2.11) is used to determine the ladder and fac-
torization functions K' '(x, m ) and L ' '( m ). Once they
are known the required potential functions U' '(x, m) are
given by Eq. (2.12) and one obtains the required "factor-
izing" potential function U ( x, m ) of the eigenequation
(2.1).

Thus one can solve physicomathematical problems
with a potential function V(x, m) such as

V(x, m)= UI '(x, m)+qV'"(x)+g V' '(x)+

(2.13)

where the V'"'(x) have the same dependence in x as the
U'"'(x, m) and, in most cases, do not depend on m. '

In order to match V(x, m) with the factorizing poten-
tial U(x, m), one has to resort to the artificial factoriza-
tion process. The following condition must hold, for any
value of x:

—2K"'(x, j ) K'~'(x, q) L'"'(p, )—
dx

N —1= V' '(x)+ g K"(x p)K' "'(x,p) . (2.15)

Once the perturbed ladder and factorization functions
K'"'(x, m;p) and L'"'(m;p), both depending on the
artificial parameter p, have been found, the perturbed
problems (up to the Nth order) may be handled in the
same way as the exact factorizable (unperturbed) prob-
lem.

The total perturbed eigenvalue and associated ladder
function are [see Eqs. (2.4} and (2.8)]

A (m)=L j+—+. —(o] . E 1

J 2 2

V'"'(x) = U "(x;m =p) . (2.14) + g ri"L'"' m =j+—+ —;p=me 1

2 2' (2.16)

Finally, one can factorize an eigenequation (2.1) with a
given potential function V(x, m) by determining the asso-
ciated perturbed ladder and factorization functions which
are solutions of the difference-differential equation (2.11)
and, as a consequence of Eqs. (2.12) and (2.14), which
satisfy the following condition:

K(x, m;p)=K' '(x, m)+ g rl"K'"'(x, m;p},

where a=+ I (or e= —1) according as the unperturbed
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factorization function L' '(m) is an increasing (or de-
creasing) function of m.

The normalized key (m =j) perturbed eigenfunction

%t&(x;p) is the solution of the first-order difFerential
equation

K(xj +—+—;p)—e 4 "(x;p)=0 .e 1 d
2 2' dx

(2.17)

In terms of the unperturbed normalized key eigenfunc-
tion +~J. '(x), one gets

V.J(x;p)=VJJ. '(x)exp eg ri"f K'"' x,j+—+ —;p dx
u=1

(2.18)

The closed-form expression of any normalized per-
turbed qi (x;p) function can be obtained stepwise from
the key eigenfunction VJJ.(x;p) by using the p,-dependent
ladder equations

5'w

K' '(x, m ) = g yI '(m ) Y,(x), (3.1)

[

each order X of the perturbation, the perturbed ladder
function can be written

K(x, m +1;p)— (x;p)

=[A (p) L(m +—1;p, )]' 4, +&(x;p),

(2.19)

The Y, (x) basis set, specific to each factorization type,
is to be chosen so that all terms appearing in Eq. (2.11)
can be expanded on a common basis set y, (x). Namely,
let us assume that one can find suitable associated basis
sets Y,(x) andy, (x) such that

K(x, m;p, )+ VJ (x;p, )

=[A (ju) —L(m;p)]'~ Vj,(x;}u) .

2K' '(x, m) Y, (x)= A, (m)y, (x)+B,(m)y, +,(x),
dY,' =a,y, (x)+p,y, +,(x),

(3.2)

At the final stage of the ladder process, one sets p=m
and obtains the required perturbed eigenfunction

(x)=% (x;p=m ).
When perturbed eigenfunctions 'PJ {x) far from the

key eigenfunction O'JJ(x) are required, it may be con-
venient to use an alternative procedure which provides
the perturbed eigenfunctions as linear combinations of
the unperturbed eigenfunctions [see, for instance, Ref. 15
or 16].

Let us now return to the determination of the per-
turbed ladder and factorization functions, K' '(x, m;p)
and L' '(m;}u), and show the interest of choosing, for
the perturbed potential V' '(x) and ladder functions
K' '(x, m ), associated expansion basis sets satisfying par-
ticular "ladderlike" properties.

III. ALGEBRAIC DETERMINATION
OF THE PERTURBED LADDER FUNCTIONS

AND EIGENVALUES

A. Determination of the perturbed ladder functions

Let us first consider the x dependence of the
difference-differential equation (2.11) and assume that, at

Y, (x) Y,(x)=g h(s, t, r)y„(x), (3.3)

and that, as a consequence of Eq. (3.3), one can set

1V —1 SN

y K'"'(x, m)K'~ "'(x,m)= y u,'"'(m)y, (x),
s=0

(3.4)

where the w,'~'(m) functions originate from the preceding
orders of the perturbation.

Let us note that, if at the first order N = 1 of the per-
turbation, w,'"(m)=0 and the upper bound S& which is
involved in K"'(x,m) can be chosen arbitrarily, this is
not true for the higher orders Sz. Indeed, owing to the
presence of the term (3.4) in the factorizability condition
(2.11), it can be easily inferred that the value of S~ will

depend both on the values of X and of S&.
When conditions (3.2)—(3.4) have been fulfilled, after

substituting for K' ' and g+:,'K'"'K' "' from Eqs.
(3.1) and (3.4) into Eq. (2.11) and by equating the
coefficients of y, (x} in both sides, one obtains the follow-
ing finite difference equations allowing the determination
of they,' '(m) and L' '(m) functions:

[Bs„(m+1}+Ps„]y~s„'(m+1) [Bs {m)—Ps ]ps '(m)=0

[B, ,(m +1)+P, , ]y,' ', (m +1)—[B, ,(m) —P, , ]y,' '&(m)

= —[A, (m +1)+a,]y,' '(m +1)+[A,(m) —a, ]y,' '(m) —hw, ' '(m),

bL' '(m)= —[Ao(m +1)+ao]yz '(m +1)+[AD(m) ao]yp ~(m—) —Awe '(m) .

(3.5)

(3.6)

(3.7}

The solution of the first-order linear homogeneous finite difference equation (3.5) is obtainable in closed form. Using
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elementary results of finite difference calculus, ' one gets

y' '(m)=Q (m)k' (3.&)

where kz ' is an arbitrary constant of summation and

m —i B(j)—p
B ('+1)+P (3.9)

Then, the inhomogeneous finite difference equations (3.6) can be solved recursively, the integer s descending stepwise
from s =SN down to zero. For each value of s, one obtains the general solution'

y,' '(m)=g, (m)[k,' '+F,'~'(m)],

where k,' ' is an arbitrary summation constant and

F,' '(m)=b, '[R, ~+i(m)/Q, (m+1)],
—[A, (m +1)+a,]y,' '(m +1)+[A,(m) —a, ]y,' '(m) —bw, ' '(m)

B, ,(m +1)+P,

(3.10)

(3.1 1)

F,'~'( m=) )=O. (3.12)

As will be shown hereafter, this imposed condition great-
ly simplifies the determination of the K' '(x, m;p, ) per-
turbed ladder functions satisfying Eq. (2.15).

In order to determine the F,' '(m) functions so that
condition (3.12) be fulfilled, it is rewarding to use
Newton's formula (see Appendix A) and set

(N)

F' '(m)= g
n=1

where

m —p
b "F' '(m =p) (3.13)

At this level, since the F,' '(m) functions are defined
within an additive arbitrary summation constant, it is
well advised to impose the following vanishing condition:

r(m —
i +1)

I (m —p —n + 1)I (n +1)
is a generalized binomial coefficient and n,' ' is the degree
in m of F,' '(m) Hence, .at each order N of the perturba-
tion, the determination of the F,' '(m) functions amounts
to the determination of the values, for m =p, of the nth
finite differences b "F,' '(m) (n =l, n,' ').

Using elementary results of finite difference calculus to-
gether with some algebraic manipulations (see Appendix
8), one obtains the following relation allowing an algebra-
ic recursive determination of any b "F,' '=b, "F,' '(m =p)
coefficient in terms of the arbitrary summation constants
k„' '=6 F„' ' and of the contributions 6'w„'

'w~'( m=p) generated from the preceding orders of
the perturbation:

gnF(N)
s

SN n —1

X X
u =s+1 i =0

[I(u,s;i, n)b, 'F„' '+ J(u, s;i, n)A'+'w„' '], (3.14)

where

I(u, s;i, n)=b, " ' 'f„,(m =@+i),
J(u, s;i, n)=h" ' 'g„, (m =@+i),

(3.15)

f„,(m) =
I [A„(m +1)+a„]Q„(m+1)—[A„(m)—a„]g„(m)jg„,(m),

u —1

g„,(m)=( —1)" ' P [A, (m+1)+a, ] g, (m+1) g [B,(m+1)+P, ]

(3.16)

t =s+1 t=s

Particularly, when A, (m) is a linear function of m (fac-
torization types A to D) and when also Qo(m) =Qo does
not depend on m, the following "reduced" relation holds
for the determination of the 6"F,' ' coefficients in terms
of the constant k„' '=b, F„' ' (see Appendix 8):

sN —n+1
b, "F,' '= g [2(u, s, n)b" 'F„' '+cP( , un)sh" 'w'],

u =s+1

(3.17)

where
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8(u, s, n)

(n+p)b, A, +A, (m =0)+a,
~u —

1 t =s+1

2(u, sn)=(nhA„+2a„}8(u, s, n) .

The coefficients I(u, s;i, n) and J(u, s;i, n), or the re-
duced ones J(u, s, n) and cF(u, s, n), do not depend on the
order N of the perturbation; as a consequence, for a given
problem, one can calculate once for all the expressions of
the 6"F,' ' in terms of SN (see Appendix B) and, then, use
the same expressions at the successive orders of the per-
turbation. At the first order (N =1) of the perturbation
r()„"'(m)=0, and the final expressions of the 6"F," will

involve only the k„'"=5 F„'" constants. At the higher
orders (N) 1) of the perturbation, the b, "Fs( ' will con-
tain, in addition, the contributions 6'+'w„' ' which are
already known functions of the 6'F„" of the preceding
orders (U =1 to N —1) of the perturbation (see Appendix
C).

Once the 5"F,' ' coefficients have been computed, the
perturbed ladder function K' '(x, m ) is completely
known and involves the arbitrary summation constantsk" (u =1 N u =0 S )

K' (x, m;p, )

[&s,,(p} &s—, ]ys~. (p) =. bs,—, +(

[A, (p) —a, ly,' '(p)+[~, -((p) —f3, -)]y,'"-'((p)

b (N) (N)( )

L (N)(p) —
[ A (p ) a ]y(N)(p ) u)(N) (p )

(3.20)

(3.21)

(3.22)

As a consequence of the vanishing condition
F,' '(m =p)=0, it follows that y, '(p)=Q, (p)k,' ' [see
Eq. (3.10]; then, Eqs. (3.20) and (3.21) allow the deter-
mination of closed-form expressions of the arbitrary con-
stants k,' ' in terms of p and of the b„' ' expansion
coefficients of the V' (x) potential.

Indeed, for s =SN, using (3.20), one gets

g
(Nj
Sy+1

Qs, (p)[&s,(p) bs, ]— (3.23)

For sASN, one applies (SN —s) times the two-terms re-
cursive relation (3.21) and obtains

the K' '(x, m;p;k„") function satisfying condition (2.15).
Introducing the expressions (3.1), (3.2), (3.4), and (3.19) of
the perturbed ladder and potential functions into the con-
dition (2.15) and equating the coefficients of y, (x) in both
sides, one obtains the following relations to be satisfied by
the y,' '( m ) and L " '( m ) functions:

SN

s=0 n=1
= g Y, (x)Q, (m) k,' '+ g

Pl P gnF(N)
n s

(3 18) where

S~+1
(p)[b(N)+ u)(N)(p)]

u =s+1
(3.24)

S~+1
V(N)( )

—y b(N) ( )

s=1
(3.19)

where the b,' ' constants are specific to the physical mod-

el potential under consideration.
Hence, using the artificial factorization device, the

determination of the K' '(x, m; p; b,
'"

) ladder function
associated with V' '(x) amounts to the determination of

The value of the upper bound n, ' in (3.18), i.e., the de-

gree in m of F,' '(m), is easily obtainable from expression
(B3) of 6F,'

The factorizing perturbed potential U' '(x, m;p) asso-
ciated with K' '(x, m;p) is given by Eq. (2.12) and, as
well as K' '(x, m;p), depends on the arbitrary constants
k (N)

Q

Let us now consider the perturbed factorization of
eigenequation (2.1) with a given V(x, m) physical model
potential (2.13). In the same way as within the exact fac-
torization scheme, in order to apply the method to a
given problem, one has to determine the expressions of
the k„' ' constants in terms of the data specific to that
problem by matching V' '(x) with U' '(x, m;p). From
expression (2.12), it is easily seen that the theoretical fac-
torizing perturbed potential U' '(x, m;p) associated with
K' '(x, m;p) can be written as a finite expansion on the

y, (x) basis set. Consequently, in order to match V' '(x)
with U' '(x, m;p}, one has first to expand the V '(x) on
the y, (x ) basis and to set

[A, (p) —a, ]
t =s+1

C„,(p) =-
Q, (p) g [&,(p) —P, ]

t=s

Finally, the required expression of the perturbed ladder
function K' '(x, m;p) associated with each given physi-
cal model perturbation term V' '(x), readily follows from
the general expression (3.18). It involves, by means of ex-

pression (3.24) of the k,' ', the expansion coefficients b,
of the perturbations V( '(x) on the suitable basis set y, (x)
and, also, via the already known expressions of the
(J( '(p) and b, '+'u)( ' in terms of the k'" (see Appendix

C), the b„'" coefficients originating from the preceding or-

ders of the perturbation (U =1,N —1).

B. Determination of the perturbed eigenvalues

At each order N of the perturbation, the perturbed fac-
torization function L ' '(m;p), associated with V' '(x), is

the solution of the first-order difference equation (3.7).
Let us use again the Newton's formula (see Appendix A)

and set
(X)

m —pI'N'(m p) =, L'N'(p)+ g a"L(N)(m =p)
n =1

where L' '(p) is given by Eq. (3.22).
Introducing the (n —1)th discrete derivative of expres-
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sion (3.7) and using few algebraic manipulations, one ob-
tains

)(m .p) = —w )(m) —)( (m p)k +

putation of the eigenvalues, closed-form expressions of
the diagonal matrix elements

(y, ) = f ~q),
(o) ~'y, (x)dx . (3.29)

where

„(lV)
0—g A,„(m;p)b "F'

n=1

(X)
0

A, „(m;p)= g
j=n

m —p j
Zi(p)

~ i =n

(3.25) Such integrals, involving products of Jacobi, Laguerre,
or Hermite polynomials, are not always trivial and easy
to compute by brute termwise integration. Let us men-
tion that they can also be obtained in closed form by
means of an algebraic procedure. '

C. Practical use of the perturbed ladder operator method

Z~(p) = Ao(p}—ao

and, for j )0,

Z//(P)=a()+ Ao(P, +j),

Xb, ' "Q()(m =p+n ),
(3.26}

General expressions (3.18) and (3.25) of the perturbed
factorization instruments K' '(x, m;p) and L' '(m;p, )

associated with a given perturbation V' '(x) have been
derived. They are valid for any order N of the perturba-
tion and allow perturbed factorization of any eigenequa-
tion which can be viewed as a factorizable equation with
an additional perturbation V(x)

Z, (P) =2ao+ jb Ao(m =P+j—1),

j
Z,"(P)= . AJ 'Ao(m =P+j—1), i &j —1 .

l

Particularly, when Ao(m) is a linear function of m

(factorization types A to D) and when, also, Qo(m)=Qo
does not depend on m, the expression (3.26) reduces to

~o(m'p}=Qo(Ao(p) ao+(m p)(2ao+&Ao))
(3.27)

X„(m;p) =Qo
m —p

[a()+ A o(p+ n ) ]

m —p+ +1 [2a()+(n+1)b, A()]
I

n)0.

S~, +1
A (v

( ) = y ( )(b(N)+ ()v))+(
s=1

(3.28)

where ( ) stands for the contributions involving the
(5, 'w( ' and the (y, ) do not depend on the order N of the
perturbation.

When comparing the first-order (N=l) expression
A'"(m) with its alternative first-order expression within
the classical Rayleigh-Schrodinger framework, it follows
that (y, ) is merely the expectation value of y, (x) be-
tween the unperturbed eigenfunctions )I)' '(x) of Table II;
in other words, one obtains, as a by-product of the com-

Closed-form expressions of the 5"Fo ' have been ob-
tained in terms of the expansion coefficients b" of
V' )(x), when computing the perturbed ladder function
K( '(x, m;p); therefore the perturbed eigenvalue is readi-
ly found: A' '(m)=L' '(m =j+e/2+1/2;m =p).

It is interesting to note that, when rearranging the
terms in order to put in evidence the coefficients of
(b„' '+w„' ') in the expression of AJ '(m), one obtains

d2
+ U' '(x, m)+ V(x)+A (m) VJ (x)=0, (3.30)

dx2

where

V(x) =q V("(x)+q'V"'(x)+

A (m}=gA'"(m)+rPA' '(m)+

Let us briefly summarize the main steps of the compu-
tation.

(a) Once the unperturbed potential U' '(x, m ) has been
chosen in Table I and a suitable expansion basis set y, (x ),
satisfying the selective conditions (3.2) and (3.3), has been
found for the perturbating potential V(x), closed-form
expressions of the functions Q, (m), A,„(m;p), C„,(p) and

of the bounds Sz and n,' ' appearing in the expressions
(3.18) and (3.25) of the factorizable instruments
K ( '(x, m; p ) and L ' '( m; p ) are easily obtainable [see
Eqs. (3.9), (3.26), and (3.24)]. They are valid and will

serve at the successive orders of the perturbation.
(b) At each order N of the perturbation, the determina-

tion of the theoretical perturbed ladder function
K( '(x, m;p) and of the perturbed factorization function
L' '(m;p) amounts to the algebraic recursive determina-
tion of the required 6"F,' ' coefficients (s =0,
S)v; n = 1,n,' ) in terms of the arbitrary constants
k„' '= 5 F„' ', one uses either the algebraic recursive rela-
tion (3.14) or the reduced one (3.17). At the first order
N = 1 of the perturbation, 6"w„"'=0for any n and u. At
the higher orders N, one has to take into account the con-
tributions of the 6"w„' ' increments originating from the
preceding orders (u =1,N —1) of the perturbation and
involving the k" constants (j =O, S, ) (Appendix C}.

(c) One uses the closed-form expressions (3.24) of the
k„' ' constants in terms of the expansion coefficients b,'

of the given perturbations V' '(x) on the y, (x) basis set
and obtains the required perturbed eigenvalue

Aj '(m)=L' '(m =j+e/2+1/2;p= ) mand ladder
function associated with V' '(x). Following the class of
factorization of the unperturbed problem: F=+ 1 (class
I) or e= —1 (class II).
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TABLE III. Perturbed type-A and -8 factorizations. Suitable basis sets and associated data.

Type B

Y, (x)

Y, (x)

ax
a tan

2

ax
a tan

2

2s+1

a exp(asx)

a exp(asx)

A, (m)

B,(m}

d+m
d —m

s+1/2
s+1/2

2m

2d

Q, (m)

Y, Y

(N)

A,o(m; p)

A.„(m;p)

c„,(p)

(s —d +m —1/2)2,

(s —d + 1/2)2,

Ys+r +1

NS, +N —1

2(SN —s)

2m —p+ d —1/2

(p+d +n +1/2) p +(n +2) n+1
(s —d + 1/2)„(u —p —d —1/2)„

(u +p —d —1/2)„+,

Y, +,

NS,

SN s

2m

2(p+n) P +2(n +1)
n n+1

1

2d

Common functions such as powers of x, powers of tri-
gonometric functions, or exponentials will satisfy the
selective conditions (3.2) and (3.3), and will provide ade-
quate expansion basis functions y, (x) for the perturba-
tions V( '(x). Several illustrative examples, concerning
factorization types A to D, have been reported in Tables
III and IV. Let us remark that, in several cases, since

Q, ( m ) = 1, the computation of the b "F,' ' and of the
A, „(m;p) can be performed by means of reduced formu-
las, such as (3.17) instead of (3.14) and (3.27) instead of
(3.26).

Let us emphasize that the main formulas to be used are
the expressions (3.18) and (3.25) of the factorization in-
struments K( '(x, m;p) and L' '(m;p) together with

TABLE IV. Perturbed type-C and -D factorizations. Suitable basis sets and associated data.

Type D

y, (x)

Y, (x)

A, (m)

8,(m)

2s+ 1

2m

2s+1

2$

2s+1

2b

2s+1

y, H2$(b' 'x)

b y. +1H2s+1(b x)

Y YE

Q, (m) 1

SN

(N)
s

S, +N —1

SN s

A,o(m, p) 4m —2p —1

A, „(m;p) (2p+2n +1) P +(2n +4)

(p s 3/2) 1

C„,(p)
2$EE s

3's+ r +1

NS1+ N —1

SN —s

2m —2p —1

m —p m —p+2 + 1

(u —1/2}„

s+r+1
h (s, t, u)y„

u =/s —
r/

NS1+ N —1

SN s

2(m —p)
m p +2 m p

n n+1
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formulas (3.14), (3.26), and (3.24) (or their reduced ver-
sion). Other equations are mostly intermediate ones re-
quired for the demonstrations.

IV. ILLUSTRATIVE APPLICATIONS

In the present paper our attention has been focused on
the factorization types A to D with unperturbed ladder
functions K' '(x, m ) which are linear functions of the
quantum number m (see Table I). The type-A factoriz-
able equation, i.e., the transformed Jacobi eigenequation,
is of particular interest in computational physics; it is
then interesting to work out at least one example of per-
turbed type-A factorization. As already known, "
the Morse potential model leads to the solution of an ex-
act type-B factorizable eigenequation. Thus, perturbed
type-B factorization is of particular interest for an ela-
borate computation of diatomic rotation-vibration per-
turbed Morse-Pekeris energies, wave functions, and ma-
trix elements. Particularly, it is expected to be useful for
comparative studies of the rotation-vibration intensities
of diatomic molecules, and/or for calculating the centri-
fugal distortion contributions to their rotational spectra,

A. Perturbed type-A factorization with the associated
basis functions y, (x)=a ~[tan(ox /2) ]~*

Let us assume that the perturbations can be written

S +1
V' '(x)=a g b' ' tan

2

' 2$

(4.1)

The perturbed factorization and ladder functions associ-
ated with V' '(x) are, respectively [see Eqs. (3.18), (3.26),
and the first column of Table III],

when the radial dependence of the 6ne-structure interac-
tion terms is taken into account. In the present paper,
for sake of brevity, we give only the starting data con-
cerning one example of perturbed type-B factorization
(see the second column of Table III). Perturbed factori-
zations of harmonic-oscillator eigenequations are studied
in detail; let us recall that the radial equation of the D-
dimensional simple harmonic oscillator is simply related
to a type-C factorizable equation (see Appendix D), while
the one-dimensional linear harmonic oscillator is relevant
to type-D factorization (see Table I).

2SN

L' '(m;p)= —(2m iJ, +d —
—,
'—)kz ' —g A,„A"Fo ',

n=1
(4.2)

S~
K' '(x, m;p)= g tan

ax

0 2

' 2$+1
m —p

g (nt)
n=1

where

m —p m —p
A,„=(p +d +n +—,') +(n +2) +1

Since Q, (rn) does depend on m (see Table III), one has to compute the required 6"F,' ' in terms of the k„' '=b, F„'

by means of the general relation (3.14). Using Eq. (3.16), one gets

f„,(m)=[(2m +1)(2u +1)—2d](u +d+m +1/2)„, ~(u —d +m —1/2}„

g„,(m)=(s —d + I/2)z, (u +d +m +1/2)„, ~/(s —d +m +1/2)„+, ,
(4.3)

where

(m)„=m(m —1) (m —u+1) .

Closed-form expressions of the l(u, s;i, n) and J(u, s;i, n)
coefficients appearing in (3.14) are obtainable without
special difficulty by using both Eqs. (4.3} and the expres-
sions (A4) and (A5) of the nth discrete derivative of (m)„
and 1/( m )„.

As an illustrative example, let us apply these results to
the determination of the perturbed type-A eigenvalues as-
sociated with the following perturbing potential function:

I

In order to avoid reproducing cumbersome expressions,
we have limited ourselves to the second order (N =2) of
the perturbation and chosen the low values S1=0 and,
consequently (see Table III), Sz =2S, + 1 = 1.

1. First order (N =1)of the perturbation: S, =0

The theoretical perturbed factorization and ladder
functions are [see Eq. (4.2}]

L'"(m;p) = —(2m —p+d —1/2)ko ',
(4.5)

axV(x)=a ribI" tan

2 K'"(x m p)=k'"tan0

'2

+a2~2 b"' tan' +S"' tan'
1 2 2 2

4

(4.4)
2. Second order (N =2) of the perturbation: St =1

The perturbed factorization and ladder functions are
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m —pL' '(m;p)= —(2m —p+d —I/2)kI) ' — (p+d+3/2)
1

+3
m —p gF(2)

2 0

m p m p
(p, +d +5/2) 2

+4
3

b, Fo,

E' '(x m )= k' '+
1

AF' '+m —p m p ax ax
2 0 2 1 1

b, F' ' tan +k' 'Q (m) tan
2

3
(4.6)

where

w' ' =(k'" ) 6'w' ' =0 for any i%0 . (4.7)

Then, one uses the general expressions (B4) with S)v= 1,
I(1,0;0, 1)=f,o(rn =p), l(1,0;0,2)=bf,o. From Eq.
(4.11) one gets f,o(m ) =(6m + 3 —2d) /(3/2 —d )~;
bf,o=6/(3/2 —d }z and, since hwI ) =b, w() '=0, one
obtains

Q1(m) =(m —d+ I/2)~/(3/2 —d )z .

In order to obtain the required AF0 ' and 5 F0 '

coefficients, one has first to calculate the contributions
w„' '(m;p} originated from the first order (N =1) of the
perturbation. Let us use their definition (3.4). Since on
the one hand, (K(") =(k(') ') [tan(ax/2)], and on the
other hand, (K(") =w(1 )(m)[tan(ax/2)], one gets

b F(2) 6@+3 —2d
k (2)

(3/2 —d ),

g2F(2)— 6
(3/2 —d )~

(4.8)

3. Expression of the total eigenvalue and ladder function

One now has to express the arbitrary constants k„' ' in
terms of the expansion coefficients b ' of the perturbed
potential V' '(x}. Since the maximum value of S)v is
S1 = 1, one first writes down, once for all, the required ex-
pressions to be used for N =1 and 2. Picking up the ex-
pression of C„,(p) from the first column of Table III and
using Eq. (3.24), one gets

k (N)
SN

(S)v —d + I /2)~s
(N)

(S)v+P —d+ 1/2)zs +1
bS +1

(4.9)

(S —p —d+1/2)b(~) b(N) + (N)
(N) N S~+ 1 SA, SNks —

1
= (S)v d 1/2)~s —z +

(S)v+p d+I 2/)q s
— (S~+p d —I /2—)ts

Setting, successively, N = 1, SN =S1=0and N =2, SN =S2 = 1 in these expressions, one finds

k(1)
0

k (2)—
1

b(1)
1

(p —d+ 1/2)
(3/2 —d )p

(p —d+ 3/2)3 (4.10)

k(p) (p+d —3/2) b(p) +
(p d+ 3/2)(p d—+1/2)—

(b(1) )2
b(2) +

p —d+ 1/2 '
(p —d + I /2)~

The expressions of the perturbed eigenvalues A'"(m) and A'. '(m) directly follow from the expressions (4.5) of
L"'(m;p) and (4.6) of L' '(m;p); one replaces m by j =j+e/2+ I /2, p by m and, rearranging the terms in order to
put in evidence the coefficients of the given potential expansion coefficients b "', one obtains

axA'"(m) = tan

A' '(m)=( tan
ax

2

b(1)

b(1) 2 4

b, + + tan bz
(2) ( 1 ) ax (2)

m —d+1/2 z 2

(4.11)

where



42 PERTURBED LADDER OPERATOR METHOD: AN ALGEBRAIC ~ . . 1107

' 2
ax 2j —m +d —1/2

a tan
2 m —d +1/2

4
ax

a tan
2

1
(m +d —1/2)2(m —d —1/2)

(m —d +3/2)2

j—m
+ [(2m +2d —3)(m —d —1/2)+(m +d + 3/2)(6m +3—2d)]

j—m j—m
+24(m +1) 2

+24

Finally, the total eigenvalue and total ladder function of a type-A eigenequation (3.30) with a perturbing potential
(4.4) are

A (m)=a (j+e/2+ 1/2) +2!A,"(m)+2) A,
' '(m),

Qd
K(x, m;)M)=am cotax+ . +ALII(.

' "(x,m;p)+2) K' (x, m;p) .
sinax

(4.12)

The computation could be pursued up to higher orders
of the perturbation without special diSculty, the central
point being, at each order X of the perturbation, the
determination of the 6'(v( ' in terms of the k„(u) of the
preceding orders (v = 1 to N —1; u =0 to S„) and then

the determination of the 6"I',' in terms of the k„' and
gi (N)

The results are valid for both classes of factorization:
for class-I problems, i.e., when the constant a involved in

the unperturbed potential U' '(x, m) is a real constant,
t =+1,j=j+1,while for class-II problems, i.e., when a
is a pure imaginary constant, e= —1, j=j. Problems in-

volving spherical harmonics or symmetric-top functions
are relevant to class-I factorization (see Appendix D),
while the use of perturbed type-A factorization for
finding, for instance, an analytical approximate solution
of the Schrodinger equation with a Gaussian potential re-

P,', ~'(cosax)= g Ck"PI'"(cosax),
I& =0

where

(4.13)

quires class-II factorization.
Let us remark that, as a byproduct of the computa-

tion, compact expressions of the diagonal
(jm ~[tan(ax/2)]"~jm ) matrix elements (k =2,4) be-
tween the unperturbed type-A eigenfunctions (see Table
II) have been obtained. As already pointed out, ' such
integrals, involving products of Jacobi polynomials, are
not so easy to calculate by brute termwise integration: a
possible way (valid for diagonal and off-diagonal in-

tegrals) is to use the orthonormality property of the
eigenfunctions after expanding the Jacobi polynomials
P„( '~)(cosax ) on the finite basis of the Pk' '(cosax ) by
means of Miller's formula

I (a+/3+ v+ k+ 1)I (a + b +k + 1)l (a+ u+ I )

(v —k)!I (a+P+v +1)I (a +b +2k+1)I (a+k+ I)

X3F2(k —u, a+13+v+k+ l, a + I;a+k+ l, a +b +2k +2; I) .

3F2( ) is a hypergeometric function. When working out
analytical expressions of the A,

' '(m) within the classical
Rayleigh-Schrodinger perturbation scheme, the final ex-
pressions of the A'+)(m) involve intricate and hardly re-
ducible summations.

tions are (see Table IV)

SN

(m;/l ) = —(4m —
2)M

—1)ko(~) —y A, „2(),"Fo(~),
n=]

(4.15)

B. Perturbed type-C factorization with the associated
basis functions y, (x)=x '

Let us assume that the perturbations can be written

S=0 n =1

A N m —pE' '(x, m;p)= g x2'+'
S n S

Sy+]
y(N)( )

—~ b (x) 2s
S

S=l
(4.14)

where

A,„=(2p+2n + 1)
The associated perturbed factorization and ladder func-

m —p m —p
+(2n +4)
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Since Q, (m)=1, the reduced relation (3.17) holds for
the determination of the 5"F( ' coefficients in terms of
the k,' '=6 F,' '. One gets

S —n+1 '
Q S

N 1g"F'+'= g —— (p, +u +n —1/2)„.=, +1

X[(2u+n —1)Q F ++—6 w ] .

(4.16)

and P(s, n)=(2s+n +1)h" 'F,' '+ )b—,"w,( ' has been

Used.

1. First order N =1 of the perturbation: S& =0

The perturbed factorization and ladder functions are

L'"(m;p) = —(4m —2p —1)k(')",
(4.19)

K'"(x,m;p, ) =k,"'x .

2( b (»x 2+b (')x 4+b (2)x 6)X 2 X 3 X

+ (b' 'x +b' 'x +b' 'x +b' 'x )X 2 X 3 X 4 X (4.17)

In order to avoid reproducing too many results, the low
values S, =0 and (see Table IV) S2=2S, +1=1,
S3 =3S, +2=2, and S4 =4S, +3 =3 have been chosen.

One writes down, once for all, the required expressions
of the 6"F,' ' to be used at the successive orders of the
perturbation. Using Eq. (4.16), one gets

AFs )
= ——(2SN+2)ks + —,

) b, ws

bFs 2= — P(Stt —1,—1)+ (p+S)v+1/2)P(Stt, 1),1 1

bFs 2
= — P(Stv —2, 1—)1

N

+ (p+S)v —1/2)P(SN 1,1)—1

$2

As an illustrative application, let us apply these results
to the determination of perturbed ladder functions and
eigenvalues up to the fourth order (N =4) of the pertur-
bation and consider the octic anharmonic perturbation

y(x) = rib (1)x2+ ri2( b (2)x 2+ b (2)x 4)

w(2) (k(1) )2 g(w(2) 0f81 (4.20)

The perturbed factorization and ladder functions are

L ' '(m; p) = —(4m —2p, —1)ko '

m —p+ (2p+3)
1

+6 gF( )

2
(4.21)

K' '(x, m;p)= ko '+
r

m —p
dkF' ' x+k' 'x

1 o X 1 X

where [see Eq. (4.18) with SN = 1]

bF' '= ——k' ' .
4 (2)

3. Third order N =3 of the perturbation: Ss =2

2. Second order N =2 of the perturbation: St =1

Let us first calculate the contributions 6'm„( ' originat-
ing from the first order (N=1) of the perturbation.
Since, on the one hand, (K")) =(ko ') x, and, on the
other hand, (K'") =wI '(m)x, one gets, for any i,

b Fq

1
(p, +S)v+ 1/2)P(Stt, 1),

b

P(S —1 2)—1

b 1V

b, Fs 3= — P(Stt —2,2)—1

(4.18) Since, on the one hand, 2K'"K' '=w', '(m)x
+w23'(m)x4 [see the definition (3.4) of the w„' '(m)],
and, on the other hand, 2K'"K' '=2kI)" [k' '

+( ")5F' ']x +2ko"k' 'x [see Eqs. (4.19) and
(4.21)], one gets the following nonvanishing increments
originating from the preceding orders of the perturba-
tion:

+
2 (p+S)v+ 1/2)P(Stv —1,2),1

62

b, Fs 3= — P(Stt —2, 3) . —1

N

u '"=2k'"k"'
o o

g~(3) 2k(1) gF(2)
o o

") =2k("k(2)+2 O

(4.22)

The shortened notation k, =k,' '= 5 F,' ', 5"F,=5"F,'
The third-order perturbed factorization and ladder

functions are

pl p pl p m —p m —pL' '(m;p)= —(4m —2p —1)ko '+ (2p+3)
1

+6 2
EFO( ' — (2p+5) 2 +8 3

b, F(o ',
(4.23)

pl p
K "(x m p)= k"'+ bF"'+

p 1 0

pal p
p Xg2F(3) + k (3) +

m —p aF'" x'+k(')x'
1

X 2 X
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where [see Eq. (4.18) with S)v =2]

SF"'=——k"'6
1 b 2

gF(3)
0 b2

(p+ 5/2) k ' ' ——k '3'—

g2F(3) 30
k (3)

0 b2 2

1
AW1

~zF(4) = '4 k(4)
b' 3

6 F' '= —
( +7/2)k' '+ k' '+ —'Q0 b3P 3

b

g2 (4)
1

/3F(4) 336
I (4)

0 b3 3

w(4) =2k(()k(3)+(k(z) )z
3 0 2 1

w' '=2k"'k' '+2k' 'k'"
2 0 1 1 0

Aw' '=2k'"AF' '+2k' 'hF' '
W2 0 1 1 0

w' '=2k'"k' '+(k' )0 0

(4.24)

4. Fourth order N =4 of the perturbation

Using, on the one hand, the already known expression
of 2K" E' '+(K' ') [see Eqs. (4.19}, (4.21), and (4.23)]
and, on the other hand, their definition (3.4), the w„' '(m)
are obtained as series of („").Such series can be
viewed as their Newton's expansion and one gets

5. Expressions of the total eigenvalue and ladder operator

The last step of the computation is the determination
of the arbitrary constants k„" in terms of the potential
expansion coefficients b,". One picks up from the 6rst
column of Table IV the expression of C„,(p), and using
Eq. (3.24), one obtains the following required expressions
to be used successively for N =1 and S1=0, N =2 and
S2 = 1, N =3 and S3 =2, and N =4 and S4 =3:

k = b=1
sN 2b sN+' '

——2ko(')iI), FO '+2k' 'tI),F( '+(gF' )
)

gzw(4) —2k())gzF(3) +2(t) F( )
)

The expressions of the factorization and ladder func-
tions follow from Eq. (4.15), with N =4 and S)v =3, and,
for brevity, are not reproduced. From Eq. (4.18) with

Sz =3, one obtains, after a few algebraic manipulations,

aF"'= ——k"'[4]

bF', '= (p+7/2)k' ' ——(k' '+ —'bw' ),8 6

bF( '= — (p+7/2) k' '8
0 2 3

1 1
ks —)

=
z (p Sx I/2}bs +(+

b
"s

2b

1
ks z=

3 (p —S„+1/2)zbs +,
2b N

1 1

2b
(p —S)v+1/2)bs + bs

2b N

1
ks 3= —

4 (p —S~+3/2)3bs
2b N

1+
3 (p —S)v+3/2)zbs

2b N

1 1

2b z (p —S)v+ 3/2)bs —) + bs —z2b N

(4.26)

+ (p+5/2)(kz '+
—,', b, wz ')6

——(k"'+ 'aw(" ) (4.25)

where k, =k,' ' and b, =b,' '+w, ' '. Using these expres-
sions together with the above expressions of the factori-
zation functions L( '(m;p, ), substituting m with
j=j+e/2+ —,', p with m and rearranging the terms, one
obtains

A'"(m) = (x') b"j 1

A(z)(m) —(xz)(b(2) + (2) )+ ( 4)b(2)

A'. '(m)=(x )(b', '+w', ')+(x )(b' '+w' ')+(x )b3 '+ bwI ', (4.27)

A,
' '(m)=(x )(b', '+w', ')+(x )(bz '+wz '}+(x )(b' '+w ')+(x')b'

[blI), w —(m +5/2)gw ]+ (g w —5g w' )
)

~2

2b 2b2

where l(,„=(2m +2n + 1)(~™)+(2n +4)(J + ) ), the 6'w( ' are given by Eqs. (4.20), (4.22), and (4.24), and
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(x ) = ——(2j —m —1/2),
6

4 1 j m j m
(x ) = (m —1/2) +(6m+3) +12

b
2 1 2

1
J' —m

(m —5/2)3+ 3(4m +4m + 5 }
Q3

j—m
+30(2m +3) j—m

+ 120

(x ) =
4 (m —7/2)4+5(4m +6m +23m+21/2)

L

j—m
+15(12m +40m+49)

J m
+420(2m +5) J —m

+ 1680

For class-I problems (J„™)=('„+'),while for class-II
problems

r

v+1
+2 + 1

for class In+1

J m v+n +1
=( —1)"

n )(.„=( —1)"
v+n —1 v+n

n+1 for class II .

A (m)= 4bj +gA'—"(m)+ri A' '(m)+r) A' '(m)

+& A()(m}.l (4.28)

where v =0, 1,2, . . . .
Finally, since L' '(m)= 4bm (s—ee Table I), for both

classes of factorization (@=+1or —1), the total eigen-
value of the eigenequation (4.12) with the perturbing po-
tential (4.13) is

Since Q, ( m ) = 1, the reduced relation (3.17) holds for
the determination of the 5"F,' ' coefticients in terms of
the k,' '= 6 F' ' One gets

S,—n+1N
S

b, "F,' '= g —— (u +1/2)„
u =s+1

The expression of the associated ladder function follows
from Eqs. (2.8) and (4.15) (with N =4 and S(v = 3) and, for
brevity, has not been reproduced.

gnN
(N)

g~ —1F(»+
4(u + 1/2)

(4.32)

C. Perturbed type-D factorization with the associated
basis functions y, =x ~'

As a short illustrative application, let us consider the
solution of a perturbed type-D eigenequation (3.30) with
the sextic perturbating potential

The perturbations and the associated ladder function
are still given by Eqs. (4.14) and (4.15), while the associat-
ed factorization function is (see Table IV)

V(x) =q(b(, ')x'+b(, "x')
2( b(2)x 2+ b (2) 4+ b (2)x 6) (4.33)

L )(m;(u) = —(2m —2p —1)ko ' —g A, „b,"Fo

(4.29)

where

The maximum value of SN is S2=2S1+1=3. The re-
quired expressions of the 6"F,' ' to be used at the succes-
sive orders of the perturbation are easily obtained by
means of Eq. (4.32) and a few algebraic manipulations,

m —p m —p+2 + 1
o (4.30}

b Fs )
= ——(S)v+ 1/2)ks

2

One substitutes (m —p) with (v +1) or (m —p) with
(
—u) for class-I problems (b (O, e=+1) or for class-II

problems (b )0,6= —1) and one gets the following ex-
pression of the perturbed eigenvalues:

AFs ~= (S)v+1/2)qks ——(S)v —1/2)ks=2 2

2 2
(5'Fs —3=—,(S)v+ I/2)3ks +

q (S)v —I/2)zks —)
N N P2 N

SLY

A'„'= 26b(u+1/2)k() ' —g—A, „A"Fo
n=1

where

(4.31)
——(S(v —3/2)ks

2
N

1
b, Fs —z z (S(v+1/2)zks ~ u)s —) ~

LY N

(4.34)
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b2Fs 3= — 3(SN+I/2)3ks + 2(SN —I/2)2ks -1

+ (S~ —3/2)A ws
2b

q
——k — (S~+1/2)~ks +

~ (S~ —3/2)~ ws A'

2. Second order %=2 of the perturbation: SN =3

Since, on the one hand, (E"') =w', (m)x
+ wI~ '(m }x + w &~'(m )x, and on the other hand [see Eq.
(4.36) and use (P)(P) =(P)+2(P)].

(It'")'= k' +(-2k„~F,+~F') " +2~F' x'

1

2b N
5 NS

where the shortened notation k„=k„'"'+[&w, /4( u

+ 1/2 ) ] is used.
Picking up the expression of C„,(p) from Table IV and

using Eq. (3.24), one gets

+1 9 $
N

k,' '= —
—,
' g — (u —1/2)„

u =s+1

+2k, k, +
1

aF0 x'+ 'x'

one gets the following expressions of the w„'(m).

w(2)(m) —(kIli )2LU3

' I( ) =2k' "k"'+2k"Igy'"
2 ~

1 0 1 0

~~~(m}=(k~&')~+[2k~~ gF /(gF''~)&]
1 0 0 0 0

(4.38)

)( ( b ( N) +w ( iv )
)0 (4.35)

+2(/F'~~)& P
0

Particularly, at any order N of the perturbation

k = — b
1

S~ 2b sy+ 1

1 1ks. —&= (Sr+1/2)bs +] „bs2b

ks
(4.36)

1 1

&
(S~+1/2)&bs +& z (Sz —1/2)bs

2b 2b2 lV

1

2b S —1

1 1
ks . —s (S~+1/2)~bs, + i (S~ —1/2), bs

2b 2b

1 1

, (S~—3/2)bs, —i bs»
2b x

where k„=k„'"' and b„=b„' '+ m„'

1. First order IV= I of the perturbation: S& =1

The perturbed ladder function and eigenvalues are [see
Eqs. (4.15) and (4.29)]

The required nonvanishing expressions of the
b "w„'=b,"w„'(m =p. ) directly follow from the compar-
ison of these expressions with their Newton expansion
[see Eq. (A9)].

The expression of the perturbed eigenvalue A', ' in
terms of the k„' ' and nonvanishing 6'm„' ' is given by Eq.
(4.32) where [see Eq. (4.34) with N =2, S~ =3]

AF = — k + k ——k+ Am — Aw
105 15 3 3 1

4b3 2b2 b 4b2

105
0 b3 3

and, finally, in terms of the potential expansion
coefficients, one gets

ko = — b — (bq+w~) — (b~+w~)
(2) 105 4 15 3

16b 8b 4b

(b] N] )

(4.37)

lt'"(x m p, )= k"'+ i' aF~'I +k~'~ 'X, Pl, P —
0 1 0 X

1 X

A" I=k'" —(2k'"+aF'") '+'
v 0 0 0

—25F0 '
2 for class I,V+1

(2) 105 15 3 15
AF0 — b4 — b3+ b2-

Sb 2b 2b 2b 2b

3 1+ Au), —
4b2 - 2b

(4.40)

A'"=k"'+(2k'"+AF'" )U 0 0 0

2gF( ) +1
2 for class II,

where [set S~ = 1 in Eqs. (4.36) and (4.34)]

k(1) b(1)1
1 2b 2

k(1) b(1) b(1)3 1

4b2

gF(1) I (1) b(1)3 = 3

b

(2) 105 15 15
F0 = b4 —

~ b3 —
3 3+

4b 2b ' 2b 2b 2b

(2) 105
0 2b4 4

The associated perturbed ladder function K' '(x, m:p. )

directly follows from Eq. (4.15) where the required
(u&0) 6"F,', ' are given by Eq. (4.34) I,'set %=2 and
S~ =3).

Finally, since L' '(m)= —2bm (see Table I), it fol-
lows that 2E,' '=A' '+b(2m +1)= 2b(j+ /2e+1/—2)
+b(2m +1)= 2be(U+1/2) a—nd the total eigenvalue
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of the perturbed type-D eigenequation, with the pertur-

bating potential (4.33), is

E, = —be(v +1/2)+ —'A"'+ —''A' '

E(2)
U

v+2 + 51 v+1
3 4 2 4 1

As a particular case, let us consider the x -perturbed
harmonic-oscillator eigenequation

d x —2qx—+2E %(x)=0 .
dx

Setting b'2" = —2q and otherwise b„"=0in the above re-

sults, one gets, at the first order of the perturbation

21
q for class II .

8

It is easily checked that these two expressions of E,' ' are
quite equivalent and, as well as E,"', give again previous
results.

Of course, the algebraic recursive determination of the
A', ' can be pursued up to any order N of the perturba-
tion without special difficulty: the expression of the k„'"'

in terms of the potential coefficients is straightforward
[see Eq. (4.36)) while the determination of the 6"F(') and
of the 5'w„(") only requires some few algebraic manipula-
tions.

and, for both classes (b = —1, @=+I or b =1, e= —1)
one finds

E'"=—'A"'=3q +—'q .v+1
U P U 2 4

D. Perturbed type-D factorization with the associated
basis functions y, (x)=g, H»(b ' x )

Let us use the expansion of the perturbating potential
V(x) on the Hermite basis and set

At the second order N=2 of the perturbation, the ex-

pressions (4.40) reduce to k o
' = 21q /4b—',

bF' '=0, 5 F' '= 51q /2—b', and one finds

SN+1
V'~'(x)= y b'"'y, a„(b'"x)

s=1
(4.41)

(2)—
U

v +1 51 v+1
2 . 3 . 4

+ q for class I,21
8

v+1
4 1

where the factor y, =b(s —I)!/2(2s —1)! is introduced
for computational convenience and we have limited our-
selves to class-II problems (b & 0, e = —1,m —j =u
=0, 1,2, . . . ).

The associated perturbed factorization and ladder
functions are

L' '(m p)= —2(m —p)k' ) —g A, 5"F'+'
n=1

SN SN s r

E (x m' )=b g g +)Hp +)(b x) k + g 6"F
s=0 n=1

(4.42)

where

SN

A' '=2uk' '+2 ~~ (
—1)" 6"F'

U 0 ~ &+1 0
n =1

(4.43)

Pl —P +2 m —P
n n+1

Replacing m by j and p by m in the above expression
of L ' '( m; p ), one obtains the following expression of
the perturbed harmonic-oscillator eigenvalue
(b &O, u =m —j):

gnF(N) ~ ( 2)u
—s(gn —(F(N)+ ) gn (N))

s Q P Q

u =s+1
(4.44)

Owing to the simplicity of this relation, a closed-form
expression of the b "F,' ' in terms of the k,' '=6 F,' 'and
of the )5, 'w( ' can be derived. One obtains (see Appendix
B)

Since Q, (m ) =1, the reduced relation (3.17) holds for the
determination of the 6"F,' ' coefficients in terms of the

k,' '=b, F,' ' constants and one gets (see Table IV)

gnF(W)
N r=p

n —1

( 2)a —t (r r 1 k(iv) + ) ~ ( 1)i iT & ( 1 &i+1 ()v)
S SN —t —i

i =0
(4.45)

Finally, after substituting for 5"Fo ' this last expression into Eq. (4.43), one finds, after rearranging the summations

and using (A11), the following closed-form expression of the perturbed harmonic-oscillator eigenvalues:
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Sw
A(N) y 2u+)

u=0

where

Sx u —1

k(N)+ ~ 2u ~ ( 1)i U t g&+I (x)
~+1 u ~ ~ ~+1 u —i

u=l i=0
(4.46)

k(N) —b(N) +~(N)
u u +1 u+1

N —1Su Sx
w„' '(m =)M)= g g g h(s, t;u)k,(")k,(~'

u=l s=O t=O

N —
1 Su SN v S,, —sS& —u —t

6'w„' '= g g g h(s, t;u) g gnF(u)gjF(N v}
s t

u=l s=O t=O n=O J=O

2'+' "(2u —1)!s!t!
h(s, t;u)=

(u —1)!(s+u —t)!(t +u —s)!(s +t +1—u)!

The expression of k„' ' is obtained by picking up the ex-
pression of C„,(p) from Table IV and using Eq. (3.24),
while the expressions of the m„' ' and of the 6'm„' ' direct-
ly follow from the general results of Appendix C [see Eqs.
(C 1)—(C3)].

Since L ' '( m ) = —2bm (see Table I), one obtains
2E„' '=L' '(j)+b(2m+1)=2b(U+1/2), and the total
perturbed harmonic-oscillator energy is

E =b(V+1/2)+ —'A'"+ —'A' '+
v v 2 u (4.47)

instead of
Sl + 1

V(x)= g Bx',
s=1

one obtains the following compact expression of the first-
order eigenenergy involving only one summation:

instead of

Si + 1

2s "
b,

s=l
(4.48)

Sl +1
A()) y (2s). B g 2

s U

s!(4b)' „() (4.49)

As already pointed out, ' this simplification is not a
matter of algebraic manipulation, it is a telescopic effect:
indeed, the two expressions of V(x) are not equivalent
unless the mathematical assumption S,~ ~ holds. This
simplification still persists at the higher orders of the per-
turbation.

Of course, keeping in mind that x =
—,
'

+3H2(x)+ ,', H~(x), fo—rmula (4.46) should be used for

computing the x -perturbed harmonic-oscillator energies
up to high orders of the perturbation. The eventual in-
terest of such a computation is under consideration.

Note that the use of an Hermite polynomial x basis in-
stead of the familiar x basis greatly simplifies the com-
putational algorithm. Indeed, when using the perturba-
tive series

S, +1
V(x)= g b, g, H2, (b' x),

V. CONCLUSION

The perturbed ladder operator method has been ren-
dered hopefully operational for solving analytically wave
equations which can be viewed as "perturbed factoriz-
able" equations. This can be done by extracting from the
given physical model potential V(x, m) an unperturbed
kernel U' )(x, m) leading (directly or eventually via the
artificial device) to a factorizable eigenequation. Of
course, this unperturbed potential U' '(x, m) has to be a
fair approximation of the given potential and has to in-
volve the same kinds of singularities. In many cases, the
accuracy of the results can be significantly improved by
incorporating in U' '(x, m) a part of the perturbation in a
homogeneous way, i.e., in terms of functions already ap-
pearing in U' '(x, m); this is equivalent to a scaling de-
ViCe 23& 28& 29

Once the kernel U' '(x, m) has been so chosen, the
main ingredients for the computation are fixed. Indeed,
to each factorization type correspond specific x-basis
functions y, (x) satisfying the required selective condi-
tions (3.2) and (3.3). The perturbing potential V(x) has
to be expanded on such a basis. Then, the general formu-
las, which are given in the present paper, allow an analyt-
ical computation of the perturbed ladder I(:( '(x, m;p)
and factorization L'"'(m;p) functions, at any order N of
the perturbation solely by means of algebraic manipula-
tions. Once these "factorization instruments" have been
obtained, the perturbed eigenequation may be handled in
the same way as an exact factorizable (unperturbed) equa-
tion. Its solution is readily obtained without prior
knowledge of the unperturbed spectrum and without hav-

ing to calculate any matrix element.
The efficiency of the present perturbed ladder operator

method follows from the consideration of basis functions

y, (x) which satisfy selective ladderlike properties and the
use of Newton's binomial ( „")expansions of the ladder
and factorization functions. A subsequent computational
advantage of the method is that many intermediate func-
tions do not depend on the order X of the perturbation
and thus can be calculated once for all; the Nth order of
the perturbation is not significantly more difficult to han-
dle than the first order.

Although the ladderlike conditions (3.2) and (3.3) im-
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ply a rather selective choice of the specific x-basis func-
tions y, (x) associated with each factorization type, the
particular perturbed (A to D) factorizations which have
been examined in the present paper are not at all exhaus-
tive. For instance, one can also apply perturbed type-A
factorization with an associated potential basis set

y, (x)=a [cos(ax/2)] ' or y, (x)=a [sin(ax/2)] ' (see
Table V) and both bases y, (x) =a e""or y, (x)=a e

can be associated with perturbed type-B factorization (see
Tables IV and V). It is interesting to note that, when
dealing with problems involving perturbed spherical har-
monics YI (6),y), one can use not only the above-
mentioned potential basis sets, but also the basis func-
tions y, (x)=(cos8) ' (see Table V). Indeed, the spherical
harmonics are directly related to the solutions of a re-
duced type-A factorizable eigenequation with d =0 (see
Appendix D).

Of course, since the procedure worked out in the
present paper is valid for all factorization types, it can
also be applied to the solution of perturbed type-E or -F
eigenequations. However, it may be worthwhile to exam-
ine separately these cases and, possibly, take advantage of
the fact that the following m-parity relationships hold
E' '(x —m)= —K' '(xym), L' '( —m)=L' '(m), and
that, as a consequence, U' '(x, m) is a function of
m (m +1). In another way, since the factorization types
are interrelated, '

by an adequate transformation of vari-
able and function, one can obtain an alternative factoriz-
able equation corresponding to the same problem. Con-
sequently, perturbed type-E (or perturbed type-F) prob-
lems can also be worked out by making use of the con-
nection between type-E and -A factorizations (or between
type-F and type-B, -C, or -D factorizations).

The solution of perturbed type-E and -F eigenequations
is under investigation and special attention is paid to per-
turbed type-F factorization with the potential basis func-
tions y, (x)=x' [with associated ladder basis functions
and coefficients: Y, (x)=x'+', A, (m)=2m, B,(m)
=2q/m, a, =s+I, and P, =O]. This choice is particu-
larly interesting to show the capabilities of the method
for an elaborate treatment of the generalized central field
problem and for studying the Stark effect up to a high or-
der of the perturbation.

APPENDIX A: SOME RESULTS
FROM FINITE DIFFERENCE CALCULUS

1. Generalized factorials, reciprocal factorials,
and binomial coef5cients

These functions are, respectively,

(m)„=m (m —1) . (m —u +1),
(m) „=1/(m +u)„,

m 1(m+1)
I (u +1)I (m —u +1)

(A 1)

(A2)

(A3)

b, "(m)„=(u)„(m)„

b "(m) „=(—1)"(u +n —1)„(m)

(A4)

(A5)

(A6)

For negative arguments, the following relations hold:

(
—m)„=( —1)"(m +u —1)„, (A7)

—m 1, m+u —1 (A8)

2. Expansion of a function E ( m ) into a series
of binomial coefBcients

We have

F(m)=F(m =p)+ ~ bF(m =p)
1

+ ~ b, F(m =p)+
2

(A9)

This is Newton's formula. Conversely, the following rela-
tion holds:

where I (m) is the gamma function which satisfies the
functional relation I ( m + 1 ) =m I ( m ).

These functions play the same central role in finite
difference calculus as x" in differential calculus. Their
finite differences 6"are

Type

TABLE V. Some other perturbed factorizations. Suitable basis sets and coefficients.

Reduced A

2$

y, (x)

A, (m)

8, (m)

Qx
a cos

ax ax
a sin cos

2

d —m

2m

—(s + 1/2)

s+1

' 2s+1

Qx
a sin

2

ax . ax
a cos sin

1+m
2m

s +1/2
—(s+1)

Vs+I+ I Vs+I+2

' 2s+1

a'(cosax )
'

a sinax{cosax) '+'

2m

—(2s+1)
2s +2

a 2e —asx

—a(s + 1)x

2d

2m

—(s+1)
Vs+ r +2
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n

g (
—1)" F(u)=( —1)"b"F(u =0) .

0 =0

Particularly,

G2=Q, ,(m+1)[8, ,(m+1)+P, , ] .

Applying (Sv —s) times relation (Bl) and keeping in
mind that, for s =S~, AFs ' =0, one finds

n

g (
—1)" „=(—1)"

0=0
(A 1 1)

SN

t =s+1u =s+]
hF,' '= g G„' (m) g a, (m) (B2)

We have

3. Finite dift'erences of a product

n i

or

bFI '(m)= g [f„,(m)[k„' '+F„' (m)]
u —s+ 1

6"(FG)= g . b, 'F(m) g b, " '+'G(m) .
&=0 t=0

(A12) +g„,(m)b, w„' '(m)), (B3)

Particularly,
n

[b,"(FG)] &= g . b'F(m =p)b, " 'G(m =@+i) .
i=O

(A13)

This last relation directly follows from (A12). One notes
that when introducing the discrete difference with regard
to the i argument, namely b, ;G(m+i)=G(m+i+1}
—G(m +i), one obtains b, 'G(m)=[A, ,'G(m +i)],
Hence the last summation, in (A12), can be viewed as the
Newton's expansion of b, " 'G(m+i) in a series of the
(', ).

4. Expansion of the product of binomials

into a series of binomial coe%cients

We have

where f„,(m) and g„,(m) are given by (3.16). Expression
(A12) can be used to compute the value, for m =p, of the
(n —1)th discrete derivative of b,F,' '(m) and, keeping in
mind that F,' '(m =p) =0, one obtains the required rela-
tion (3.14).

As a consequence of (3.14), for any factorization type
and at any order N of the perturbation, one obtains the
following expressions of the 6"F,' '( m =p ) =b „F,
coefficients:

FsN=O for any n

bFsv-, =I(Sx,Sx —1;0,1)ks

+J(S~,S~ —1;0,

1)yaws

bFs 2=I(S~,S~ —2;0, 1)ks

Particularly,

k+t I
u k+t

=u +(u+1)

(A14)

(A15)

+ I (S~ —1,S~ —2;0. , 1)ks i+ ( ),
and so on, up to the required AFs

b, Fs,=I(Sw, Sv —1;0,2)ks

APPENDIX B: DETERMINATION
OF THE E,' '(m) FUNCTION

Let us start with Eq. (3.11) which can be written
again EF, , (m) =R, (m)/Q, , (m +1). Since y, (m)
=Q, (m)[k, +F,(m)] and y, (m +1)=Q,(m +1)[k,
+F,(m)+bF, (m}], one obtains the following two-terms
algebraic recursive relation for the determination of
BF,(m):

+J(S~,S~ —1;0,2)yaws

+J(S~,S~ —1;1,2}b, wsSN

b Fs 2=I(S~,Sv —2;0, 2)ks

+I (S~ —1,S~ —2;0, 2)ks

+I(Sv —1,S~ —2;1,2)AFs )+( ),

gF' ' =G' '(m)+g (m)/F'

where

G' '(m) = G,
s

2

a, (m) = —Q, (m)[ A, (m +1)+a,]/G~,

G~ =[k,' '+F,' '(m)][[A, (m) —a, ]Q, (m)

(B1)
and so on, up to the required 6 Fs

N

b, 3Fs (=I(S~,Sv —1;0,3)ks +( ),
Fs . —2=I(S~;,S,~ —2;0, 3)ks

+I (S,v —1,S~ —2;0, 3)ks

+2I(Sv —1,S~ —2;1,3)b Fs

+I(Sv —1,S~ —2;2, 3)b, Fs,+( },
—bw, ' '(m),

—[A, (m +1)+a,]Q, (m +1)I

and so on, up to the required 5 Fs
N
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b, Fs,=I (S~,S~ —1;0,4 }ks + ( ),
b, Fs 2=I(S~,Sv —2;0,4)ks +I(S~—1,S~ 2—;0,4)ks, +3I(S~—1,S~ —2;1,4)bFs

+3I(S~—1,S~ 2;—2,4)b Fs, +I(Stt —1,S~ —2;3,4}A Fs,+( ), (84}

and so on, up to the required b "Fs . The shortened
N

notation ( ) stands for the J ( u, s;i, n)b, '+'
w„ terms which

are easily obtainable from their I(u, s;i, n)h'F„(already
written) counterpart, by means of the substitutions

n —1

I(S&,Stv a;O—, n)ks ~ g J(S~,S~ o",i, n—)b'+'ws
i=0

for u =SN, and, otherwise,

and so on.
When A, (m) is a linear function of m and, also

Q, (m)=1 [with B,(m)=80 and P, =O], one can write
[see Eq. A9)]

n

y, (m)= g p b "y, (m =p),
n=0

where' y, =k, and ys =ks . Noting that

I(u, s;i, n)h'F„~ J(u, s;i, n)I), '+'w„.
n, n, —1

Note that, for any s and u,
p gn y m p gn+ 1

n=1 ' ' n=O
(86)

I(u, s;0, 1)=f„,(m =p),
I(u, s;0,2)=bf„,(m =p),
I(u, s;1,2)=f„,(m =p+1),
I(u, s;0, 3)=b,'f„,(m =p),
I(u, s;1,3)=hf„,(m =p+1),
I(u, s;2, 3)=f„,(m =p+2),

(85)

and that

m —p m —p m —p + m —p
n 1 n +~ n

=(n +p) P +(n +1)

[see Eq. (A15)], one obtains, after some rearrangements,

n

R, (m)= Bo ' g— P [[(n+1)b A, +2a, ]b,"y, +[n+p+1+ A, (m =0)+a, ]h"+'g, +b,"+'w,
I .

n=0

This last expression can be viewed as Newton's expansion of R, (m) and, since Ay, , =R, (m), one finds

6"y, , = —80 '
[ [(n +p)b A, + A, (m =0)+a, ]b,"y, +(nb A, +2a, )5" 'y, +b, "w,

J
.

(87}

(Bg)

Keeping in mind that 6 y, =0 for s & SN —n +1, and applying SN —s times this relation, one obtains the required re-
cursive relation (3.17).

For the particular case of perturbed type-D factorization with associated basis functions y, (x)=y, H2, (b' x), the re-

cursive relation (3.17) reduces to Eq. (4.44). Let us set b, "F,=( —2)'(b, "F,+ —,'b, "+'w, ), 6"+'w, =
—,'( —2)'6"+'w„and

k, =b, F, and let us remark that F„' '(m) and w„' '(m) are both ' of degree S~—u in m. Then, relation (4.44) reduces to

SN
—n +1

gnF(N) gn + 1w(N)+ ~ gn —1F(N)
S s u

u =s+1

Using this last relation, the following closed-form expression is found:

(89)

gnF(N) gn + 1

SN
—e ws

r=O

n —1
1 (N) ~ & ~ E 1 i +1 (N)

1 sN —I ~ z —t —1 s+~~ . 6 w (810)

and, finally, one obtains the closed-form expression (4.45).

APPENDIX C: DETERMINATION OF THE 5'+ 'w„' ' COEFFICIENTS

The w,' '(m) functions are defined by relation (3.4). Using the expression (3.1) of the perturbed ladder function
K' '(x, m;p) together with expression (3.3) of the product Y, Y„both expanded in finite series of the y, (x) basis func-

tions, one gets

N —1 v Ns s —0

w„' '(m)=
U=l s=O t=O

it l iN —vl
n n,s

h ( t;s)Qu, (m)Q (m~) g g P . P 5"F,"EJF,'
n =0 j=O

(C 1 }
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S—1 u v
(v) (+ v)

s t

5'w„' '= g g g h(s, t;u) g g W;(s, t;n,j)A"F,"'5'Ft' (C2)

where

u=l s=O t=O u=0 g=0

W(s, t;nj)=b' Q, (m)Q, (m)
m =p

It is easily found that

m —p m —p
J m=@

k n
n k —j

and one gets, after some rearrangements,

1

W, (s, t;n, j)= g k k" . (5' "Q,Q, )~ „+s t m —p+ (C3)

It is worthwhile to note that, when Q, (m) = Q, does not depend on m, this last expression reduces to

W, (s, t;n,j ) =Q, Q, (C4)

Particularly, when Y, Y, =y, +,+, one gets

W —1 U
5 i+1 i+1

b, '+'w„' = g g Q, Q„ F "~Fp s" e (C5)
u=1 s=O t=0r=O

APPENDIX D: SOME PARTICULAR
EIGENFUNCTIONS OF FACTORIZABLE

EIGENEQUATIONS

1. Associated spherical harmonics

We have

YLM(g, g) =(2~) '"exp(tMq )(»ng) '"q't M(g) .

+L~(g) is a class-I (e=+1) solution of a type-A factoriz-
able eigenequation with x =L9, 0~0&n", a =1; d =0;
j=L —1/2; rn =M —1/2 and L —M =j —m equals a
positive integer or zero.

2. Symmetric-top functions

We have

Setting z =sin x and

F =(sinx) r+' (cosx) ~+r ' q'(x),

one obtains

d2

dx

4( m 2+ d ~ —1/4+ 2md cos2x )

s1n 2x

+(a —p)' q(x)=0,

z(1 —z) +[y —(a+p+1)z] —ap F(z)=0 .
Z2 dz

D~~. (p, 8,$)=exp(t Mq )d~~ (8)e'xp(t M'P), '

where y, g, p are the three Euler angles: 0&y&2rr;
0 & 8 & vr; 0 & $ & 2',

(g)=[2/(2L +1)]' (sing) ' ql (g)

+tM(g) is a class-I (e=+ 1) solution of a type-A factoriz-
able eigenfunction with x =0, a =1, j =L —1/2. Since
both differences L —M and L —M' are positive integers
or zero, 'PL~(g) is a type-A eigenfunction either when

setting M =m + 1/2 and M'=d, or when setting M =d
and M'=m +1/2.

3. Gauss hypergeometric functions

The differential equation satisfied by the Gauss hyper-
geometric function zF, (a,P;y;z) is

where m =(a+P —1)/2 and d =(2y —a —P —1)/2.
qi(x) is a class-I (e = + 1) solution of a type-A factoriz-

able equation with a =2, A =(a—p) . On the other
hand, the quantization condition requires j —m = v equal
to a positive integer and A, =L(j+1)=L(m+v
+1)=4[u +(a+p)/2] . As a consequence, either
a= —v or p= —u, i.e., one finds again the well-known

condition for finite hypergeometric series.

4. Morse oscillator

The Morse potential is U (r)=D(1 —e '")2, where D
is the well depth and a is a scale parameter. Setting
x =ar, X'=(2MD)' /aA, 8=2ME/A a, one obtains
the Morse oscillator wave equation [ —~ & x & + ~,
within the Ter Haar extension ]
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—4' (e '—2e ')+ 6 —.R %(x)=0 .
dx

%(x) is a class-II (e= —1) solution of a type-B eigenequa-
tion (see Table I).

Note that the change of variable
X =(ZR)' exp( —x/2) transforms the above eigenequa-
tion into the radial equation of a two-dimensional har-
monic oscillator with unit angular frequency and unit
mass (type-C factorizable equation).

5. D-dimensional harmonic oscillator

The radial eigenfunction t)'l(x) of the D-dimensional
simple harmonic oscillator of mass M and angular fre-
quency w is a class-I (a=+ 1) solution of a type-C factor-
izable eigenequation with m =L + —,

' (D —1 ),
b = Mw—/t)'t, U j=—m which is equal to positive integer
or zero. One finds again the already known expression
of the energies Etv =

—,'t!Iw(2N +D) where N =2u +L.
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