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The difficulties associated with application of the shifted large-N technique to the Dirac equation
have been resolved by applying the method to the Klein-Gordon equation in which a spin-orbit in-

teraction term is included analogous to Pauli theory. Explicit analytical expressions for the relativ-
istic screened Coulomb bound-state energies, radial wave functions, and normalizations are given.
For the point-Coulomb problem, we restore exact results for the relativistic binding energies and al-

most exact wave functions. The 1/N expansion results are then compared with the exact numerical
solutions as well as with those obtained in other analytical methods for a number of screened
Coulomb potentials and for a wide range of atomic numbers Z. In general, excellent agreement is

found. In contrast to the limited applicability of the usual perturbative methods, our technique is

found to be flexible and may be extended to a more general class of relativistic potentials that has
applications in atomic and quarkonium physics. Encouraging aspects of the present approach are
also briefly discussed.

I. INTRODUCTION

It is well known that analytical study of the relativistic
motion of a spin- —, particle bound in a spherically sym-

metric potential is extremely difficult. Recently, various
perturbative methods' have been suggested to obtain
analytical expressions for Dirac eigenvalues and eigen-
functions. In fact, extremely accurate numerical results
for binding energies, normalizations, transition probabili-
ties, etc. for inner-shell electrons in neutral atoms have
been obtained. However, these perturbative approaches
have limitations, too: first, these methods deal only with
Coulomb-like potentials for which the Coulomb potential
is treated as the dominant one; second, the algebraic ma-
nipulations involved in these perturbative calculations
are quite elaborate and time consuming as far as compu-
tational work is concerned. It may then be worthwhile to
search for an alternative analytical approximation
scheme that is applicable to a wider class of potentials
and provides results for the screened Coulomb potentials
with at least the same order of accuracy. Our objective in
this paper is to develop a large-E (X being the number of
spatial dimensions) expansion for a relativistic spin- —, par-
ticle moving in a spherically symmetric potential, utiliz-
ing the procedure which has been used with great success
for nonrelativistic problems. '

The scope of extension of this method to relativistic
problems was initiated by Miramontes and Pajares' and
Chatterjee. " However, these authors used the unshifted
1/Ã expansion which is known to be numerically less ac-
curate than the shifted large-N technique" (SLNT) pro-
posed by Sukhatme and co-workers for nonrelativistic
bound-state problems. The SLNT has been applied re-
cently by several authors' to relativistic particles

with or without spin moving in a spherically symmetric
scalar as well as vector potentials, From careful observa-
tions of all these attempts, one finds that the treatment of
the Dirac equation within the framework of SLNT suffers
from the following limitations: from the work of Atag'
and Roychoudhury and Varshni' it appears that even for
the point-Coulomb potential, one merely restores the
binding energy correct up to order 1/c . Since the
higher-order terms become important for large-Z values,
the accuracy of the predicted binding energies for neutral
atoms becomes worse with increasing values of Z. It is
crucial to emphasize here that whenever a Dirac equation
is converted to a Schrodinger-like equation as has been
done in Ref. 19, an irregular singular term of the form
(1/r') arises due to the spin-dependent piece [e.g. , Eq.
(15) of Ref. 19]. We suspect that perhaps this is the
reason for not being able to restore the exact Coulomb re-
sults in such an approach. Also correct threshold behav-
ior of the relativistic wave function cannot be achieved.

In a subsequent work, Papp has shown that instead of
working with the Dirac equation, the effect of spin can be
incorporated in the Klein-Gordon-like equation by
redefining the quantum numbers in a suitable fashion. In
this way, Papp recovered the exact expression for relativ-
istic Coulomb binding energy. However, since it is well
known that the Klein-Gordon (KG) equation does not
give the orbital-magnetic splitting of energy levels, he
could not obtain the desired contribution due to spin to
the energy levels as well as splitting of levels (such as the
2s

&
z2-2p

& &z split ting) for non-Coulombic potentials.
At this point we address ourselves to the following

question: to what extent can spin-orbit interaction be
simulated through the use of the KG equation without
disturbing the exact Dirac Coulomb result? We demon-
strate here that this can be achieved if one follows a
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modified approach. Taking the cue from Pauli's work '

in which spin was introduced in the nonrelativistic
theory, we suggest that a manifest spin-orbit interaction
term can also be incorporated in the KG equation in such
a fashion that exactness of Dirac-Coulomb binding ener-

gy will be retained, whereas the spin-orbit splitting for
non-Coulombic potential would be obtained as close to
that as expected from the Dirac theory. In doing so, we
succeed in obtaining not only the exact analytic expres-
sions for the relativistic binding energies and nearly exact
eigenfunctions for the Coulomb problem, but also com-
pact and simple analytic expressions for the same for the
screened Coulomb potentials. Numerical results can also
be predicted without much computational labor and
these are found to be quite accurate and comparable to
those obtained by other perturbative methods.

The organization of this paper is as follows. In Sec. II
we develop the formalism of SLNT for obtaining the
binding energies and eigenfunctions of a spin- —, particle
from the KG equation. In Sec. III we apply this method
to the point-Coulomb problem. The binding energies,
wave functions, and normalizations for an inner-shell
electron in a neutral atom are obtained using several

screened Coulomb potentials and the results are com-
pared with other calculations in Sec. IV. In the conclud-
ing section, we discuss the advantages and usefulness of
the present approach in comparison to other perturbative
methods for studying relativistic bound-state problems of
more general nature. The scope of applicability of our
method to other areas of physics is also briefly discussed.

II. RELATIVISTIC BINDING ENERGIES
AND WAVE FUNCTIONS IN SLNT

We present here the formulation of the SLNT for the
relativistic motion of a spin- —, particle bound in a radially

symmetric potential V ( r). As mentioned clearly in the
Introduction, treatment of the Dirac equation in the con-
text of the SLNT leads to certain difficulties. On the oth-
er hand, we propose here to simulate the effect of spin on
the relativistic motion of the particle by including a spin-
dependent term in the KG equation in a manner very
similar to the way Pauli considered the spin in the
Schrodinger equation. We thus begin with the X-
dimensional radial KG equation (in atomic units,
fi=m =e =1)

1 d (K —1)(K —3) + EV(r) [V(r)] E
2 dr gr c 2c 2c

where K =N +2l. Following Ref. 22, we collect the coefficients of ( 1 lr ) terms in Eq. (1) and redefine K so as to obtain
the correct threshold behavior of the relativistic wave function. For this purpose, we decompose the term [V(r)] as

A[V(r)] = +u(r), (2)

where

coupling constant for Coulomb-like potentialsA='
0 otherwise .

Substituting (2) in Eq. (1) and replacing K by K' given by

1/2

K'=2+ (K —2)—4A
C2

(3)

one gets

1 d (K' —l)(K' —3) EV(r)+V r+
2 dr2 gr2 c~

E2
P(r)= E + P(r) .

2c2 2c~
(4)
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In contrast to the work of Papp, we include at this
stage a manifestly spin-dependent term

I+1, «)0
K= —I, K&0.

V, (r)= — H(r)
4C2

in which H (r) is chosen to be

1 AH(r)= — V(r)+-
r dr r

(6)

The form of H(r) has been taken in such a way that for
Coulomb-like potentials, one does not get an irregular
singular term of the form 1Ir at the origin. We now in-
troduce a shift parameter a through the relation

K=X' —a
and K is the conventional eigenvalue of the operator
((r"L+ 1) and is given by and derive Eq. (4) after including the term in (6) as

1 d'+ (K+a —1)(K+a-3) EV(r) u(r) «H = E+ E
dr Sr

(9)

This is our starting equation for the systematic 1/K ex-
pansion for the binding energy and wave function. For
this purpose, we first rescale the following quantities:

in (10) will be set equal to K 2 later. Using (10) and (11) in
Eq. (9) and considering k ~ Oo, the leading-order
binding-energy term is obtained to be

V(r)=K V(r)IQ,
u(r)=K u(r)/Q

H(r)=K H(r)IQ,
c2=K 2c2/g

« =K «/Q

A=K A/Q,

(10)

and then expand the binding-energy E and the
coordinate-dependent terms as

V(r() }K2E = K2c +K2

where ro satisfies the equation

r()V'(r()) g1+ +
4C2r2 r2C4

«H(r() )

2C4

4A2K 2 K «r oH'( ro )

4roV'(ro) c Q c Q

(12)

E K 2E0+KE1+E2+=E3+ (1 la)
«H'(r() )r()=—+ +, . (13)

4 c~g 4c Q
2

rp rp
V(r)= V(ro)+, V(ro)x + V(ro)x +, etc. ,

(1 lb)

where x =[(r ro)lro]K '~ . The un—known parameter Q

Since this expression involves K (through the rescaled pa-
rameter Q} containing the unknown shift parameter a, ro
can be determined only after we give the prescription for
fixing a.

Using (10)—(13), Eq. (9) can be recast into the form

1 d, 2 2 1
2

2
+Go+ 2o) X + (s(X +63X )+:(Epx +E4X )+ (5)X +53X +55X2 4 3 5

K K 3/2

4 6 . . . — 2 1+ (5&x +54X +56x )+ . . (t( )I=xr lDo(()+ ID(p)+ ~
'8(3')+ I}}(x),

K K K
(14)

where

1 E(roV(ro} 1 1 E2r() V(r() )
co= ——(2 —a)+ +——(1—a}(3—a)+

4 c' K C2

1 E3"oV(ro)+ —
2K c 2
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rpV (rp} 4 «rpH (rp)

e) =
—,'(2 —a),

e = —
—,'(2 —a),2

r4
+

z (2 VV"—u" —
—,'«H")

2c Q

' 1/2

(16)

r()V"'(r()) K Eo+c~—+
2 6Q C2

r()V"'(rp) K Eo+c~
8 24Q C2

E&rp3V'(rp )
5) = —

—,'(1—a)(3 —a)+

r'
z

[u"'(rp)+ —,'«H"'(ro)],
12Qc ~

6
fp

z
[u""(rp)+T)«H'"'(ro)],

48 c

(17)

EzroV"(ro }
5p= —,'(1 —a)(3—a)+

2c

53=(2—a),
54= —-'(2 —a),4

r'V""'(r ) K E +c'
3+

120Q

V"""( ) K E+
720Q

g 2Ep+C2
(1)=E1

7
Pp

240Q
[u ( r() )+T~«H

""
( r() ) ]

8I'p

&
[u """(rp)+ ,'«H'""'—(ro)],

1440Qc

(18)

K E+c QE~
(2) 2

C 2c
(19}

E Ep+C2
(,)=E, QE, E+

C

Equation (14) is the same as Eq. (Al) of Ref. 11. Hence
following the steps of Ref. 11, one may easily fix the shift
parameter by setting the first nonleading correction term
E, to zero. Furthermore, as we are dealing with a spin- —,

'

particle, we follow Ref. 20 and replace the nonrelativistic
radial and orbital angular momentum quantum numbers
n„and I by (n„—s/2) and (l+s/2), respectively, where
s =kl denotes the sign of «given in (7). We thus get

(1—a)(3 —a) +
E =

K E()+c V(r())—
Pp

C2

(22)

ergies and leading-order wave functions are fairly
straightforward. Omitting the algebraic complexities, we
just present the final expressions:

a =2 —[1+2( n„—s /2) ]2w, (20)

2
1/2

K = [N +2(1+ /2s) —2]—
C2

+2w [1+2(n„—s/2)] . (21)

(2)

C2

K E()+c V(r())—
l'p

(23)

Setting Q =K ~ and using (21) in (13), ro can be deter-
mined. Once rp is evaluated, computations of binding en- where g(„" and g(„~) are given in the Appendix. The
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y(0)(&) ~&(E'—I —s)/2exp
rp

L

XL (K' —2 —s)/6
n

ro

leading-order wave function p' '(r) is given by'

(24)

in which w =2w and L~(x) is the associated Laguerre po-
lynomial. It may be pointed out that the term s has been
included in (24) with a view to obtaining the correct non-
relativistic expression for the wave function in the ap-
propriate limit. The wave function in (24} is equivalent to
the large component of the Dirac wave function. The
normalization factor is obtained to be

(K' —s)/2'

g ( —1)

K' —2 —s K' —s 2
n, + !I +m I n„+1—m ——

CO CO CO

K' —2 —s 2
(n, —m)!m!n„! +m !I 1 —m ——

CO 9

' —1/2

(25)

The expressions (24) and (25) are new and to the best of
our knowledge, were not obtained in SLNT previously.

III. POINT-COULOMB PROBLEM

Before discussing realistic screened Coulomb potential
problems it is worthwhile to illustrate that our formulas
(12), (22), (23), and (24) reproduce correct results for the
binding energies as well as eigenfunctions for point-
Coulomb potential V(r)= Z/r. For th—is case one ob-
tains from Eqs. (13), (16), and (21)

N =——I
2

K =2Ip +[(j +1/2) —(Za) ]'

E +4Z
' 1/2

4Z 2K 2

where p =(n, +1/2 —s/2} is the Dirac radial quantum
number~ and j=I +s/2. Using (26) in (12), (23) and (24)
one obtains

E 2 1+ (Z )

Ip+[(j+ I )2(Z~)2]1/212
I~

(27)

which is the exact Coulomb binding energy that one ob-
tains from the solution of the Dirac equation.

From (24) and (25), the leading-order Coulomb wave
function and the normalization factor become

1/2
~(0) g (2v+ 1 —s)/2 C

,r exp 2
C

4 2
' 1/2

r n
L2v s

c

c4 E2 " (n, +2v —s)!I (2v+2 —s+m)l (n„—m —1)
2

' g ( —1)
c2 (n„—m)!m!n„!(m +2v —s)!I ( —1 —m)

I

(29)

Regarding these results, we make the following observation: For states with p=O (n„=O,s =+1), Eqs. (28) and (29)
lead to

' 1/2 v+(1/2)
~(P) 2

c E
2

1

&I (2v+1)
r exp

'1/2
4 —E2

2
r

c
(30)

which is the exact large component of the Dirac-
Coulomb wave function. ' For pAO states, although
our leading-order wave function (28) does not retrieve the
exact analytic expressions, the numerical agreement be-

tween our approximate functions and the exact ones is re-
markable. This may be visualized from Figs. 1(a} and
1(b), which display excellent agreement between our ap-
proximate wave functions and the exact ones for 2s1/2
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and 2p»2 states for Z=30. This indicates the correct-
ness of our leading-order calculation for the wave func-
tion.

be expanded in the form '

(31)

IV. APPLICATIONS TO SCREENED COULOMB
POTENTIALS

The method of Sec. II has been applied to the first four
bound states of screened Coulomb potentials, which may

in which A, is the screening parameter. Screened
Coulomb potentials which have great utility in a variety
of fields such as atomic, nuclear, and plasma physics,
were studied extensively by various authors. ' ' ' Using
our formulas (12), (22), and (23), we compute energy ei-
genvalues for the Yukawa potential [V(r) = —(Z/r)e
A, =1.13aZ'~3], self-consistent Kohn-Sham (KS} poten-
tial, 2 and Mehta-Patil (MP} potential

1
A,r 1 ——

Z

1+A.r
A, =0.98aZ '

CPa'
4

(b)

R
O

CP
K

FIG. 1. (a) Radial part of the large-component (unnormal-
ized) Dirac relativistic 2s]~&-state wave function vs radial dis-
tance for Z=30. The solid line represents our analytic expres-
sion [Eq. (28)] obtained in SLNT. The dotted line corresponds
to the point-Coulomb shape for the same. (b) Radial part of the
large-component (unnormalized) Dirac relativistic 2p, »-state
wave function vs radial distance for Z=30. The solid line
represents our analytic expression [Eq. (28)] obtained in SLNT.
The dotted line corresponds to the point-Coulomb shape for the
same.

and compare the results with the predictions of other an-
alytic methods as well as with the values obtained numer-
ically. For the KS potential, we take the form (31) with
only three coefficients V„V2, and V3 for which the
values are taken from Ref. 2. In Tables I and II, we
present the results for low-, intermediate-, and high-Z
atoms. For an assessment of the level of accuracy of each
theoretical prediction, the percentage of error is also
shown in the tables. In comparison to other analytic re-
sults, the agreement of our predicted results, particularly
for the Yukawa and MP potentials, with the exact ones is

better in general and improves significantly for large-Z
cases. For these potentials, the order of accuracy is
within 3%%uo for the entire range of Z except for n=2 and
Z=14. As indicated in Table II, results for such states
are not even calculable within the framework of analytic
perturbation theory (APT}.

For the KS potential, however, the percentage of error
becomes relatively large and shoots up to about 13% for
intermediate Z. The reason for this may be attributed to
the fact that the potential coefficients V s given in Ref. 2
are obtained from numerical fit in a small region of r
which is essential for the validity of this method. But
SLNT is not restricted in any manner by a particular
domain of the variable and it works well only when the
behavior of the potential is correctly known for the entire
range of r. This is evident from our results for the Yu-
kama and the MP potentials, where we have taken the
full form of the potentials and not the first four terms of
their expansions. We have verified that, if we expand
these two analytic potentials in the form of (31) and com-
pute with only the first four terms, the percentage of er-
ror for each state becomes as large as that for the KS po-
tential given in Table I.

As mentioned clearly in the preceding section, we have
given analytic expressions for the relativistic wave func-
tion (large component) and normalization for a spin- —,

'

particle only up to the leading-order term. We demon-
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TABLE I. Relativistic binding energies (in keV) for the Yukawa and KS potentials as a function of
N, x, and Z. For comparison we also give the results of APT and numerical calculation taken from Ref.
2.

Potential

Yukawa 13 1 +1

APT
(Ref. 2)

Present work
[Eq. (11)]

0.1487{+1) 0.1489 0.1493

Binding energies in keV
Numerical
calculation

(Ref. 2) APT

04 0.3

% of errors
Present

work

30 +1
+1
—1

+2

+1
+1
—1

+2

0.9744(+ 1)
0.1050(+1)
0.9635(+0}
0.9000(+0)

0.7170(+2)
0.1252(+2)
0.1238{+2)
0.1070(+2)

0.9758
0.9647(0)
0.8740
0.8442

0.7175
0.1250
0.1226
0.1073

0.9758
0.1045(+ 1)
0.9377
0.9096

0.7175
0.1254
0.1230
0.1077

0.1

0.5
3.0
1.0

0.1

0.2
0.7
0.7

0.0
8.0
7.0
7.0

0.0
0.3
0.3
0.4

KS 13 1 + 1 0.1471(+1) 0.1503 0.1505 2.0 0.1

30

74

+1
+1
—1

+2
+1
+1
—1

+2

0.9469(+ 1)
0.1094(+1)
0.1095(+1)
0.8619(+0)

0.6990(+2)
0.1186(+2)
0.1187(+2)
0.9747(+ 1)

0.9552
0.1099
0.9547(+ 1)
0.9299

0.7014
0.1194
0.1146
0.1005(+2)

0.9506
0.1157
0.1021{+1)
0.9969

0.6934
0.1196
0.1144
0.1009(+2)

0.4
5.0
7.0

14.0

0.8
0.8
4.0
3.0

0.5
5.0
7.0
7.0

1.0
0.2
0.2
0.4

TABLE II. Relativistic binding energies (in keV) for the MP potential as a function of n, ~, and Z. For comparison we give the re-

sults of APT (calculated from Ref. 2) and Roychoudhury and Varshni (Ref. 19). Numerical results are taken from Ref. 27. The oc-
currence of the opposite signature of the binding energy is referred to here as "Unphy. "

Binding energies in keV

14

29

59

84

+1
+1
—1

+2
+1
+1
—1

+2
+1
+1
—1

+2
+1
+1
—1

+2
+1
+1
—1

+2
+1
+1
—1

+2

Present work
(Eq. 11)

0.1999(+1)
0.2630(+0)
0.2105(+0)
0.2364(+0)
0.9564{+1)
0.1483(+1)
0.1380(+1)
0.1370(+1)
0.2339(+2)
0.4016(+ 1)
0.3874(+ 1)
0.3708(+ 1}
0.4421(+2)
0.8155(+1)
0.7979(+ 1)
0.7381(+1)
0.7322(+2)
0.1430(+2)
0.1410(+2)
0.1249{+2)
0.9806(+2)
0.1982(+2)
0.1960(+2)
0.1674(+2)

RV
(Ref. 19)

0.2000
0.2752
0.2182
0.2172
0.9575
0.1539
0.1387
0.1361
0.2338
0.4102
0.3907
0.3744
0.4405
0.8206
0.8137
0.7528
0.7238
0.1417
0.1466
0.1287
0.9600
0.1941
0.2084
0.1740

APT
(Ref. 2)

0.1979
Unphy.
Unphy.
Unphy.
0.9561
0.1006
0.1059
0.1024
0.2340
0.3621
0.3590
0.3419
0.4425
0.7830
0.7721
0.7142
0.7330
0.1404
0.1385
0.1230
0.9818
0.1961
0.1937
0.1658

Numerical
calculation
(Ref. 27)

0.2000
0.2493
0.2157
0.2147
0.9574
0.1466
0.1373
0.1349
0.2341
0.4001
0.3849
0.3698
0.4425
0.8145
0.7931
0.7386
0.7329
0.1430
0.1402
0.1251
0.9814
0.1983
0.1951
0.1678

Present
work

0.0
5.0
2.0

10.0
0.1

1.0
0.5
2.0
0.1

0.4
0.6
0.3
0.1

0.1

0.6
0.1

0.1
0.0
0.6
0.2
0.1

0.1

0.5
0.2

% of errors

0.0
10.0
1.0
1.0
0.0
5.0
1.0
1.0
0.1

3.0
2.0
1.0
0.4
0.7
2.0
2.0
1.0
0.9
4.6
2.9
2.2
2.1

6.8
3.7

APT

1.0

0.1

31.0
23.0
23.0
0.0

10.0
7.0
8.0
0.0
4.0
2.0
3.0
0.0
1.8
1.1
1.7
0.0
1.1
0.7
1.7
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K
O

c

I

FIG. 2. Relativistic large-component (unnormalized) wave
function for the 1s

&
zz-state of aluminum (Z= 13) for the KS po-

tential. The solid line represents the shape obtained from SLNT
[Eq. (24)], while the dotted line represents the results as ob-
tained from APT [Ref. 2].

for Z=13. Both methods give almost identical results for
the entire range of r. The same feature is found to be true
for other states as well. The departure seems to be gradu-
ally prominent as Z increases. For better agreement, one
may in principle calculate nonleading corrections to the
wave function for which calculation becomes as compli-
cated as one encounters in APT. We avoid it purposely
as it is contrary to our motivation.

A comparison of our expression for the relativistic
bound-state normalizations with those obtained in APT
and exact numerical results is given in Table III. In gen-
eral, we see that the behavior of the normalizations as a
function of Z and quantum numbers is comparatively
worse for the 2s»& and 2p»z states. The reason may be
due to the fact that in the Coulomb limit, one does not re-
store exact analytic expressions for the Coulomb wave
functions for these states. It is clear that higher-order
corrections to the leading-order wave function are essen-
tial in SLNT in order to reproduce more accurate results
for 2s»z and 2p»z states.

V. CONCLUDING REMARKS

strate here that even the leading-order wave function,
which is analytically much simpler than the complicated
expression obtained in APT, is capable of reproducing re-
sults with high accuracy. In Fig. 2 we have shown the
comparison between the results obtained in SLNT and
APT for the shape of the wave function of the 1s,&z state

In this paper we have succeeded in extending SLNT in
obtaining compact analytic expressions as well as accu-
rate numerical results for the relativistic bound-state en-
ergies, wave functions, and normalizations for a spin- —,

particle in a spherically symmetric potential. This has
been achieved by a new prescription in which a spin-
dependent term has been included in the KG equation to

TABLE III. Bound-state normalizations for the Yukawa and KS potentials as a function of n, ~, and
Z. For comparison we also give the results of APT and numerical calculation taken from Ref. 2.

Potential

Yukawa 13 1 +1

Present work
(Eq. 25)

APT
(Ref. 2)

0.2910( —1) 0.2893 0.2885

Bound-state normalization
Numerical
calculation

(Ref. 2) APT

0.9 0.3

% of errors
Present

work

30 +1
+1
—1

+2

+1
+1
—1

+2

0.1072(+0)
0.3831(—1)
0.3301(—1)
0.1097( —2)

0.4831(+0)
0.1764(+0)
0.1873(+0)
0.1254( —1)

0.1072
0.3590
0.3428
0.1047

0.4881
0.1852
0.1833
0.1240

0.1071
0.3435
0.3282
0.1074

0.4840
0.1842
0.1822
0.1212

0.1

12.0
0.6
2.0

0.2
4.0
3.0
3.5

0.1

5.0
4.0
3.0

0.8
0.6
0.6
2.3

13 1 +1 0.2890( —1) 0.2861 0.2854 1.0 0.2

30

74

+1
+1
—I
+2
+1
+1
—1

+2

0.1067(+0)
0.3750( —1)
0.2972( —1)
0.9810(—2)

0.4812(+0)
0.1674(+0}
0.1897(+0)
0.1213(+1)

0.1065
0.3431
0.3113
0.9555

0.4866
0.1795
0.1754
0.1177

0.1062
0.3312
0.3003
0.9163

0.4848
0, 1770
0.1703
0.1143

0.5
13.0

1.0
7.0

0.7
5.0

11.0
6.0

0.3
4.0
4.0
4.0

0.4
1.0
3.0
3.0
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simulate the results of the Dirac equation as far as prac-
ticable. In this respect, the present approach indicates
substantial modifications of the earlier work of Papp and
Roychoudhury and Varshni. Needless to mention, our
work is, we believe, the first attempt to obtain relativistic
wave functions in SLNT. From the comprehensive
analysis of a variety of screened Coulomb potentials in
the light of SLNT presented in this paper, it is made evi-
dent that in spite of the simplicity of the analytic forms of
the energy levels and wave functions, the numerical accu-
racy of the predicted results is quite satisfactory. Never-
theless, we would like to point out that the contribution
from the spin-orbit interaction term considered in Eq. (5)
is only 2% and is less than what is required to explain the
actual splitting. For example, the binding energy for
Z=14 is —1.999 keV (column 4, Table II), whereas it is
—1.965 keV if the spin-orbit term is ignored. Similar re-
sults also occur for higher-Z atoms. We suspect that this
shortcoming is due to use of the KG framework rather
than Dirac.

The present method is quite flexible in the sense that it
is applicable to any radially symmetric potential in con-
trast to other perturbative methods for which the appli-
cations are restricted not only to the Coulomb-like poten-

tials, but also to a limited region of the motion of the
electron in an atom. Encouraged by our results, we are
motivated to examine thoroughly the relativistic correc-
tions to the dipole transitions and radiative rates, quan-
tum defects, etc. for the inner shell electrons in a com-
plex atomic system. Also it is within the scope of our
method to consider a mixture of scalar and vector poten-
tials which may be useful to study the bound-state prop-
erties of the quarkonia. ' This work is now in progress
and will be reported later.
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APPENDIX

To calculate second- and third-order terms in the 1/K
expansion of the energy eigenvalues, we give here the ex-
pressions for g'„" and g„( ' explicitly:

(1)
1g =(I+2n„')Z2+3(1+2n„'+2n,' )Z~
—[Z ]+6(1+2n„')l,Z +3(11+30n,'+30n„' )Z3],

n„

(2)

g =( I+2n„')5z+3(1+2n„'+2n„' )54+5(3+Sn„'+6n,' +4n„' )86
n„

——[(I+2n„')K&+12(1+2n„'+2n„' )ZzZ +42(21+59n„'+51n„' +34n„' )Z ~+21&8 (

+6(1 +2 n')l, 5 3+3 0(1 +2n„' +2 n„' )Z', 55+6(1+2n„')835(+2(11+30n„'+30n„' )F353

+ 10(13+30n„'+42n„' +28n„' )F35~]

+ [4Z,12+36(1+2n,')Z gzZ3+ 8(11+30n„'+ 30n„' )Z2Z 3+24(1+2n„')Z g4

+8(31+78n„'+78n„' )Z,Z3Z4+12(57+189n„'+225n„' +150n„' )Z~Z4]

3[SF,Z +3108(1+2n„')V~F3+48(11+30n„'+30n„' )K/3+30(31+109n„'+141n„' +94n„' )Z3],

where

E~n„'=n„—s/2, Z, = . , 5, = .
z~ (j =1,2, . . . ) .
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