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In this paper we incorporate different strengths of the centrifugal potential into a single partial
wave function of the WKB approach in different spatial regions. By a suitable choice of these re-

gions and strengths, the WKB wave functions can be made bounded and smooth everywhere as well

as compatible with quantum mechanics both close to and far from the origin. This modified WKB
approximation becomes exact in the strong-coupling limit. Moreover, by iteration, it develops an

absolute convergent series expansion of the correct scattering wave function at fixed coupling con-
stants.

I. INTRODUCTION

The standard WKB approach (WKBA) relies on pairs
of analytically introduced wave functions, the character
of which changes from the exponential to the tri-
gonometric type and vice versa each time we cross a clas-
sical turning point (TP). In particular, such a pair of in-

dependent wave functions reads, inside the nearest TP for
scattering of a spinless particle of energy k by the poten-
tial g V (r) in the Ith partial wave',

I 1/2

wz (r)—:
, exp +I dpK&(p), r (R;

Kq (r)

where

Kz(r) = k gV(r)—
r2

(1.2)

and, at one's disposal,

=—(1+—')
2

or (1.3)

X =A, —= l(1+ I)

(yet the former alternative is preferred), while R& is the
smallest positive real root of the equation

(1.4)

d K~
4 K2~ dr'Wz(r) = g V (r)+ 5 1

16 ~4~

(1.5}

Kg(Rg)=0 .

Within the region indicated, the functions w
&

—(r) are con-
sidered to reproduce a pair of solutions of quantum
mechanics (QM) either exactly or approximately, depend-
ing on the fulfillment of certain conditions.

The conditions under which WKBA is expected to
work best can easily be extracted from the Schrodinger-
type differential equation solved by both to; (r) and

w& (r) of Eq. (1.1) and governed by the WKBA potential

2
2

dE~
Jf

consisting of the physical potential plus an 0(1), (g ~ ~ )

contribution. Therefore WKBA should become exact in

strong coupling, at least inside the nearest TP.
How to get to,.-(r) across the singularity of Wz(r) at

the TP [see Eq. (1.4)] is called the connection problem.
By insisting on the form (1.5) of the WKBA potential
beyond the TP, solutions of the trigonometric type can be
introduced there. Certain superpositions of them
correctly match the inner solutions to& (r) of Eq. (1.1).
The only reasonable interpretation of the term "correct-
ly" is that the overall (r =0~ ~ ) solutions should repro-
duce exactly (e.g. , for g~ ce ) or approximately (e.g. , for
large g) inside and beyond the TP one and the same QM
wave function. In QM, in turn, the self-identity of a solu-
tion is ensured by its overall smoothness, a property that
is automatic whenever V(r) is continuous and can be re-
quired if the potential is discontinuous but bounded. In
WKBA, however, the potential Wz(r) of Eq. (1.5) is

singular at r =R;. Hence the smoothness postulate here
is necessarily frustrated and ought to be substituted for
by some virtually equivalent claim. How this issue has
been dealt with by different semiclassical approaches is

briefly outlined just below.
The standard treatment of the connection problem, the

linear-turning-point approach (LTPA) combines the
WKBA formalism near the TP with QM, whereby one
realizes smoothness at two matching points (MP's), one
taken inside, the other beyond the singularity. Yet, prop-
er selection of the MP's is rather problematic. The near-
er we put them to the TP the less realistic values of the
WKBA enter the argument. The farther we set them the
less reliable will be our knowledge of the exact solution.
What is more, however sophisticated our choice may be,
it still cannot heal an additional weakness of LTPA,
namely, its failing to simultaneously reproduce the physi-
cal behavior for r~0 and r~ ~. Whichever of the al-
ternatives offered by Eq. (1.3) is chosen for A, (1+—,

'
) or

1(/+1), the potentials of QM and WKBA dier by the
dominant term 1/(4r ) either for r ~ (x) or r ~0, respec-
tively, as is straightforward to extract from Eq. (1.5).

The recently proposed double-centrifugal-strength ap-
proach (DCSA) goes beyond the standard WKBA and
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solves the connection problem in such a way that the
relevant wave functions do become compatible with QM
for r ~0 and r ~~, simultaneously. The clue to doing
this rests in incorporating into the formalism both alter-
natives of the centrifugal strength A,, and A, b of Eq. (1.3}
and working thus with a pair of TP's, R, and Rb. The
crucial point is that for decreasing (repulsive) potentials
always Rb (R, . In consequence, any point R taken be-
tween Rb and R, divides the space into the regions I,
and I& so that I, contains R& (observe the subscripts)
While Ib cOntains R, . Therefore the inner SOlutians

w,—(r) corresponding to the strength k, do not develop
singularities in I, nor do the external solutions wi, j'(r),
(j =1,2), of the strength A& in the interval Ib Smo. oth
matching at r =R of the solutions w;(r) to proper super-
positions of wb '(r) yields smooth WKBA wave functions
of correct physical behavior at both small and large dis-
tances.

The present paper is meant to be a generalization of
DCSA of Ref. 3. %hat is common in both methods is the
presence of more than one centrifugal strength. What
will be new here is, on the one hand, the inclusion of po-
tentials which, while being still repulsive near the origin,
yet develop an atfractiUe tail. On the other hand, while
Ref. 3 has been restricted to first-order WKBA, the
present considerations introduce higher-order approxi-
mations to finally generate for the exact QM scattering
wave function an infinite sen'es expansion, the conver-
0;ence and truncation problem of which will also be exam-
ined in detail.

b(a . (2.5)

b&a&z, (2.6)

z&b&a .

The axis r = (0, ao ) is divided into intervals I~,
(rrt = 1,2,M), with running coordinates r

d )~r &d (2.7)

and with end points d specified in Table I for the types
(i)—(iii) of problems, separately.

Owing to Eqs. (2.3), the potential has within each of
the intervals a constant sign,

cr
—= sgn V(r ), (2.8)

by virtue of the single zero z of V(r) being included in
each list of the end points; see Table I.

The character of the basis functions should depend on
the locaI sign of the potential as follows:

y 1/2

w, (r)=— , exp (3—2j)J dpK (p)K' (r)

o =1, j =1 2 (29a)

We distinguish three types of scattering problems de-
pending on whether (i},

b(z &a,

II. REDEFI;NING CONCEPTS OF STANDARD %KBA

The LTPA of the WKBA divides the space into
domains in terms of the classical turning points and uses
the same centrifugal term everywhere. The decornposi-
tion of the space in the present approach is done, in turn,
by means of the zeros of the physical potential and cer-
tain unperturbed turning paints. Each of the new inter-
vals will then be supplied by an adequately chosen centri-
fugal strength. The new system of intervals will be
specified in this section.

The conditions imposed on the physical potential are,
besides the ones usual in scattering theory, the following:

k 1/2

w, (r)=( —1}~2', , sin Jl„dpK (p)

+ (3—2j)m'/4

0 = —1, j=1,2. (2.9b)

%'(w, (r);w„„(r))=—2k, o =+1, (2.10)

The functions K (r) involved are unspecified for the time
being. It is straightforward to calculate the %'ronskian
determinants

rV(r)~0+, r~0

r V ( r )~0 , r ~ co—

as well as

(2. 1)

(2.2)

the r independence of which already suggests that the
functions (2.9) of a given m may both solve the same
second-order di8eren, tial equation. Indeed,

V(z) =0, V(r)&0, rWz . (2.3}

Thus the potential is repulsive in the region inside the
unique zero and attractive beyond. Unperturbed Tp's are
defined in r = a, r =b via Eqs. (1.3) by setting Type M do dl d2 d3

TABLE I. End Points d Of the intervals I = (d 1,d j,
which the r axis is decomposed into, for the diferent types of
scattering problems [see Eqs. (2.3}—(2.6)].

a= ---,
k

'

whence

A, bb=
k

(2.4) (i)

(ii)

(iii)
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o—K (r) 2—) (r) w (r)=0,
dT

and can be constructed in the rest of the intervals as su-
perpositions of the relevant basis w (r), j =1,2. An ex-
ample of the notation is given here

where

5 1
( )=-

K (r)

o =+1, j =1,2 (2.11)

1 1 d&m
(2.12)

4 K (r) dr

w (r):—w„(r),
w (r)=w) 2( r)

where O~T &d~, and

w+ (r)—= A —tw, (r)+ A ~zw 2(r), d, & r &d

(2.20)

Notice that Eqs. (2.11) work independently of the
definition of K (r). Yet, henceforward we shall work
with the choice

i2
K (r):—cr —k +g V(r)+

T
(2.13)

involving still the unspecified parameters k . Each of
the equations

Notice that the propagation of the constants A+— from
interval to interval should be prescribed by some ap-
propriate principle.

We are also interested in the behavior of the residual
interaction under extreme conditions. It is straightfor-
ward to extract from the definitions (2.18), (2.17), and
(2.12), that

K (r)=0, r =R „, @=1,2, M (2. 14) [A.f
—l(1+1)——,']r +O(1), r~O,

has, in general, a set of real roots some of which may fall
onto the actual interval I . The points R „are, in fact,
the TP's, candidates for causing singularities of the
relevant basis functions of Eq. (2.9). Yet, appearance of
active singularities can be avoided if we work with the
functions w (r) exclusively in the interval I and, this is
the point, this I contains none of the TP's R
(p=1,2,M). Appropriate choice of the free parameters

will satisfy this claim.
Incorporate Eq. (2.13) into Eq. (2.11) and obtain after

rearrangement the Schrodinger-type differential equation

, (r —R—„),r —+R
b,(r)~ ~

"
[AM —1(I +1)]r +0(r ), r ~~,
[A, —l(t+1)]r +2)"(r), gazoo, r=r

where

1 dV 1 1 dV"
V( )2 dr 4 V(r)

This concludes the list of definitions and notations.

(2.21)

(2.22)

with

d p l (I +1)+k —W (r) — w (r)=0,
dT T

(2.15)
III. PHYSICS POSTULATES SPECIFY FREE

PARAMETERS

In exact QM the scattering problem under discussion is
governed by the Schrodinger equation

W (r)=g V(r)+6 (r), (2.16)

—l(l+1)
(r) =2) (r)+

T
(2.17)

Overall WKBA potential and residual interaction is in-
troduced by

W(r)=g V(r)+h(r), 0&r

b, (r)=h (r), d, &r &d
(2.18)

Observe that both W(r) and b.(r) develop jumps at
T =d, whenever our future choice of A,„will be
different in the intervals I

&
and I [see Eq. (2.13)].

In terms of W(r), an overall WKBA differential equa-
tion can also be set up as follows:

+k —W(r)—l (1+1)
w(r) =0,

GT
2

(2. 19)

each solution of which can conveniently be labeled by the
parameters that specify the solution in the interval J, ,

where b, (r) is the residual interaction in I, expressed
via Eq. (2.12) as

d 2 2 l(l +1)+k —g V(r) u, (r)=0 .
dT 2

(3.1)

~t(r) atj, (kr)+b, h&(kr), kr~ ~

(observe the same subscripts on both sides).
(3) VCSA should be governed by a potential W(g, r)

Recall that after Sec. II we are left with the sets A, and
A+— of unspecified parameters. We seek the optimum
choice of them so as to bring the differential equations of
WKBA and QM, Eqs. (2.19) and (3.1), as close to each
other as possible. To this end, we raise, by physics con-
siderations, a set of postulates listed below. Hencefor-
ward the present "variable-centrifugal-strength" ap-
proach to WKBA will be referred to by the abbreviation
VCSA. The postulates (1) through (6) read as follows.

(1) VCSA should reproduce the QM's small-distance
behavior

u&(r) constX(kr)'~ (kr) —('+''~ '), kr~O,

of the physical and nonphysical solutions, respectively.
(2) VCSA should reproduce the QM's large-distance

behavior
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A»=A, 2=1, A+ =A» =0 (3.2)

Our proposition for the coeScients A — is implied in the
iteration scheme

+ 1 +
~m+1, j k [ ~d (Wml& m+1, 2/j )~ml

+~d (Wm2~wm+1 2/j )Am2] (3.3)

where the wave functions contained in the arguments of
the Wronskian determinants are to be taken from Eqs.
(2.9).

We are now going to check performance of our propo-
sitions in satisfying the postulates listed above.

Postulate (I). Table II suggests A, l
=k,, for all the types

(i) —(iii) of scattering, a choice that yields by Eqs. (2.18),
(2.1), (2.21), and (1.3), that

that remains free of singularities at any fixed value of g,
just as QM does.

(4) The VCSA's potential should reproduce the QM's
potential at least to 0(g ), (g~~ ).

(5) The residual interaction between QM and VCSA
should be minimized at each fixed r so far as is still com-
patible with above postulates, e.g. , (3).

(6) The VCSA wave functions should be everywhere
smooth.

The propositions for selecting the appropriate values of
the free parameters to meet postulates (1)—(6) are collect-
ed in Table II and Eqs. (3.2) and (3.3).

We extract from Eqs. (2.20) that

oo d
fivcsA (I +

2
)~~2 dp p Kb(p)

M —] P

+ [~M dM —1Kb(dM —1)]
where

+
O'

M a rccos
[(~M1) +(~M2) I

(3.7)

(3.8)

For comparison, we reproduce here the analogous formu-
la of the LTPA as

5LTpA=(l+ —,')m/2 —f dpp K, (p) .
R dp

(3.9)

Observe that K, (p) and R, involved here depend on the
centrifugal strength A,, =(1+—,

'
) while the VCSA's phase

shift of Eq. (3.7) involves A.b
=I (l +1).

Postulate (3). The entire formalism is, by Eqs. (2.9)
and (2.12), singularity free whenever

K (r ))0, m =1,2, M (3.10)

i.e., if the TP s lie off the respective intervals I . We in-
troduce the notation

k2

y (r)—=k'—
(3.1 1)

K (r) =cr [y (r) gV(r)] —.

Thus Postulate (3) is fulfilled if none of the curves y (r)
crosses g V(r) in I, (m =1,2, M). Therefore we con-
clude from Figs. 1 —3 that condition (3.10) is indeed real-

rW(r)~0, r~0 . (3.4)

It is obvious that this property ensures, indeed, QM-
compatible small-distance behavior and should be com-
pared to its QM analog (2.1). This statement is rein-
forced by incorporating the above value of A. , into Eq.
(2.9a). After some algebra one obtains that

w
+—(r) constX(kr)' (kr) '-('+" ', r 0 . (3.5)

For the details of the derivation we refer to Ref. 2.
Postulate (2). Insertion of A.M=A, b of Table II (notice

the subscript on the left-hand side) for problems of types
(i)—(iii) furnishes by Eqs. (2.18), (2.2), (2.21), and (1.3),
that

~g2VI I

r W(r)~0, r~ oo . (3.6)

This property is, just as its QM analog (2.2), sufficient for
the QM-compatible large-distance behavior to hold.
Moreover, the above value of A, M provides by Eqs. (2.20)
and (2.9b) the phase shift of the VCSA as

(i)
(ii}
(iii)

kb
2Z2+ F2

'z' —e'
kb

TABLE II. The strengths A,
' of the centrifugal terms vary

from interval to interval [see Eqs. (2.3)—(2.6) and (2.13)].

Type

FIG. 1. Type-(i) scattering problems: b &z &a; M=2 [see
Eqs. (2.4) —(2.7)]. The parameters A. (m = 1,2), the numerical
values of which are taken from Table II label the curves y (r)
of Eq. (3.11) which cross the curve g V(r) at the turning points
8 . Observe that each of the points R lies outside the respec-
tive interval I, however large g is chosen. The functions
E (r ) of Eqs. (2.13) and (3.11) are seen to be positive, proving
thereby the inequality (3.10).
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k2

r =0 and r =z, i.e., the zero of the potential, the postu-
late of strong-coupling exactness is everywhere fulfilled.
At the origin this property breaks down by the domi-
nance of the centrifugal term. At r =z, the physical and
the WKBA potentials differ also by an O(g ), (g~ )

term.
Postulate (5). The values of I, , and A,~ that are ex-

clusively acceptable from the physical point of view have
already been uniquely fixed by Postulates (1) and (2). The
postulate of optimum choice of I, concerns therefore the
case m =2, types (ii) and (iii) of scattering. In these cases
the single free parameter in finding the optimum is, by
Table II, e . Also, since we are primarily interested in
strong coupling it is convenient to consider the limiting
formula obtained by Eqs. (2.21) and (2.22) as

I2

kb
~b, 2(r~)~~ 2)"(r2)+ ~, g~~ .

f2
(3.12)

FIG. 2. Type-(ii) scattering problems: b (a (z; M =3.
Upon increasing g from zero to infinity the turning points Ri,
R2, and R3 start at the respective points a, c, and b to get
asymptotically to r =z, alike. Observe that meanwhile none of
the points R, m = 1,2, 3 enters the respective interval I .

ized by the choice of A, contained in Table II. Observe
also that, in each case, a single, g-independent value of

works for all possible values of the coupling constant.
This experience is, in fact, a crucial point of our argu-
ment to come.

Postulate (4). A simple comparison of Eqs. (2.18) and
(2.21) shows that but for two isolated points, the origin

If so then one can write by Eq. (3.12) that

~b, 2(r2)~ =sgn(A, z
—

A, I, )b,z(r2) . (3.14)

On the other hand, Eqs. (2.4) —(2.6), together with Table
II, imply that for the two types of scattering considered
here, we have for (ii),

(kz, k (A, =kz+e
and for (iii),

z & g, g2=k2z2 —e2

(3.15)

Since 2)"(r2) of Eq. (2.22) is independent of e, Eqs.
(3.12), (3.14), and (3.15) combine to yield

Particularly simple is optimization if, throughout the in-
terval I2, the centrifual contribution dominates the 2)"
term [see Eq. (2.22)], i.e., if

(3.13)

d k z +E —l(1+1) 1

2 2 2'
g oo lE r2 7'2

case (ii);
d k z —e —l(1+1) 1

lE r 2
2

r2 '
2

case (iii) . (3.16)

Thus, whenever condition (3.13) holds throughout Iz, the
optimum of kz is attained by infinitesimal values of e for
both types (ii) and (iii) of scattering problems. Consider
also Figs. 2 and 3.

Postulate (6). It is straightforward to check that Eqs.
(3.3) are just the formulas of smooth matching of tJ —+(r )

and w —(r +&) of Eqs. (2.20) at r =d =r +&. Thus the
set I m I of Eqs. (3.3) ensures, indeed, overall smoothness
of the solutions w —(r) along the entire r axis.

FIG. 3. Type-(iii) scattering problems: z (b (a; M =3.
While g varies from 0 to ~ the turning points R, , and R 3 move
exclusively in I2 but R2 moves in the interval I, .

Note that Eqs. (3.3) have been derived with due regard to
Eq. (2.10). Recall that the overall VCSA potential W(r)
is discontinuous at the end points of the intervals I
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Nevertheless, smoothness of the solutions w
+—(r) is

sufficient for their Wronskian determinants to remain
constant along the entire r axis:

'N(w+(r); w (r)) = —2k, 0& r (3.17)

the numerical value of which has been taken from apply-
ing Eq. (2.10}for the case m = l.

ingly, we find for problems of type (i) that

0&, —k'&K', (r, )&
Z' P'1

2

0&k' —,&K,'(r, ) &k +g lV(r )I,
(4 8)

IV. SERIES EXPANSION
OF THE EXACT SCATTERING STATE

with C being a suitably chosen constant. In a similar
way, one obtains for case (ii) that

In this section we shall construct an integral equation
for the exact scattering wave function in terms of the
VCSA scattering problem as a reference system. By
iteration, the integral equation generates a series whose
convergence will also be studied.

Owing to Eqs. (2.18), (3.1), and (2.19) the Volterra
equation is given by

0&minV(r, ) &K, (r, ) &
1'1

2 2

0&k —
z &Kz(rz)& z+g maxV(r, ),2 k2 2 X2 2

k2
0&k — &K3(r, )&k +g maxlV(r, )l,Z'

(4.9)

u+(r)=w (r)+ f dr'G(r, r')A(r')u+(r'),
0

with the resolvent normalized by Eq. (3.17) as

(4.1) where C& is again an adequate constant. The correspond-
ing relations for case (iii) are the following:

G(r, r') —= [w+(r)w (r') —w+(r')w (r)] . (4.2)
2k

That the possible solution of Eq. (4.1) will, indeed, supply
the physical scattering state is warranted by the small-
distance behavior of the inhomogeneous term as con-
tained in Eq. (3.5). The iteration scheme for solving Eq.
(4.1) is obviously

2 2

0&, —k &K, (r, )&
C~

Z' l"
1

X2
0&k — &Kz(r~} &k +g max V(r~)l,z'

k2
0&k — &K3(r3)&k +g maxlV(r&)l .

a

(4.10)

u' '(r)=w (r),
u "(r)= f dr'G(r, r')b(r')u ' "(r'), s ~ 1 .

0

(4.3)

(4.4)

The right-hand side can be decomposed into contribu-
tions of the intervals I as

m —
1 d

u'(r )= g f "
dr„g „(r,r„)A(r„)u' "(r„)

p, =l d

lw ~(r )1&p ~, 0 =+1, j=l 2. (4.11)

As to interval I1, we refer to the small-distance formula
(3.5), which can also be slightly modified as

Notice the arguments r of the functions K (r)
throughout the set of the above inequalities. Hence we
conclude that each of the functions K (r) remains
bounded and nonzero in its "eigeninterval" I . Conse-
quently, for m ~ 2 both the trigonometric and
exponential-type basis functions w (r}of Eq. (2.9) can be
majorized in I by suitable constants as

with the shorthand notation w„(r, )~const Xi},(r, ), r, ~0,
where

(4.12}

(4.5)

The coefficients involved are obtained by means of Eq.
(2.20} as

B„'=A+, A„—A„+ A (4.6)

We are looking for majorizing of the series to be
developed by iteration of Eq. (4.1}. We first rewrite the
definition (2.13) by Eq. (3.10) as

g (r)= kr
1+kr

(1/2)+ (3—2j)I1+(1/2)]

j=1,2. (4.13)

(r )l &const Xil (r ), j =1,2, m =1,2,M .

(4.14)

Notice that the definition (2.20) has also been incorporat-
ed in Eq. (4.12). The relations (4.11) and (4.12) can be
combined into the set of inequalities

K (r )= mk—
2

Pm

—g'v(r } (4 7} By monotonicity, one extracts from Eq. (4.13) that

Hence we shall extract a number of inequalities, which,
however, can also be checked by Figs. 1 —3. The notation
to be used below rests on Eqs. (2.7) and Table I. Accord-

ilz(r )g, (r„}& 1z(r7„) l (rri), r„&r

We infer from the last two statements that

(4.15)
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~w;(r )w„(r„)~&constX F12(r„)7l&(r ), r„(r
(4.16)

This inequa1ity is equivalent to the statement that the
series

for all possible pairs of i and j. Definition (4.5) leads then
to the majorization of the partial resolvent as

u(r)= g u "(r)
s=p

(4.25)

~g „(r,r„')~ (const Xrl2(r„')rl~(r ), r„' (r (4.17)

or, identically,

rl, (r) '~u "(r)
~

(cf"dr', ~b(r')~ lr, (r') '~u' "(r')~ .

(4.19)

Owing to the definitions (2.20) and (4.3) as well as the in-

equality (4.14) we can write

rl, (r) '~u' '(r)~ &ca=const . (4.20)

Iteration of the inequality (4.19) after some algebra leads
therefore to

S
I

alt(r) '~u "(r)~ (ca—c f dr', ~h(r')~s! o 1+kr'

The number M of the intervals is finite, thus it permits
working with an overall constant in the set Im I of Eqs.
(4.17) throughout the r axis. The insertion of inequality
(4.17) into Eq. (4.4) yields

~u'*'(r)
~
(const Xiii(r) f dr'rl2(r') ~A(r')

~ ~

u' "(r')~,

(4.18)

is absolutely convergent. Remember that the set of func-
tions u' '(r) has been introduced by iteration in terms of
Eqs. (4.3). Boundedness of the argument of the exponen-
tial function in the formula (4.24) suggests also uniform
convergence. The sum u(r) of Eq. (4.25) is by analysis
the unique solution of the integral equation (4. 1) and pro-
vides thus the exact scattering state of QM.

V. INCREASING THE COUPLING CONSTANT

Up to this point we have been interested in producing
an expansion of the scattering solution of the Schrodinger
equation at fixed strength of the physical potential. The
present section is devoted to the study of how the single
terms of this expansion behave in the case of strong cou-
pling.

As we have already pointed out, the increase of the
coupling constant does not, in fact, induce active TP's,
i.e., such ones that would give rise to singularities of the
VCSA potential or wave functions. The second step of
the present argument is to find the strong-coupling form
of the iteration scheme (4.3). From Eq. (4.7) we extract
the limits, where g~ ~,

K (r )~g V(r ), r Wz,

(4.21)
mk—
2

rm
rm z (5.1)

On the other hand, the centrifugal strength is given in the
external region for all types of scattering problems by

A,sr =l(l +1) . (4.22)

Hence we see by the relevant asymptotical formula of
Eqs. (2.21) that

by means of which we consider the higher-order contri-
butions uI'(r) to Eq. (4.25) in the interval I, . Equations
(4.3) read for s = 1

u"'(ri ) = dr'[w+(ri )w (r')

constQ(r)~, r~ oo
r

(4.23)
—w+(r')w (r, )]h(r')w+(r'),

(5.2)
on account of which the integral contained in Eq. (4.21) is
bounded in the variable r along the entire r axis. We con-
clude then from Eq. (4.21) that

u" r
s=0

where Eq. (4.2) has also been incorporated. If we insert
here Eq. (5.1) integration by parts furnishes the strong-
coupling leading term, by substituting dp =0, as

u' (r, )~ —,' f dr'—, u' '(r, ), g~~ . (5.3)
1

kr(- cp 1+kr
C

exp c dr', 6 r'

(4.24)

Owing to Eqs. (4.3) and (5.3), one finds the strong-
coupling form of u' '(r, ) by simultaneously replacing in

Eq. (5.2) the functions

u' '(r&) by u' '(ri) and h(r') by —,'A(r') dr"—(1) (2) „b,(r")
K&(r") (5.4)

to obtain
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u (r] ) (
—1/2) dr', dr" — „u (r] ), g ~ o-(z) z "I, A(r') ~' „A(r")

K, (r') d(( K, (r" }
(5.5)

Further iteration procedure is straightforward and provides eventually by analysis

u (r, )~(~) 1
dr u {r]), g

(o)

K,{) (5.6)

whence

u (s)(r )

u" "(r, )

=O(g '), g —oo .

We have employed here the limit (5.1) as well as the estimation

b(r])=O(1), g~~

(5.7)

(5.8)

obtained from Eqs. (2.21).
The treatment for m ~ 2 becomes the more complicated the farther we get from the origin. To avoid extensive calcu-

lations the subsequent discussion will be limited to the type-(i} scattering problems, where there are only two intervals
involved, i.e., M =2. Using the notations (4.3) and (2.20), the first approximation to the scattering wave function reads
in the interval Iz

u (r, )= A2]w2](r2)+ A22w22(r2) .(0) + + (5.9)

Remember that the basis w2 (r2) is in case (i) of the trigonometric type. The first iteration of Eq. (5.9) is done in terms
of Eqs. (4.4) —(4.6) with the result

t'7 fpu"'(r2)=u'"(z)+
k

A2, B22w2](r2) f dr' w2(2r')b(r') w2(]r') +B2u. 2(2r )2f dr'w2](r')b(r')w2](r')
2k Z Z

Pg fp
+ A 22 B22w2](r2) f dr' w(2r2')h(r') w(2r2')+B ]u222(r2) f rd' w2(]r')b (1r') w2(2r')

Z Z

(5.10)

In strong coupling, Eqs. (2.9b) and (5.1) combine to

w22(g ~r~ )~2 k ]/2 r)
sin g dr'V r' ' + 3 —2j~ 4, g~~ .

K2(r2 )

(5.1 1)

Hence we conclude that, for g -~ ~, the contribution of the integrands containing squares of w2 (r2) is the respective
contribution of the products w2, (r, )w, 2(r, ) times a factor of O(g), (g=~). Retaining the dominant terms we can
write

r, I

u'''(r, )--u'' (z}+([A,,B„'w„(r,)+ A,']B,]w„(r, )]f dr' ——, g -~~
Z 2

(5.12)

On the other hand, Eqs. (3.2) and (3.3) furnish for m =1

1
A;, = lN, (w„;w„),

2k

1
lV, (u.) „,'tezz ),

2k

1
c4 PP KZ ( LL ] ] 7 lS g ] ) 7

2k

1
lV (lL)]p, lsd] )

2k

(5.13)

Furthermore, the definitions (2.9) inserted in Eqs. (5.13)
supply

2k A, , =a„p]2 p2], — —

2k A, ,
=a „g2]+g]2, —

a]2+~21 ] 12

=a]2+ &2]+&]2

K„(z)
A, , (z)

K,"(z)
O'

(5.14)

(5.15)
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Observe that

a»=O(g'), P„„=O(1), g~ ~

whence

(5.16)

This result can be reworded by saying that the truncation
error caused by cutting off the series (4.24) decreases by a
factor of O(g ') once one includes one additional term
in the expansion.

- —4p g VI. DISCUSSION

(5.17)

One has by the definition (4.6) that

g22 g21
21 22 (5.18}

Incorporation of Eqs. (5.17) and (5.18) into Eq. (5.12)
yields

(r2)~u (z} [~22w21(r2} ~21w22(r2}]

(5.19)

On the other hand, Eqs. (5.14) and (5.16) imply that,
whereg ~~,2

1
A ~+, = a,2+0 (1),

k

l
A 22

= — a12+ 0 ( 1 ),
2k

on account of which Eq. (5.19) can be rewritten as

u (r2) [g 21w21(r2 }+g 22w22(r2)] dr'(1) + + , b,(r')
z K2(r')

=O(g1~2), g —+ oo

(5.20)

(5.21)

since the trigonometric-type basis set w2, (r2), (j =1,2), is
0 (g '~ ), g ~ oo. Omission of the contribution u '(z)
from Eq. (5.21) is justified by Eqs. (5.3), (4.3), and (2.9a)
since

k' ~, 6( )r
u "1(z)= „, dr'

0 K, r'

—O (g
—3/2) g (5.22)

A comparison of Eqs. (5.9) and (5.21) leads, after setting
d, =z, to

u (r2)~ dr', u (r, ), g~~ .(1j ~(r } (01

K2(r')
(5.23)

This relationship is for the interval I2 the counterpart of
Eq. (5.3) working in I, . Just as Eq. (5.3) had led to Eq.
(5.7) so does Eq. (5.23) lead to

We have expanded the exact wave function of a parti-
cle scattered by a short- (but not finite-) range central po-
tential having just one zero, via iterating a radial integral
equation. This equation implies as reference system a
modified WKB problem, which we call the variable-
centrifugal-strength approach. The modification is aimed
primarily at preventing the classical turning points from
causing singularities of the semiclassical wave functions
(see Figs. 1 —3). Additional characteristic features of
VCSA include that, from the viewpoint of quantum
mechanics, (i) both the small- and large distanc-e behav-
iors are, apart from constant factors, simultaneously
correct; (ii) the expansion obtained by iteration is a con-
vergent strong-coupling series of the QM wave function.
This performance is due to the residual (physical minus
reference) interaction b (g, r) remaining bounded both in g
and r. In particular [see Eqs. (2.21), (2.22), and (5.8)],

aves(g r)=O(1) g~~ (6.1)

Just by this property, the nth term of the iteration series
becomes for large values of g the product of the refer-
ence wave function times a factor of O(g "); see Eq.
(5.24). By virtue of this structure, the expansion (4.25) is,
indeed, a large-g counterpart of the Born series, which is
known to be a small-g expansion. Once one knows the
physical solution correct to any prescribed order in the
inverse coupling constant it is then easy to extract, be-
sides the two-body scattering phase shift, the relevant
nonphysical solutions and the perturbed resolvent as well
as the off the energy shell transition matrix, i.e., the two-
body input to the three-body dynamics.

The first question that immediately arises is whether
the above properties, (i) and (ii), are realized within
LTPA, the linear-turning-point approach of WKBA. As
regards point (i), correct small- and large-distance behav-
ior mutually exclude each other in LTPA, as we have
seen in Sec. I. As for point (ii), it is worth going into
some details. The singularity in r is eliminated from
LTPA by replacing WKBA in a narrow interval (p1,P2)
around the turning point by the physical problem itself
yet having the potential straightened. As is obvious for
the scattering problems represented by Figs. 1 —3,

u'"(r )

u' "(r )2

1 "&, b, (r')
s d) K2(r')

=O(g '), g~ oo . (5.24)

+1(g)~Z+0, g ~ oo (6.2)

where z is the unique zero of the potential. Hence the re-
sidual interaction reads in this region

Equations (5.7) and (5.24) can be combined to the overall
statement that

g d V
~LTP(g r} (z «) g Pl + r +P2

dr '-

z

(6.3)

u "(r) =O(g ), g~ oou" "(r) (5.25) which is, however, at any fixed value of r, of O(g ). To
cure the large-g divergency, we can choose g-dependent
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matching points pt. (g), e.g., by setting

' C2
pj(g)—=R, (g)+( —1), j=1,2 . (6.4)

bwK&(g, r)=O(g'), g ~, r=p, (g) . (6.7)

Therefore the requested simultaneous boundedness in g
and r fails to be materialized in LTPA. Hence the ex-
istence of an LTPA-based strong-coupling expansion
seems to be rather problematic. At this point see also the
comment following Eq. (6.1).

There are, however, scattering problems for which the
VCSA breaks down while the LTPA does work. Thus,
singular potentials of the type r p (p & 1), are excluded
by condition (2.1}from the present VCSA. The standard
WKBA, in turn, exactly reproduces quantum mechanics
in the high-energy limit just for these potentials. In par-
ticular, this possibility has been suggested by Bertocchi,
Fubini, and Furlan for s-wave scattering by inverse
power potentials. Soon afterwards, Paliov and Ro-
sendorff extended the WKB approach to cover
r ~exp( —pv) type of potentials, too, and coupling con-
stants that depend on energy. These authors have
developed distinct series expansions of the phase shift for
the small and the large orbital angular momenta prepar-
ing thus the summation of the partial wave contributions.

Indeed, we obtain by Eqs. (6.2) and (6.3) that

ELTp(g 1 )=0 ( 1), g~ 00, p&(g) (r (p2(g) . (65)

The residual interaction remains thus bounded through-
out the linearity region at the cost, however, of diverging
before and beyond it in the proper WKBA regions.
Namely, the matching points of Eqs. (6.4) penetrate in
the strong-coupling limit so close to the singularity point
R, (g) that one can rely on the relevant statement of Eqs.
(2.21) and write

5 1
~wKB(g~r) ~ g ~ r p'(g)

16 [R&(g)—r]

(6.6)

If so, then Eqs. (6.4) and (6.6) combine to

The early development of the singular potentials treated
by WKBA has been well reviewed by Frank, Land and
Spector. The first numerical check of the performance
of the WKBA in this subject has been done by Do-
linszky for the particular case p =4, 1=0. The first gen-
eral analytic proof of the high-energy exactness of the
WKBA has been given by Froman and Thylwe. They
have reinforced the correctness of the first and second 1-

dependent terms in the high-energy series of the phase
shift as given earlier by Paliov and Rosendorff. The vari-
able phase approach in a generalized form supplied
means for Dolinszky' to develop the asymptotical form
(k ~ ac ) of the exact phase shift for scattering by singu-
lar potentials to get a formula that is recognized as the
WKBA expression itself.

It should also be remarked that the phase shift in itself
may be correct even if the wave functions themselves fail.
Thus the LTPA that involves (1+—,') as the centrifugal
strength furnishes exact phase shifts at any energy in all
partial waves for the case of the physical potential r
and reasonable ones for the Coulomb problem. Observe
that in the inverse square case the residual interaction it-
self becomes asymptotically ,'r —(r~ ao }.

Finally, mention should be made of the force-free prob-
lem, the vanishing phase shift of which is exactly repro-
duced by the (I + —,') LTPA. As regards the VCSA, the
unperturbed case can be considered from two points of
view. First, as a single problem with a potential that van-
ishes everywhere and violates thereby our condition (2.3)
postulating just one zero. Second, as a set (g~O) of
problems with freely chosen potential shape (with a single
zero). If so, the VCSA yields, indeed, the relevant exact
solution (the Riccati-Bessel function) in a rather compli-
cated representation by an infinite series. This is, in fact,
the cost for treating a weak-coupling scattering problem
by a strong-coupling method.
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