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In this paper we study the time evolution of a quasiperiodically kicked spin system whose Hamil-

tonian is linear in the SU(2) generators. Since this Hamiltonian preserves SU(2) coherent states un-

der time evolution, there is a close correspondence between the quantum evolution and the classical
evolution of the system on the Bloch sphere. Such a system has previously been studied by Milonni,
Ackerhalt, and Goggin [Phys. Rev. A 35, 1714 (1987)] and, with two incommensurate driving fre-

quencies, the quantum evolution was characterized by (a) decay of the autocorrelation function of
the state vector, (b) broadband power spectrum of observables, (c) ergodicity on the Bloch sphere.
We expand upon their work to study the corresponding behavior of the motion on a symplectic

phase space and the decay of the autocorrelation function of the state vector. When the forcing
strength is such that the motion is localized in phase space, the autocorrelation function shows re-

vivals. When the motion is ergodic the autocorrelation function rapidly decays without revivals.

The classical motion however is not chaotic, there is no sensitive dependence on initial conditions.
For three incommensurate frequencies, the motion is more delocalized than for two frequencies for
a fixed forcing strength.

I. INTRODUCTION

There is currently considerable interest in the funda-
mental question of how quantum mechanics can exhibit
the phenomenon of what is now called "chaos". ' It is in
fact debatable as to whether or not the notion of quantum
chaos, unlike classical chaos, has any meaning. Early
numerical experiments by Casati et al. found that for a
periodically kicked rotor, quantum effects greatly
suppress the diffusive energy growth associated with the
classical time evolution of the model given by the so-
called standard map. A general theorem has been
proved that shows that for time-periodic Hamiltonian
systems that are nonresonant and bounded, the system
will reassemble itself infinitely often in time. For the
kicked rotor, the resultant quantum suppression of chaos
can be related to the problem of Anderson localization of
a particle on a one-dimensional lattice with a random po-
tential.

With no real consensus on how to define quantum
chaos, it is not surprising to find a great variety of
definitions in the literature. Also one ought to distin-
guish between time-independent and time-dependent sys-
tems, where progress in the former case has been made.
Generally speaking it seems that the term "quantum
chaos" has come to mean the quantum behavior of any
system whose classical counterpart is chaotic. However,
recently there has been an attempt to characterize quan-
tum chaos for driven quantum systems where the driving
force need not be periodic but may be quasiperiodic in-
stead. Pomeau et al. have considered the quantum
chaos of a two-level system with a time-dependent pertur-
bation. When the perturbation is quasiperiodic with two
incommunsurate frequencies, quantum chaos is present if
the definition is taken to be a rapidly decaying autocorre-

lation function of the state vector and a broadband power
spectrum for time-dependent observables (e.g. , the inver-
sion associated with the Rabi oscillations). However, it
was lamented that the most important characterization of
chaos, positive Lyapunov characteristic exponents
(LCE's), are not possible in view of the conservation of
the norm of the state vector. More recently, Milonni
et al. considered a quasiperiodically kicked two-level
system, but added to the criterion of quantum chaos the
fact that the motion on the Bloch sphere appears ergodic
for strong quasiperiodic kicking. They did point out,
however, that memory of the initial state is retained.
They also applied quasiperiodic kicking to the rotor
problem and confirmed the result of Shepelyansky, ' that
the Anderson localization effect is greatly weakened.

In the present work we wish to examine once again the
quasiperiodically kicked two-level system. The main
motivation for the current study is to make a clearer con-
nection between the behavior of the autocorrelation func-
tion of the state vector and the type of motion we find in
the associated classical phase space. We actually consid-
er a slightly more general problem than in Ref. 9 where
we take a Hamiltonian which is a linear combination of
the generators of SU(2) and where the initial state is a
generalized coherent state associated with the group. "
For the irreducible representation where j=—,', this will

be the two-level system of Ref. 9 but with the initial state
being a coherent superposition of the two levels. Hamil-
tonians which are linear in the SU(2) generators will
preserve SU(2) coherent states (CS's) under time evolu-
tion. In this sense, as for ordinary coherent states, ' the
quantum-mechanical motion is determined by the classi-
cal motion in phase space. For the SU(2) problem, the
available phase space is in fact bounded on the 81och
sphere. In our study we shall use a complex-plane repre-
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sentation of phase space q+ip where the boundary of the
accessible phase space is a circle whose radius is deter-
mined by j. This provides a useful display of phase space
for the classification of the types of motion that will arise.
Our first application is to the quasiperiodic kicking with
two incommensurate frequencies. We find that when the
motion (for low forcing strength) is confined to a narrow
circular region of phase space, the autocorrelation func-
tion of the state vector (as well as for position coordinate
q) shows periodic revivals. Also the power spectrum of q
shows only discrete frequencies. As the strength of the
pulsing is increased the motion eventually fills up the
available phase space, the autocorrelation functions of
the state vector and coordinate q rapidly decay, and the
power spectrum of q becomes broadband. In this sense,
the classical motion is essentially ergodic. However it is
not chaotic as the LCE for the classical motion can be
determined to be less than zero. In fact, we have graphi-
cally checked that nearby initial conditions give orbits
that stay nearby. Thus, we do not have underlying classi-
cal chaos in this model so that the decay of the auto-
correlation function and the broadbandedness of the
power spectra seem to be associated with ergodicity only.
The important point is that in our model, the quantum
and classical motions closely correspond because of the
coherence-preserving property of the Hamiltonian. This
is unlike the study of the kicked top, ' where the Hamil-
tonian is not coherence preserving. The second feature of
our work is that we extend the calculations to the case of
three incommensurate frequencies. As expected, this has
the effect of causing greater delocalization of the motion
in phase space for a given forcing strength. Ergodicity
initially occurs for lower strength.

This paper is organized as follows. In Sec. II we
present the general formalism of the model and, using
group-theoretical methods, determine the motion for an
initial SU(2) coherent state. A similar method has al-

ready been used to study pulsed SU(1,1) coherent states. '

In Sec. III we present our results for the case j=
—,
' for

two and three incommensurate frequencies. Section IV
contains some brief remarks and a summary.

II. THE MODELS

The Lie algebra of SU(2) is given by the commutation
relations of the Su(2) generators Jo and J+ as

(2j )!

(j+m )!(j—m )!
ljm), (2.4)

where g = —tan( 8/2 )e
The parameter g may be interpreted as a complex num-

ber representing the classical phase space associated with
the SU(2) CS of Eq. (2.4). Indeed, with the Hamiltonian
H composed of the SU(2) generators, from the path-
integral expression of the propagator calculated over the
SU(2) CS, ' one obtains in the classical limit, Hamilton's
equations for g as

g= [g, .&l,
where [ A, B

l is the Poisson bracket given by

. (I+', gl')' a~ aa a~ aa
2j t)g" t)g Bg t)g*

a~ aa a~ aa
jsin8 Bp BO t)8 Bp

(2.5)

(2.6)

and where &= (glHlg). The Poisson bracket above in-
dicates the classical phase space is that of a sphere. '

However, it is convenient to use an alternate form in
parameterizing the phase space. We define the parame-
ter"

z= —(q+ip)=(2j)' sin(lal)

= —(2j )' e '~sin
2

(2.7)

which has the effect of flattening the phase space in the
sense that now we have the usual symplectic form of
Hamilton's equations

aa . amp=
Bp

'
Bq

(2.g)

The most general Hamiltonian which preserves an ar-
bitrary SU(2) CS under time evolution has the form

and a = —(9/2)e '~. The angles 6 and P have the ranges
0 ~ 6 tt and 0 ~ P 2tt and parameterize the Bloch
sphere. ' With the above definition of a the SU(2) CS are
given as"

lg) =D(a)'', j, —j)
=(I+I(i') '

' 1/2

[Jo J~ ]:+J+ [J J+ ]= 2JO (2.1) H(t)=Q(t)JO+f(t)J++f*(t)J +P(t), (2.9)
and J =Jo+J

&
+J2 is the Casimir operator. The

representation-space vectors
l j,m ) are eigenstates of Jo

and J according to

Jol jm ) =m
l jm ), J jim ) =j (j +1)ljm ) . (2.2)

These basis states are of course complete with respect to
m. SU(2) CS (Ref. 11) are formed from the representa-
tion space by the application of a displacement-type
operator D(a) to the "ground" state

l j, —j ) of the rep-
resentation where

f(t ) =F(t ) g 6(t —nT),
n = —oc

(2.10)

where Q(t) is a real, and f(t) is an imaginary, function of
time, and /3(t) is an arbitrary real function of time. The
proof of this follows along the same lines as for the
SU(1,1) CS. ' In this work, we follow Refs. 9 and 10 and
take the forcing term to consist of a periodic sequence of
5 functions modulated by a function of time F(t) which
itself may be periodic or quasiperiodic. Thus we take

D(a)=exp(aJ+ —a*J ), (2 3) where T )0 and is the period of the pulses. The frequen-
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cy of the pulses is co=2'/T. With 13(t)=0 and with
Q=2coo=const (the factor of 2 is for convenience) we
have

H(t ) =2cooJ0+2 JlF(t ) g 5(t —nT), (2.11)

where J, =(J++J )/2.
If the state vector prior to the nth 6-function pulse is

designated as Ilia(n) &, then just after the nth pulse the
state vector is

ill =2j arg(a ' —b'g)a +b
a * b—"g

{see Appendix). Thus we have

I(0, 2&=U(1)lgo, l&=e' '

lgo, n+1& = U(n )lgo, tl &
=e'

(2.22)

(2.23)

Il((n)&'=e
' ' "

ll/(n)& . (2 12) where

Between the pulses, the free evolution is governed by the
free Hamiltonian H0=2cooJD so that just before the
(n + 1)th pulse, the state vector is

ag„+b„
g„+ l
=, &P„=2jarg(a„* b„'g„—) .

a„* b„*g—„
(2.24)

I11(n+ I) &
= U(n)llr'(n) &,

where

(2. 13)

2'~oTJo
e (2X2)

N T
e

0
1 co T

e
(2.15)

U(n)=exp( 2ieooT—JO)exp[ —2iF(nT)J, ] . (2. 14)

In the j=
—,', 2X2 representation, the exponential opera-

tors in the above have the form

These equations define the Poincare maps in the complex
plane which have the form of Mobius transformations.
However, the g plane is also the equatorial plane of the
Bloch sphere since g= —tan(9/2)e '~ actually performs
a stereographic projection from the Bloch sphere onto
the equatorial plane. ' By inverting g„, the Poincare map
can be projected on the symplectic phase space from Eq.
(2.7) as

8„
q„=—2&j sin cos(P„),

—21F(nT&J,
e(2x2)

cos[F( n T ) ] i sin[—F( n T ) ]
i sin[F(—nT)] cos[F(nT)]

0„p„=2&j sin sin(l))„) .

(2.25)

(2. 16)

(2.17)

where

Thus in the 2X2 representation, the evolution operator
U(n ) corresponds to the group transformation

a, b„
+lb

a„ E„=( go, n IHO I (0, n &
= 2j alo—

1+ g„
(2.26)

Between pulses the expectation values of observables may
be calculated using the I (0, n &. For example, the energy
just before the nth pulse is

a„=e ' cos[F(nT)],
(2.18)

Finally in this section, we derive the autocorrelation
function (ACF) of the state vector, defined as

b„= ie '—sin[F(nT)] . C(r)= lim —J (g(t)IP(t+r)&dt .
r

T~oo T 0
(2.27)

We now assume that the initial state at n =0 is an SU(2)
(:S which we denote as lgo, o&=—i(0&. The evolution
operator acts to produce

For our pulsed system this may be written in the discre-
tized form

Ig, , I &
= U(0)lg, , o&,

(2.19)

A'

C(1)= liln —g (go, n I(0,n+1 & .x- X„ (2.28)

a b
la I'+ Ib I'=I {2.20)

Ig, , i+I& = U(l )lg„l & .

However, the action of a finite group transformation
T'j'(g ), where

C(1)= lim —g e " "+' (g„lg„ l & .
n=

(2.29)

[Note that this is normalized such that C(0)=1.] Using
Eqs. (2.22) we have

on an SU(2) CS
I g & is given as

T"'(g)lg&=e" g &,

where

{2.21) (1+0:0.+l )"
(1+

I g„ I')'(I+
I g„,I')' (2.30)

The inner product in Eqs. (2.8) can be calculated in closed
form as"
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III. APPLICATIONS

A. Qnasiperiodic forcing with two

incommensurate frequencies

We first consider the case studied by Milonni et al.
where F (t) has the form F(t) =A. cos(oI't ). Thus we have

F(nT)=A, cos(2vryn ), where y=oI'/oI. We shall only
consider the case when co' and co are incommensurate and
hence g is irrational. This is approximated by writing m'

and co as the ratios of large prime numbers. We follow
Refs. 8, 9, and 11 and write g= 33/'3 which is "irration-
al" for practical purposes. We set cooT=0. 126 and we
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FIG. 1. Poincare plots for two incommensurate frequencies. (a) X=0.1, (b) 1=0.5, (c) A. =1.00, (d) A. =1.46, (e) A, =3.00, (f)

A, = 3.50, (g) X=4.00, (h) k= 5.00, (i) k= 500.
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FIG. 1. (Continued}.

—I AJo Ta„=e ' cos[A, cos(2~yn )],
I coo Tb„= ie ' si—n[A. cos(2vrgn )] .

(3.1)

The function cos[A, cos(2nyn )] and sin[(I, cos(2nyn )], as
was shown in Ref. 9, for large A, and irrational y are
themselves "chaotic" in the sense that the functions vary
erratically and their autocorrelation functions exhibit
rapid decay. However for very small A, , we may approxi-

take (0=0.5. Only the case ofj=
—,
' is considered.

In Fig. 1 we display the iterated Poincare maps in the
p —

q phase space for increasing k. 2500 points are plot-
ted. In Fig. 2 we display the corresponding ACF's of the
state vector. In Fig. 3 we display the po~er spectrum of
the classical variable q.

As A. increases it is apparent that the motion in the
space becomes less localized. For the case of small k as
in Figs. 1(a)-1(c)where X=0.1, 0.5, and 1.0, respectively,
the motion appears to be quite regular with the basic
A, =O circle slowly oscillating back and forth. That the
motion for low A, appears quite regular and periodic can
be readily explained. With F(nT)=A, cos(2myn), from
Eq. (2.18) we have

mate a„and b„as
'~oTa„=e

'~oTb„= i Ae—' c.os(2m.yn ),
(3.2)

where only terms up to order A. have been retained. Un-
der this approximation the mapping is clearly periodic.
For somewhat larger A, , more terms must be retained in
the expansions of sin[A, cos(2nyn )] and
cos[i, cos(2myn)]. The coefficients then become quasi-
periodic, the motion becoming more irregular as more
frequencies contribute to the motion. For instance, re-
taining terms up to order A, we obtain

l QJpT
2

o„=e '
1 — [I+cos(4myn )].

(3.3)
l cop Tb„= ile' cos—(2m,yn ),

which involves two frequencies that are simple multiples.
For the small values of A, =O. 1, 0.5, and 1.0 the motion

is quite localized in phase space. The fact that the
motion in the occupied regions is regular is apparent
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FIG. 2. (Continued).

continuous trajectory, i.e., nearby points are not neces-
sarily sequential. In watching the pattern build up, the
points seem to appear randomly in time. At X=5.00, the
motion once again fulls up the allowed phase space but
nevertheless, there appears within the noise, a boxlike re-
gion with straight caustics. Finally with X=500, we have
phase space filled up uniformly and we conclude that the
motion is essentially ergodic. Also in this case the ACF
drops down much faster and lower and does not exhibit
significant revivals. Also the power spectrum in this case
is very broadband.

In spite of the behavior observed in the case of X=500,
there is really no true chaos involved. We have followed
the motion of two initially nearby points in phase space
and found that they remain nearby for increasing n. We
have corroborated this observation with a calculation of
the LCE which is always negative and approaches zero as
g~ (X).

F(n T) =A. cos(2tty&n )cos(2nyzn ),
where y, =co'/co and y~=co" /co. We take y, =,", ,37, and

725 to approximate three incommensurate frequen-
cies.

In Fig. 4 we display the phase space motion for various
In Fig. 5 we have the corresponding autocorrelation

functions of the state vector and in Fig. 6, the corre-
sponding power spectra for the variable q.

In this case it appears that the eft'ect of the third in-
commensurate frequency, for a given X, is to further delo-
calize the motion in phase space. For low A, , some in-
teresting patterns arise. As A, increases more area of
phase space is occupied by the motion (except for certain
values of A.). At A. =1.4 the motion appears to be essen-
tially erg odic. The reason for the more delocalized
motion is clear since even at low k, from the previous
analysis in Sec. III A, the coefficients a„and b, wi11 de-
pend on two incommensurate frequencies.

B. Three incommensurate frequencies

We now take F(t) to be of the form

F(t ) =A, c s(mo't )cos(co"t ) .

Then we have

(3.4)

C. Correlation function of the coordinate q

So far we have discussed the autocorrelation function
of the state vector and the power spectrum of the coordi-
nate q. We have observed that the power spectrum be-
comes broadband for increasing A. . Here we would like to
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point out that the decay of the autocorrelation function
of the state vector is not necessarily associated with simi-
lar behavior in the autocorrelation function of q, which is
defined as

where

1q= lim —g q„.x- (3.7)

C~(l ) = lim —g q„q„+I—qN
n

(3.6)
For example, in the two-frequency case with A, =4.00,
C (I) shows many revivals [see Fig. 7(a)] in contrast to
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A. =1.4, (g) X=4.0.



1042 CHRISTOPHER C. GERRY AND THOMAS SCHNEIDER 42

I t I

(e)
I I I 1

0.3—

0. 3

-0.9,I-
V

—1.5
—1.5 —0.9 —0.3 0. 3

G

0. 9

1.5

0.9- 0.9—

0.3—

-0.3—
~ I I

~ I

-0.9-

—1.5
—1.5 -0.9 -0.3 0. 3 0.9 1.5

—0.9 (-
l

l

—1.5
—1.5 —0.9 -0.3 0.3 0.9

I t I I I I

1.5

FIG. 4. (Continued).

the behavior of the autocorrelation function of the state
C(t). This, of course, is reflected in the many discrete
spikes in the power spectrum. For k =500, C ( t ) is very
low for most of the time [Fig. 7(b)]. In the three-
frequency case, for A, = l.4, again we see revivals in C (t )

not exhibited by C(I) [Fig. 7(c)]. At A. =4.00, C (1)
again drops rapidly as does C(l).

IV. DISCUSSION

In most discussions of quantum chaos, the classical
counterpart of the system under study exhibits chaotic
behavior. In this study we have considered a model
where the quantum evolution is determined by the classi-
cal evolution. Using quasiperiodic perturbations, the
motion has been shown to be localized in phase space for
certain strengths k but more delocalized, generally, as A,

is increased, eventually becoming essentially ergodic. In-
creasing the number of incommensurate frequencies
causes more delocalization for a given A. . The motion is

never chaotic, however, since the LCE is always negative.
Thus, the decay of the autocorrelation function of the
state vector, which has previously been used in one
definition of "quantum chaos" ' might best be referred
to as the criterion for "quantum ergodicity, " a much
weaker kind of randomness. It is important to note, how-
ever, that even this must be qualified in view of the re-
marks of Sec. III C. Nevertheless for very high A. , both
C(l ) and C (l) decay very rapidly and the power spec-
trum of q is broadband. This should be considered as an
indication of the corresponding classical-quantum ergodi-
city. Since the decay of the ACF of the state vector has
previously been taken as a signal for quantum chaos, it
would be interesting to see if this decay is more properly
associated with only the weaker conditions of ergodicity
in models which do not preserve coherent states.

Finally let us mention the role of j in our calculations.
As is well known, the limit j~~ is considered to be a
classical limit. However, in the present calculation, the
quantum phase-space map that we obtain, Eq. (2.24), is
independent of j. This is because the driving Hamiltoni-
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the size of the phase space as a scale factor in Eq. (2.25)
and it appears in the autocorrelation function (2.29). We
have tried other j values and have found no essential
change in the ACF. Of course, for models which do not
preserve SU(2) CS, such as the one studied in Ref. 13, one
does expect to find differences in the quantum and classi-
cal motion. It has been possible to show a distinction be-
tween regular and irregular behavior for times exceeding
a certain quantum-mechanical quasiperiod where classi-
cal behavior (chaotic or regular) has died out by quantum
means. However, as we have said in the model studied,
there is no essential distinction between the quantum and
classical evolutions.
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APPENDIX

In this Appendix we derive the formulas of Eqs. (2.20)
and (2.21).

Using the 2 X 2 realization of the SU(2) Lie algebra, the
displacement operator D(a ) =exp(a J+ —a ~ I with
a= —(8/2)e '~ can be shown to be

17.0

13.6

10.2

(c)

D(a)(2X2}=

8
cos

2

8e'~sin
2

9—e ~sin
2

I9
cos

2

(A 1)

I

6 8
Also, using the 2X2 realization, the operator D(a) can
be written as

3.4
gJ+ /3JO

—
g J

40 80
/AiM

120 160 200

eP/2
~ g~

2e
—P/2 ge

—P/2-

gee
—P/2 e

—P/2 (A2)

FIG. 7. Autocorrelation function of q in the two-frequency
case with (a) A. =4.00, (b) X=5.00 and in the three frequency
case (c) with A. =4.00.

By comparing Eqs. (Al) and (A2) we have
g= —tan(H/2)e '~ and P=ln(1+ ~g~ ). Now if we con-
sider the further operation of a finite group transforma-
tion T'/'(g) on D(a), where

an is linear in the generators of SU(2) thus preserving the
co erenceherence of an arbitrary initial SU(2) CS. The point of

hthis is that the quantum and classical motions are t e
same even for finite j. The only effect j has is to define

I

(g )(2X2(

then we have

a b
—b* a* (A3)

(g )D(a)(2X2) =
0;~. 0

a cos——be'~sin—
2 28, , 0—b *cos——a *e '~sin—
2 2

0
ae '~sin —+b cos—

2 2

—b *e '~sin —+a cos-t9

2 2

(A4)
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We assume that the operator Tl~'(g)D(a) may also be ex-

pressed in the form exp(g'J+ )exp(P'Jo)exp( —g'*J )

whose 2 X 2 representation is as in Eq. (A2) with g~g'
and P~P'. By comparing terms again with Eq. (A4), we

obtain (after some algebra)

T'"(g)D(a)~ j, —j)=T"'(g )~g) =e' ~g'),

where

(A6)

Thus upon application to the ground state
~ j, —j ), we

obtain

a (+b
a * b*—g

P'=in(1+ ~g'~ )
—2i arg(a* b'—g) .

(A5)

4 =2j arg(a * b*—g) . (A7)
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