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Energy-level statistics are studied for a one-dimensional integrable system. Direct evidence is

>

found that ‘“chaotic,’
tegrable system.

I. INTRODUCTION

One of the most intensely pursued questions of “quan-
tum chaos” is the existence of generic properties of quan-
tum systems that would reflect the integrability (or nonin-
tegrability) of their classical analogs. One route of such
investigation is via level statistics.!=2° Berry and Tabor'
first pointed out that the spectrum of a system quantized
from a classical integrable system should in general obey
uncorrelated Poisson level statistics, and that level repul-
sion in the quantal spectrum might indicate the presence
of chaos in the classical limit. Discussing the relationship
between classical chaos and quantum level statistics,
Bohigas, Giannoni, and Schmit conjectured® that “Spec-
tra of time-reversal-invariant systems whose classical ana-
logs are K systems show the same fluctuation properties as
predicted by the Gaussian orthogonal ensemble.” Most ex-
amples supporting this conjecture concern simple low-
dimensional systems, such as the billiard problems,>*>°
and two particles with nonlinear interaction moving in a
one-dimensional space,'! ~!* which have been studied ex-
tensively and yielded celebrated results. Others, like the
three-level Lipkin-Meshkov-Glick model,'® also lend sup-
port to this conjecture. Because of this, one sometimes
calls levels of Gaussian-orthogonal ensemble (GOE)-type
*“chaotic” levels.

Still, the deep connection between GOE level statistics
and classical chaos is far from being understood and is in
fact the center of a currently active debate.'*!>17:29 Be-
sides providing positive examples relating classical chaos
to quantum GOE level statistics, it is also interesting to
ask the following two questions.

(i) Can we find classical chaotic systems whose quan-
tum analogs obey non-GOE level statistics?

i.e., Gaussian-orthogonal-ensemble, level statistics can occur in such an in-

(i) Can we find classical integrable systems whose
quantum analogs obey GOE level statistics?

The first question concerns the existence of direct coun-
terexamples to the conjecture, and thus may help to re-
veal any restrictions on it. The answer to this question is
yes, and Refs. 14—-16 represent examples of such systems.
Although the validity of the conjecture does not imply
that the answer to the second question is yes, it is never-
theless interesting to see if GOE behavior in a quantum
spectrum implies chaos in its classical analog. This is be-
cause most positive examples supporting the conjecture
can also be used to support the reversed form of the con-
jecture (GOE-—chaos). Most recently, Cheon and
Cohen® have concocted a two-dimensional rectangular
variant of the generalized Richens-Berry billiard* prob-
lem. The system being studied is pseudointegrable and
yet could have GOE level statistics, thus partially
answering the second question.

To fully answer the second question, one ought to pro-
vide a truly integrable system whose level statistics are
GOE. In this paper we do this for a pointlike particle in
a one-dimensional (1D) local potential. The reason for
such a choice is obvious: this system has energy as a con-
stant of motion, it possesses only one degree of freedom
and is therefore (by definition) integrable. Thus our goal
here is to find such a potential that will generate GOE
level statistics. Success in doing this provides an unambi-
guous and straightforward counterexample for the con-
jecture! The theme of this paper is to show that such a
potential does indeed exist.

II. PROCEDURE TO FIND THE POTENTIAL

Consider a pointlike particle of unit mass in a one-
dimensional space moving under the influence of a poten-
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tial ¥ (x). In quantum mechanics, eigenvalues and eigen-
vectors are to be found by solving the Schrodinger equa-
tion (Ai=m =1)

2
—ld—-i-V(x)

H¢1(X): 2 dx?

b (x)=Ed,(x). (1)

In our case, we would like to know whether a potential
V(x) exists whose spectrum will obey GOE statistics.
The standard way to numerically study energy-level
statistics and chaos is to set up a model which includes a
few parameters, then vary these parameters in some
domain to see how the level statistics change. However,
this method is bound to fail in our case. It is difficult to
get GOE statistics from such a trial form of potential.
The reason for this is perhaps due to the nature of our
problem, no matter how we change the form of the po-
tential and adjust parameters, we still deal with an integr-
able system. Owing to this difficulty, we are forced to set
up a systematic procedure to obtain V(x), instead of in-
tuitively guessing it.

Following the standard random matrix theory,” a
GOE-type spectrum can be easily obtained by diagonaliz-
ing an N XN real symmetric random matrix. Generally
speaking, N =500 is sufficient to ensure confidence in the
statistics.® Since we are interested in fluctuations of the
local energy-level spacing, the spectrum resulting from
diagonalizing a random matrix should be unfolded. This
is done with Dyson’s standard unfolding procedure, i.e.,

ei+]—ei=(Ei+1—Ef)ps(Ei) > (2)

where {E;},{e;] are levels before and after unfolding,
and p (E;) is the smooth level density of spectrum. The
unfolding process gives a spectrum with unit density of
states on average. In practice, the unfolding is carried
out by fitting the local average level density with cubic
splines.

Now we are facing the core problem of all: how to find
a potential which reproduces a given spectrum. In fact,
this is a fundamental quantum-mechanical problem: in-
stead of solving for energy levels from a Hamiltonian, we
want to construct a Hamiltonian from given energy lev-
els. In one sense, this is the analog to finding a scattering
potential from known phase shifts. Our scheme is to con-
struct the potential iteratively, starting from a trial po-
tential, but allowing its value at any point x to be an ad-
justable parameter. The new potential is obtained by
minimizing the difference between the predicted and
given spectra.

Let wus denote the unfolded spectrum as
e,(i=1,...,n). Also, denote the eigenvalues found by
solving the Schrodinger equation by ef(i=1,...,n);
V (x) will then be selected to minimize

F= (e—e;)? . (3)

We will need the functional derivative of F with respect
to ¥V (x). Since
Se/ 8

dV(x) dV(ix)

(ilH|i)=¢*x) , 4)

where ¢;(x) is the normalized eigenfunction for the ith
state,

SF
—_— =) S—e )dA(x) .
5V (x) ?(e, e;)¢;i(x) (5)
The potential is then found iteratively according to the
standard gradient search method:

View(X)=V a(x)— (23 (ef—e;)d?(x) |€, (6)

where € is an appropriate small number which makes
F[V w(X)I<F[V44q] In practice, we specify the poten-
tial on a numerical lattice and solve the Schrodinger
equation using Numerov’s method.?> The iterative for-
mula then reads

Voew L) =Voa(L)— (23 (ef—e;)¢2(L) |€ ,

1

ISL=M, (7N

where L labels the lattice points. This procedure defines
a minimization problem in an M-dimensional space with
M the number of points used to define the potential. The
potential at each point is considered to be an independent
variable.

The unfolding procedure yields a spectrum with aver-
age energy spacing of 1 unit, therefore V' (x) is expected
to be a harmonic oscillator (HO) potential (V=%x2) on
average. This provides us with a good initial guess for
the potential. The search procedure preserves the even-
ness of the potential; thus an even potential, i.e.,
V(x)=V(—x), will be generated from the initial HO po-
tential and only (M +1)/2 points need to be treated as
independent variational parameters. From equation (6),
we know that the search method also preserves the con-
tinuity and differentiability of the potential.

It should be noticed that although we have provided a
practical method to find the potential fitting a given spec-
trum, the conditions for the existence of the potential still
need to be proven mathematically. Also, if the solution
exists, it may not be unique. This can be easily under-
stood by the following argument: In principle, we are us-
ing an infinite number of parameters to satisfy a finite
number of conditions, thus if one solution exists, there
might be infinite number of others. In our method, the
multiple solutions can be found by taking different initial
potentials and/or different values of €. Our conjecture on
this general problem is that, given a finite number of non-
degenerate energy levels, one could always find an infinite
number of potentials in one-dimensional space to repro-
duce them. The lack of uniqueness in the solution to the
potential does not affect the discussion of this paper, as
any solution is equally good for our purpose.

III. RESULTS AND DISCUSSION

Since the {e;} follow GOE statistics, the individual en-
ergies exhibit local fluctuations away from the average
HO spectrum. This should produce deviations in ¥V (x)
away from the HO average. Figure (1a) shows the result
of the fit for ¥V (x); Fig. 1(b) shows some details concern-
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ing the fluctuations in V(x). We find that there are
enough points to well define the potential. To show the
goodness of our fit, we plot the error of the fitted levels
against the given energies in Fig. 2. It is found that even
at energy as high as 500, e*—e is less than 0.06. The
average of e*—e is 0.0019, giving a slight upward bias to
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FIG. 1. (a) The fitted potential ¥ (x) to 500 energy levels
which follow GOE statistics. Since V(x)=V(—x), only x 20 s
plotted. (b) V(x) between x =21 and 26 to show some of the
details of the potential. The potential is plotted with the actual
fitted points to illustrate that a large number of points is used to
describe each oscillation.

the figure. The standard deviation of e*—e (average error
of the fitting) is 0.0060. Since 0.0019 <<0.0060 the asym-
metry of Fig. 2 with respect to y =0 is within statistical
error. Figures 3(a) and 3(b) show the nearest-level statis-
tic P(x) and the A; statistic, respectively, calculated from
the original set of energies generated by using a random
matrix, and the fitted energies; this figure shows how well
the fitted levels reproduce the fluctuation properties of
the original set. Notice that the quality of the fit depends
on the computer time we spend. We believe that the fit
can be made arbitrarily accurate given enough computer
time. The spectrum fitted here reproduces GOE statistics
very well and this procedure can be applied to any given
spectrum resulting from diagonalizing a random matrix;
thus we have found a set of potentials which generate a
GOE-type quantum solution.

Note that ¥ (x) shown in Fig. 1(a) is a HO potential on
the average with small fluctuations dictated by the fit.
Asymptotically, when x >>x_, with x_, the classical
turning point of the Nth, i.e., the 500th state, V(x) is
strictly a HO potential. One difficulty of the procedure is
that the fluctuations in ¥ (x) have relatively small wave-
length; however, this can be accommodated easily by us-
ing a fine mesh. In practice a mesh of 6500 points (for
x > 0) was used; it resulted in each oscillation being de-
scribed by at least 20 mesh points which is more than
adequate. On the other hand, the amount of computer
time required for the fit was large. Notice that since the
number of lattice points is much larger than the number
of states to fit, the fitted potential is by no means unique
as we have stated earlier.

Another difficulty for the fit is that some states have
small energy separations according to the GOE P(x)
statistics, even though there is strictly no degeneracy in
the spectrum. This constitutes a large deviation from the
equally spaced HO spectrum (the starting point for the
fit) and requires many iterations to achieve good conver-
gence. Note that the same argument points to the fact
that it is theoretically impossible to fit, in 1D, a spectrum
obeying a Poisson distribution, since the latter requires a
large number of degeneracies. Berry and Tabor! pointed
out this fact as early as 1977; they remarked that when
relating Poisson level statistics to an integrable classical
analog, a one-dimensional system should be regarded as
an exception.

Since we are dealing with a relatively complicated po-
tential and a large number of eigenvalues and eigenvec-
tors are needed to high accuracy, it is very important to
ensure that the solutions of the Schrodinger equation are
sufficiently accurate. To do so, we checked e; against
(i|H|i). 1t is found that the largest difference between
them is less than 10~ 2 which for e ~ 500 means five digits
of accuracy in energy. This results in two digits of accu-
racy for any level spacing, which makes the P (x) statistic
reliable. Of course, the computation was done in double
precision. Note that the fitted potential exhibits many lo-
cal maxima and minima. The structure of the resulting
classical orbits is very complicated. The maxima are
homoclinic points, in the neighborhood of which the clas-
sical motion exhibits critical slowing down. Neverthe-
less, this system is strictly integrable.
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FIG. 2. Errors of fitted energies e’ —e plotted against e.

As we can see from equation (6), the fluctuations in the
potential are related to the oscillations in the wave func-
tion squared ¢,(x)?. As we move up to higher and higher
energy, wave functions have smaller and smaller wave-
lengths and thus we introduce more fine structure into
the potential. However, as long as we fit a finite number
of energy levels, these wavelengths are not infinitely
small, and thus the resulting potential is a regular func-
tion. If one insists on fitting an infinite number of states,
it is obvious that we will need an infinitely long time to
achieve the result, and thus the present procedure would
lose its utility.

The potential ¥ (x) is an harmonic oscillator with some
small fluctuations imposed on it. These fluctuations are
responsible for the fluctuations in the spectrum. Thus
changing the fluctuations in the potential will result
directly in changes in spectral fluctuation properties. It
is interesting to see how sensitively these changes depend
on the local potential oscillations. Of course, the general
situation is complicated. Here we only discuss two sim-
ple cases. In the first case, we keep all oscillations but
change only one by a small amount; it is easy to see that
the change only affects a few levels close to the change
point in the potential plot diagram. Since only a small
portion of levels is involved in such changes, the global
picture of level statistics will not change. In the second
case, we perform a global magnification or reduction on
the potential fluctuations ¥V —x2/2. After the global
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FIG. 3. (a) P(x) for the original set of unfolded energies
(solid line histogram) and for the fitted energies (dotted line his-
togram) as compared to the GOE P (x) function (smooth solid
line). (B) A; for the original set of unfolded energies (diamond)
and for the fitted energies (star) as compared to the GOE A,
function (solid line).
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FIG. 4. Nearest-level spacing Wigner distribution and those resulting from enhanced and reduced potential fluctuations.

change, we have a potential

x?

f+7. (8)

y— 2
2

In the first-order approximation,

e,=(e, [ LP*+V']e,) 9)
and

de,

i =e,— (e, | LP?+1x?le;) . (10)

Considering V—%xz as a perturbation to the harmonic-
oscillator potential, the difference between the wave func-
tion |e,) and corresponding harmonic oscillator wave
function is small to second order, thus
(ey|[iP*+ 1xle;)=~n+1, and de,/df =e, —(n+1).
Let x' be the nearest level spacing,

dx’

——=x—1.

df X (11)
I'he solution of this differential equation is just

x'=1+x—1(1+8), 6=f—1, (12)

where x denotes the nearest-level spacing when f =1. In
this calculation, we have not included a possible level
reordering effect. Owing to this level spacing shift, the
nearest-level spacing statistic P (x) now becomes

dPy(x)

P(x)= |Py(x)+ (1—x)8 |[(1—8), (13)

where Py(x)=P(x)|,—,. If we choose P(x) as a Wigner
distribution, then
P(x):%' x+ l—gx2 (1—x)6
X exp | ——x2 [(1—8) (14)

Since P(x) should always be greater than zero, equation
(14) should not be used when it predicts negative values;
then zero could be used. As we can see from this expres-
sion, the characteristics of the P(x) statistic will be
preserved as long as & is small. Since P(x) includes a
Gaussian decay factor, the change to the tail of the curve
is small whereas the most sensitive place is located at
x =0. In Fig. 4 we have plotted the Wigner distribution
(6=0) and distorted curve when (86=0.1) and
(6=—0.1). The actual solutions from solving the
differential equation yield qualitatively the similar results.

IV. CONCLUSION

In summary, we have used a one-dimensional model to
demonstrate that the GOE type of quantum spectrum
can indeed occur in a system whose classical analog is
strictly integrable. Our concept is simple, our approach is
straightforward. Since most current research which aims
at revealing quantum manifestations of classical chaos
uses low-dimensional problems, it is clearly interesting to
understand the one-dimensional problem. In attempting
to establish a universal relationship between classical
chaos and quantum level statistics, it is important to
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know of any constraint which might apply. Our result is
a step towards this final goal.
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