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It is shown that, for a given tokamak cross-sectional shape and arbitrary values of the magnetic
axis safety factor go, the first stability condition against pressure-driven magnetohydrodynamic
modes has the form 40zxBaBo/I < Cr(qo)/qo. Moreover, in the limit of large go, Cr(go) becomes
independent of go and independent of the toroidal mode number.

The ratio § of plasma kinetic pressure to magnetic pres-
sure in tokamaks is limited by the onset of pressure gra-
dient driven magnetohydrodynamic (MHD) instabilities
(first stability limit), or by the ability of the external fields
to maintain toroidal force balance (equilibrium limit).
The available experimental evidence as well as widespread
numerical simulations support the currently accepted
form of the first stability limit as proposed by Troyon and
others,' ~*

407BaBo/l < Cr=3. (1

Here a stands for the plasma minor radius, By is the vacu-
um toroidal field, 7 is the total plasma current, and a sys-
tem of units in which aBo/I is dimensionless and equal to
(aBo/tol )mys is to be used throughout this paper. Since
the expression (1) has been obtained only empirically, a
theoretical explanation of it based on first principles is a
most desirable goal.

A point worth noting is that Eq. (1) is obtained for the
normal tokamak configurations where the safety factor at
the magnetic axis go is approximately equal to one, or
after maximizing B with respect to variations of go which
also results in an optimum value of go about one. Howev-
er, far more insight can be gained by maximizing g8 at
constant but arbitrary qo, and then studying the depen-
dence of the B limit on go. It is also known that the value
of the Troyon ratio Cr depends on the geometrical
characteristics (aspect ratio, elongation, triangularity,
etc.) of the plasma boundary’ which shall be denoted in
short by I'' The aim of the present work is to provide a
theoretical understanding of the tokamak BaBo/I limit by
studying its dependence on g at fixed T".

In a recent work,® this author has shown that for
tokamak configurations with smooth pressure and current
profiles and vanishing current density at the plasma edge,
there exists an equilibrium limit of the form 40zBaB/I
= C{(q0,T')/q0. A numerical investigation of such
equilibria with a large aspect ratio and circular cross sec-
tion shows Cg? to be virtually independent of g and of the
order of 11. In addition, a study’ of the first stability limit
against n =oo ballooning modes for the large-aspect-ratio
circular tokamak equilibrium model of Clarke and Sig-
mar® subject to the above constraints on pressure and
current density profiles yields 40xBaBo/I < C%¥/qo with
C# =3.2, independent of qo. The present work shows that
for general plasma cross sections I', smooth profiles with
zero edge-current density, and arbitrary g, the first sta-
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bility limit has the form
407tﬂaBo/[S Cfe‘((]o,r)/lIO y 2)

and, in the limit of large go, C¥(o0,I') =3 is independent
of go and independent of the toroidal wave number n of
the mode under consideration. This result provides an
answer to two puzzles posed by the Troyon et al. formula
(1). The first one is the “unnatural” linear relation be-
tween B (which is inversely proportional to the square of
the toroidal field) and the normalized current I/aBg
(which is inversely proportional to the toroidal field); this
mismatch is corrected by the go ' dependence of the
right-hand side of Eq. (2). The second one is the fact that
the B limit as expressed by Eq. (1) applies both to low-n
external kinks and to high-n ballooning modes with only
some small variation in the numerical value of Cr. The
only previous theoretical work on this subject® does not
address these issues as it considers only #n =o0 modes in
go=1 configurations, besides being limited to a very spe-
cial and not fully consistent equilibrium model.

Tokamak equilibria are represented by solutions of the
Grad-Shafranov equation

9 |1 @ 9’ ,dp _ . dF
— = =—R —F—. 3)
OR |R AR | 922 dy  dy
This equation is invariant under the following transforma-
tion:
R—R, Z—Z,

y— Ay, p—Aip, 4)
F—AIF2+F20."2=1)]1"2,

where F, is the vacuum value of the toroidal field stream
function F(y). This transformation leaves invariant the
geometry of the flux surfaces w(R,Z) =const, hence the
magnetic axis Ro— Ry, and the vacuum toroidal field
F,— F,. It generates a homogeneous scaling of the po-
loidal field B,— AB,, and the toroidal current density
Ji— Aji. Therefore, defining the B and poloidal 8 param-
eters as B=2B¢ 2V ~'[pdV and B,=4I 2Rq ' [pdV,
where By is the vacuum field at the magnetic axis
(RoBo=F,) and V is the plasma volume, we obtain the
transformations

Bp— Bp, B— A’B, PaBo/I— ApaBi/I . (5)
The inverse rotational number ¢ =(2xz) ~'FédI,R ~*B, "
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transforms as
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where the relative variation of the toroidal field
| (F—F,)/F,| is of the order of B which for the profiles
under consideration is smaller than or of the order of e/q&,
€ being the inverse aspect ratio. Therefore for e/qf <1,
the homogeneous scaling

F=F, g=gq/r @)

approximates very well the actual transformations of F
and q. The approximation (7) gets better and better as
our transformation is applied iteratively with A <1, and
becomes exact in the limit go— o°. Using the scaling of ¢
we can construct an invariant Troyon-like ratio, namely

qoBaBo/l = qoPaBol/l . (®)

Since our transformation is an invariance of the equilibri-
um equation, any equilibrium limits must be expressed in
terms of invariant parameters such as B, or goBaBo/l,
but not B or BaBo/I. The work of Ref. 6 shows the exis-
tence of an equilibrium limit for goBaBo/I, whereas
qé‘qé' _")BaBo/I with x > 0 need not be bounded, thus I
can argue that gofaBo/I is indeed the natural invariant
Troyon-like ratio that should be used in theoretical stud-
ies.

My approach to the problem of the stability g limit is as
follows. The above discussed equilibrium scaling is used
to generate sequences of equilibria with increasing ¢
values (characterized by increasing qo) but nearly invari-
ant magnetic shear profiles. Variations of the shear
profile should be done separately at fixed go. It will then
be shown that, in the limit of large g, the ideal MHD sta-
bility equations become invariant under such scaling,
therefore the stability limit must be expressed in terms of
the invariant parameter qoBaBo/I rather than BaBo/I.

Let me consider first n =0 ballooning modes. I adopt a
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coordinate system in which the flux coordinate r(y) is
defined by 7 dr = RogF ~'dy and the poloidal coordinate 6
is related to the poloidal arc length through di,
=rRR 'd6, and define the associated metric functions
D=|Vr|~" and u=r|Vr|~2¥r-v6. In this coordinate
system the marginal stability equation for the ballooning
eigenfunction X reads

d | DR§

2p?2
dé | R? A

Ro (—x,+Zxg)X=0.

(1+zz)d—"f
dé
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Here 6 is the extended variable associated with the po-
loidal coordinate 6, X is the integrated local shear, x, and
xg are the normal and geodesic components of the mag-
netic curvature, and a= —2R8q g - dp/dr. All terms in
Eq. (9) are invariant under the transformation (4) except
for the functions Z, x,, and x;. However, in the limit
q— o where the magnitude of the poloidal field is negli-
gible compared to the toroidal field, they become

2D’ r—:—r+u-aa—9] [qfoDdO']] ,

xn = —cos(6,)/R, xz=sin(6,)/R,

L 10

an

where cos8, =DVr-VR. These asymptotic expres-
sions, '®!" valid in the large-q regime, are invariant under
our scaling, which now becomes an invariance of the bal-
looning equation. In fact the precise condition for the
scaling invariance of the n==oo ballooning equation is
€/q*<1 (i.c., the same as that required for equilibrium).
This is so because the largest neglected term in Egs. (10)
and (11) is the contribution of the poloidal field to the
magnetic curvature whose relative magnitude is of the or-
der of RB?/rB}~e/q’.

Next I turn to the study of low-n modes. Given a plas-
ma displacement &, the plasma contribution to the incre-
mental MHD potential energy can be expressed in the
previously defined coordinate system as

N
RED » o | |°. R |ay du, 8, @ 2
w,l&] ZR(}ferrdG{ rE [mD 4 36 X +r20 30 l+69+r6r Y (DX)'
2
1| Al 8u_ 08 _ 8
+B—3—mDY+q 1+89 Y uao](DX)
2RERD | ,an | o 9 A%rFj, du
22008 2 aodp |, 9.4, 0 LNV pusc R R (12)
+|x| P s rar+uaa 1nR+R0Rq I+,

The variables X and Y are related to the perpendicular
components of the plasma displacement through X =¢&-Vr
and Y=RoF ~'|Vr|~2-(BXVr); minimization with
respect to its parallel component has been carried out by
taking V- £=0. In Eq. (12) I have written explicitly the A
factors that arise when applying the scaling of Egs. (4)
and (7). The stability in the large-q regime can now be
investigated by formally letting A tend to zero. In this
limit I observe that, unless the derivatives of the displace-
ment are of order A ~!, the leading terms are the positive
definite contributions of the stable Alfvén and magneto-

M
sonic waves. This situation is entirely analogous to that
found in the high-n ballooning theory when one takes the
n— oo limit. In complete analogy with the high-n bal-
looning theory, in order to obtain an instability when
A— 0 one must construct a long parallel, short perpendic-
ular wavelength perturbation of the form X=X
xexplingd ' [°Dd6’) and

ingh ~'DY — (rd/0r +ud/36)(DX)

=Uexp {inqk —'foDdO']
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with 8X/860~dU/36~1. An algebraic minimization of
W, with respect to U can now be carried out perturbative-
ly in powers of A. Finally, a minimization with respect
to X yields an Euler equation which is identical to the
large-q form of the ballooning equation given in Egs.
(9)-(11). Since the latter is invariant under the A scaling,
the instability threshold against low-n modes in the
go— o regime is also invariant under such scaling, and
identical to the threshold against n=oc modes. Any ex-
plicit dependence on the A parameter disappears as A— 0
in the same manner that any explicit dependence on n
drops out in the n = oo ballooning theory. Moreover, since
in my analysis the parameter n/A>>1 plays the same role
that n>>1 does in the conventional ballooning theory, I
conclude that finite-q¢ (finite A) corrections to the asymp-
totic stability limit for go=o0, (A =0) correspond to the
finite-n corrections to the # = oo limit in ballooning theory,
which are known to be stabilizing.'® Therefore, at large
qo, the goBaBo/I limit against low-n modes should ap-
proach its go ™o asymptotic value (which coincides with
the corresponding one for n=co modes) from above. To
summarize, the asymptotic conditions for the validity of
my scaling are g 2/e>>1 for invariance of the equilibrium
and n=oo ballooning stability equations, plus ng>>1 for
equivalence of low-n and high-n stability. This result does
not require a large-aspect-ratio assumption as my asymp-
totic regime can always be reached with sufficiently large
q irrespective of e.

These theoretical predictions have been verified in a nu-
merical study of tokamak stability using the PEST code. '
I consider a large aspect ratio (4 =10) tokamak with cir-
cular cross section. The choice of large aspect ratio is
deliberate because this allows us to reach the relevant
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FIG. 1. Marginal stability points for n = oo ballooning modes.
The critical value of the parameter Cr =¢qoCr is plotted vs go
for nine sequences of equilibria characterized by constant qo and
different pressure and current density profiles. The circles,
squares, and triangles correspond to the profiles given by Egs.
(13a), (13b), and (13c), respectively.

large-q regime as far as equilibrium and n = o ballooning
stability is concerned with moderate g values. The two
flux functions that specify an equilibrium are chosen to be
the pressure p(y) and the Ohmic current jon(y)=(j- B)/
(RoV¢- B), where () stands for the conventional flux sur-
face average and ¢ is the toroidal angle. By taking these
to be analytic functions of y with the appropriate behavior
at the plasma boundary, the desired constraints on pres-
sure and current density profiles are always satisfied.
Specifically, I consider profiles of the form p=p(l
=)™ and jon=jo(1 —¥"”)*¥ where ¥ is the nor-
malized poloidal flux (0=<y=<1). Three different
choices of such profiles are studied here:

ap=ay=2, a;=ay=1, (13a)
a|p-2, azp-3, a;,--l, azj-z, (13b)
a)p=4, ay=2, a;=ay;=2. (13¢)

For each of these, three sequences of equilibria with in-
creasing § and constant g, are generated by increasing po
while adjusting jo in such a way that g remains equal to
1.0, 2.0, and 3.0, respectively. These nine sequences are
tested for ideal MHD stability against n =oo ballooning
and n =1 external modes. The resulting B limits are plot-
ted in Figs. 1 and 2. It is clearly seen there that the criti-
cal value of the parameter gofaBo/I becomes independent
of gy at large qo, thus confirming the form of the g limit as
expressed in my Eq. (2). It is also seen that, at large qo,
the instability threshold for n =1 is higher than for n =co
as predicted theoretically. Finally, I observe that the in-
stability thresholds for n=1 modes approach their large-q
asymptotic values more slowly than for n=o0, since, as
discussed previously, the convergence rate for low # is not
affected by the smallness of . In any case, even for n=1,
Cr(gqo) =q0Cr(qo) is found to be a rather weak function
of go down to go=1. Its numerical value would become
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FIG. 2. Marginal stability points against n=1 external
modes for the sequences of equilibria described in Fig. 1.
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somewhat higher following a more thorough profile optim-
ization. For example, the quoted n =co ballooning limits
correspond to the point where a single flux surface be-
comes marginally stable, but higher S values would be ob-
tained by allowing for profiles that are marginally stable
over most of the plasma domain. However, the purpose of
this numerical example is not to obtain the maximum pos-
sible BaB/I, but to show the general characteristics of its
dependence on g, according to theory.

As a final comment I note that the obtained thresholds
correspond to the upper boundary of the first stability re-
gion for which the go-modified limit 407xgoBaBo/I S3
holds. Because of the large aspect ratio, circular ge-

ometry and the types of profiles under consideration, these
equilibria never access the second stability regime for any
value of go. This allows a clear demonstration of my form
of the B limit (2) as it makes it possible to investigate the
first stability limit at large go without having to contend
with the effects of a possible access to the second stability
region.
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