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Cellular automata models of granular flow
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Simple experiments demonstrate the importance of particle irregularity on the flow of granular
materials. %e introduce cellular automata to model these flows with rules that are derived from

experiments. Automata that model nonspherical particles can reproduce a number of important
features of the physical flows, including alignment of the particles, the formation of a complex
channel region, the formation of defects in the body of the material, and the overall shape of the

upper free surface of the material.

The dynamics of sand is a challenging problem that has
attracted recent as well as past interest. ' ' While this
has been an historically and technically important prob-
lem, relatively little progress has been made in comparison
to that achieved in the dynamics of Newtonian fluids.
Traditional theoretical descriptions of granular flow have
taken a continuum mechanics approach. ' More recent-
ly, molecular dynamics, i.e., integration of Newton's
equations for a collection of particles (with assumed col-
lisional properties), has been used to try to understand the
"microscopic" behavior of granular flows. 5

Both approaches have limitations. Often, the continu-
um equations are difficult to solve for all but the simplest
geometries, or they are subject to strong instabilities when
linearized. s Still at issue are the correct constitutive laws
for these theories. These models are most appropriate for
smooth particles; yet many interesting and technologically
important flows involve rough or otherwise nonspherical
particles which contain additional degrees of freedom.
Molecular dynamics simulations are limited by the num-
ber of grains which they can follow, and by the fact that
the computational complexity increases significantly for
nonspherical grains.

Cellular automaton models avoid each of these prob-
lems. These models use well-defined rules, uncomplicated
by instabilities, with a simplicity that allows a simulation
to follow a large number of particles (10 -10 ) even if
"particle irregularity" is included and a fairly small com-
puter is used. Automata are particularly valuable in mod-
eling granular flows because they can test the importance
of each microscopic feature. In addition, they provide
testable predictions for length and time scales and struc-
tures of a particular symmetry, which may be expected in
physical experiments. Automata models for sand flows
(in this case sand avalanches) have been used ' as a
probe of self-organized criticality. There, the concern was
less with understanding the mechanisms of granular flows
and more with obtaining model systems which showed
structure over a large range of temporal and spatial scales.
As such these models fall short of describing real sand
avalanches. " In this work, we take a different point of
view. Specifically, we use automata models as a probe of
a necessary piece of physics which must be included if an
accurate description of real granular materials is to be
achieved. However, we do not claim that the model is

rigorous or that better models could not be constructed.
In this work, we will focus on one particularly simple

type of flow, flow from a hopper, which is poorly under-
stood at the basic level, but also has obvious technological
applications. Simpler flows, such as steady flow through a
uniform channel are possible. However, flow in a hopper
shape is one of the simplest geometries in which particle
irregularity plays a demonstrably important role. '2
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FIG. 1. Photographs of seed flowing from hopper. The
hopper angle is set to 60 which corresponds to the angle used in
the automata studies. The first photograph shows the full
hopper. The numbers under subsequent pictures show the
elapsed time in seconds. The physical dimensions of each image
are 14x21 cm'.
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The effect of particle irregularity in the flows is prob-
ably best understood by considering a material in which
the particles have a well-defined uniform nonspherical
shape. A useful example of such a material is grass seed,
and we will use it as a convenient paradigm. In particular,
Fig. 1 shows part of a series of photographs of the flow of
seed out of a thin Plexiglas wedge. The thickness of the
hopper, 1.2 cm, is about twice the length of a seed. We
call particular attention to several features seen in these
flows: (1) nearly all the particles are aligned with the face
of the hopper, and very few are normal to the vertical
faces, making the flows nearly two-dimensional; (2)
within the plane, there is a long-range orientational order
of the grains; (3) the flow takes place in a central region
with stagnant material on either side, and within the flow-

ing region, the grains tend to orient vertically; (4) the
upper free surface exhibits a number of complex shapes;
(S) there are a number of interesting smaller structures
within the bulk, including small star-shaped defects and
somewhat larger circular structures; (6) the flow rate, as
measured on a time-scale of a few seconds, is steady in-
dependent of the height of the layer in spite of the obvious
time dependence in these flows.

We turn now to the modeling of these flows with cellu-
lar automata. Our automata use a regular 2D triangular
lattice with hexagonal symmetry. Lattice sites can be oc-
cupied by walls or grains or may be vacant, i.e., a hole.
Walls are placed initially and never move or change. A
grain at a site i has a state consisting of an orientation 0
and a direction of motion U. There are three directions for
0, each parallel to a basis vector of the lattice: 0' (verti-
cal) or ~ 60'. The direction of motion U of a grain can be
toward any of its six nearest neighbors or the grain can be

I

at rest. The automata use a two step rule consisting of an
interaction step and a propagation step I.teration n be-
gins with the interaction step in which a new 0 and U are
chosen simultaneously for each site i by minimizing an
"energy function" defined by

Ei Esravity+ X Einter ~

NN

where NN represents nearest neighbors. E; depends on
the state of the grain at site i and the states of its six
nearest neighbors at the previous iteration n —1.
Specifically, E; is computed for all 21 possible states of
the grain at site i T.he new state of the grain at site i at
iteration n becomes the one that minimizes E; (subject to
the constraint that U may only be toward holes). If several
allowed states share the same lowest energy (a rare oc-
currence), one is chosen at random. Also, as in the physi-
cal system, grains are not allowed to change their state
unless they are adjacent to a moving grain or have a hole
in one of the three sites beneath them. At the conclusion
of the interaction step, each site is set to its new state.

Following the interaction step, the propagation step
occurs. Every grain is moved one lattice spacing along its
new direction of motion v (i.e., U of the chosen minimum
of E; in the last interaction step). Due to the nature of the
interaction step, it may happen that multiple grains have U

directed toward the same hole. In this case, the candidate
with the lowest E; (from the interaction step) is moved
and all other competing candidates have their U's set to
rest. The propagation step completes the nth iteration.

We now consider the various terms in E;. The first term
reflects the fact that grains prefer to move downward in a
gravitational field. Es„„t„hasthe form

r

5 if 1 or more adjacent sites below are holes and U not toward one of these,
0.0 otherwise.

The second term takes into account the interaction of a grain with its nearest-neighbor grains

Einter & shears orient& dilation ~ (3)

The factors on the right-hand side model the effects of relative motion, relative orientation, and dilation, respectively.
Specifically,

Fshear I "N "i I +0 I . (4)

Here Uiv is the direction of motion of a neighbor at the (n 1)th ite—ration and U; is a possible direction of motion of the
particle at the nth iteration.

S if both grains are aligned along one of their velocity vectors,
1.0 otherwise, (s)

—if d»l . l

Fdiiation ' d 1
—C '

0.2 otherwise,

(6)

where d is the mean spacing (i.e., time-average spacing)
of the grains, and C is a parameter which can be set to a

where S~ 1. The case S 1 or P 0 correspond to spher-
ical particles.

positive value (less than one) if the particles are cohesive.
For any two neighboring grains, the term F,I,„,is near
zero if they are both at rest or have the same direction of
motion and increases in proportion to the difference in
their directions of motion. The term F«,,„tis smaller if
the grains are aligned and larger otherwise. Note that an
orientational interaction must be distinct from a frictional
interaction, since an irregular particle can cause a torque
about the center of mass of a neighbor even in the absence
of friction. Finally, the term Fd;t„;,„approaches zero as
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FIG. 2. (a) Results for a structureless model in which the
power P of the orientation term F„;..~ has been set to 0. (b) The
filling process. (c)-(f) Flow states of a structured automaton
with the time given by the iteration number. (Parameters:
wedge angle 60', 6 3.0, C 0.2, S 0.01, a 3.0, P 1.0,
y 2.0.) The shading gives the orientation. Holes are indicated
by white.

the grains move farther apart. The exponents a, P, and y
provide a convenient way to vary the relative strengths of
the different components in the interaction term.

An important issue is the initial state of the system, be-
fore the material is allowed to flow. The initial state of a
physical experiment is typically prepared by raining the
material into the hopper [see also Fig. 2(b)]. Because the
grains interact during this process, the initial state is not
characterized by random orientation, but typically has
orientational order. The model "hopper" is filled by plac-
ing rest grains with random orientations in a Gaussian
density distribution along the top row of the lattice at each
iteration. These are allowed to fall into the hopper as
shown in Fig. 2(b). The same set of flow rules is used dur-
ing the filling and emptying process. The emptying pro-
cess is initiated by replacing wall points blocking the out-
let with holes. Grains moving into holes at the bottom row
of the outlet channel are effectively removed from the grid
by replacing them with holes.

We turn now to results obtained from this model. The
simplest automaton results when the orientation effect is
turned off by setting P 0. In this case [Fig. 2(a)], grain
motion occurs within a central core which approaches a
constant width in the horizontal direction as time pro-
gresses. Within this core, the density is uniformly
lowered, and the flow is relatively structureless. As the
flow progresses, the upper surface develops a shape
characteristic of physical flows in this geometry. Automa-
ta with these characteristics resemble the flow of smooth
spheres. '2

We now consider the effect of orientational interactions.
We first show the number of particles falling out per itera-
tion in Fig. 3 for 6000 iterations, enough to substantially
empty the hopper. In Fig. 3, we have averaged the num-
ber of particles per iteration over (a) five and (b) eleven
successive iterations. Interestingly, there is no monotonic
variation in the flow rate, a fact that is consistent with ex-
periments. ' However, a power spectrum computed from
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FIG. 3. (a) The number of automata particles falling out per iteration averaged over five iterations for 6144 iterations. (b) is aver-
aged over eleven iterations. These data are from the automaton of Fig. 2. Qualitatively similar results are obtained if the orientation
is turned off.
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the flow rate is flat, corresponding to white noise. At
present, there are no data for the flow rate for the physical
particles on short-time scales, so the automaton provides a
testable prediction in this regard.

Figures 2(c)-2(f) show several iterations out of a long
sequence, for parameters which are specified in the cap-
tion. The shading indicates the orientations. [In this ex-
ample, the shaded region of Fig. 2(c) has 0% holes. ] Note
that there is significant correlation of the particle orienta-
tions over a range comparable to the macroscopic dimen-
sions of the container. The qualitative large-scale features
seen in real flows, as typified in Fig. 1, are correctly cap-
tured by the automaton. The automaton also contains
structure in the flowing center region which is qualitative-
ly similar to the physical flow. However, some of the
smaller features, such as star-shaped defects, which are

seen in the physical experiments have not been found in
the model.

To conclude we note two major points: first, particle
orientation is a relevant variable in many granular flow
problems, and second, in very simply cellular automata
models in which orientation is included as a dynamical
variable, a number of qualitative features, such as long-
range orientational ordering, are found which have coun-
terparts in real flows of irregular particles. A more ex-
tended discussion will be presented elsewhere. '3
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