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We investigate the predictions of random-matrix theory for the eigenvector statistics and com-

pare them with eigenmodes of kicked tops under conditions of classical chaos. The well-known Z,
distribution finds an interesting application with v 1, 2, and 4 for the orthogonal, unitary, and

symplectic universality class, respectively. The change of the eigenvector statistics accompanying
the classical transition from chaotic to regular motion is also considered.

Quantum systems with a chaotic classical limit are
known to display spectral fluctuations well described by
random-matrix theory ' (RMT). More recently there
has been an interest in the eigenvector statistics for Ham-
iltonians or Floquet operators. Again, RMT turns out
reliable under conditions of fully developed classical
chaos. We shall provide further corraboration to the
latter statement in the present Rapid Communication.

Let c," denote the jth component of the nth eigenvector
in a generic N-dimensional basis. The squared moduli

ri ic/" i obey the statistics given for each universality
class by RMT (Refs. 9-11)
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The 6rst of these is known as the Porter-Thomas distri-

where COE, CUE, and CSE represent the circular or-
thogonal, unitary, and symplectic ensembles, respectively.

For N » 1 the mean (ri) is proportional to 1/N. To ana-
lyze the limit N Oo it is therefore suitable to introduce a
rescaled variable y with unit mean, (y) 1. The above
distributions then take the form

bution. All three densities are special cases of the so-
called g2 distribution
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The latter is well known as the distribution of the sum

y g;"-i x; for v independent Gaussian random variables
x; with zero mean and variance I/Kv.

It is, indeed, most intuitive to find v 1, 2, and 4 for the
orthogonal, unitary, and symplectic case, respectively, in

view of the physical meaning of the quantities ri in

(l)-(3). In the orthogonal case the eigenvector com-
ponents are generically real (v 1), while in the unitary
case one confronts complex components (v 2). On the
other hand, in the symplectic case ri refers to the occupa-
tion probability of a two-dimensional space pertaining to
two eigenvectors sharing the same eigenvalue by Kramers'
degeneracy (v 4).

Perhaps the most natural application of Eqs. (1)-(3)or
(1')-(3') refers to the eigenvectors of a Hamiltonian H or
Floquet operator F in some fixed basis. Equally legitimate
is an interpretation for some arbitrarily chosen state i p)
in the eigenbasis of H or F. We shall, in the following,
focus on a variant of the latter case, in which the "arbi-
trarily chosen" state i p) is, in fact, generated from an
eigenvector of H or F by a suitable observable A as
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A motivation for studying this case is provided by the
fact that the matrix elements (m i p)-(m i A i n) some-
times define transition strengths between eigenstates as
i (m i p) i . We have checked the foregoing predictions of
RMT for periodically kicked tops. Such systems are par-
ticularly suitable for our purpose, since realizations of all
universality classes can be given. ' ' Moreover, working
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with periodically driven, rather than autonomous systems,
is advantageous since the eigenphases of the Floquet
operator tend to have a constant mean density throughout
the spectrum.

The dynamical variables of the tops of the three com-
ponents of the angular momentum operator which obey
the commutation relations [J;,JJ) iEJI,Jk T. he squared
angular momentum is conserved, J j(j+1)with j in-
teger or half integer. The quantum number j fixes the di-
mension of the Hilbert space as N 2j +1. The classical
limit is approached with j ~. A Floquet operator
without any antiunitary symmetry (generalized time re-
versal) is
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v-1. 93provided all three coupling constants are nonzero. Quad-
ratic level repulsion has been asertained under the condi-
tion of classical chaos (p =Ki =K2 = 5). For K2 0, on
the other hand, there exists an antiunitary symmetry en-
forcing the linear level repulsion characteristic of the or-
thogonal universality class, provided the classical analog
displays global chaos. '2

The presumably simplest top pertaining to the symplec-
tic universality class has the Floquet operator
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where [, ]+ denotes an anticommutator and jmust be tak-
en half integer. ' In fact, for integer j value the Floquet
operator F2 belongs to the orthogonal universality class.

We have calculated the matrix elements of J, in the
Floquet eigenbasis normalizing in the sense of (5), i.e.,
(m ) J, ( n) (n [ J, ( n) [

'~ . The quantum number j was
chosen sufficiently large for the histograms for
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FIG. l. Histograms of distribution of transition strengths
computed for (a) symplectic, (b) unitary, and (c) orthogonal
dynamics (see text). Dashed lines denote g„distribution with
v 4, 2, and 1; the solid line shows the best-fit curve.

0.0, p 1.7) we now proceed to a study of the quantum
signature of the classical transition from global chaos to
predominantly regular motion as the Ki parameter de-
creases towards zero. Figure 2 presents the histograms for
a succession of three values of K~. We could not resist the
temptation of playing the slightly frivolous game of fitting
the g, distribution with 0 ( v & 1 to these histograms.
Needless to say, such fits are neither suggested by
random-matrix theory nor by any other rational argu-
ments. The optimal fits displayed in Fig. 2 can hardly be
said to be successful beyond giving the quantitative tend
to flatter distribution for decreasing coupling constant Ki.
Especially, they do not grasp the migration of the peak to-

to become reasonably smooth. It may be noteworthy that
smaller values of j are more sufficient for this purpose
than for obtaining good statistics for properties of eigen-
values. Figure 1 presents the histograms obtained. Figure
1(a) refers to the symplectic case (operator Fi, j 149.5,
p Ki 5.0, K2 2.5, Ki 20.0), while Figs. 1(b) and
1(c) present, respectively, the unitary (operator Fi,
j 250, p 1.7, Ki 9.0, Kq 1.0) and the orthogonal
(operator Fi, j 250, p 1.7, Ki 9.0, K2 0.0) cases.
Logarithmic scales were used for the abscissas in order to
accentuate the differences between the various distribu-
tions. The dashed lines describe the g„distribution with
v 4, 2, and 1. The solid curves were constructed by
elevating the parameter v from discrete to continuous; an
optimal value of v was then sought by minimalizing the
integrated mean-square deviation between g2 and the his-
tograms obtained. The agreement between the numerical
data for the various universality classes and the respective
predictions of RMT is impressive. Fixing our attention to
the orthogonal case (Floquet operator Fi, j 250, K2
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