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Instability of self-focused optical beams in plasmas
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This paper investigates the stability of intense optical slab beams in infinite plasmas. Profiles de-

pending on the distance x were found in a recent paper by Kurki-Suonio, Morrison, and Tajima

[Phys. Rev. A 40, 3230 (1989)]. The most useful profiles were in the form of solitons. Solutions for
which the beam profile was of oscillatory character were also found. Here a stability analysis is per-

formed on all these profiles. The results, in terms of the physical cylindrical variables, imply radial

stability but azimuthal instability of the solitons. The wave structures, however, are also unstable in

the radial direction, and this explains numerical results of Kurki-Suonio et al.

I. INTRODUCTION II. STABILITY ANALYSIS

In a recent paper, Kurki-Suonio, Morrison, and Taji-
ma' discussed the self-focusing of an intense optical beam
by a plasma due to nonlinear (ponderomotive) and rela-
tivistic effects in what is known as a plasma fiber ac-
celerator. In slab geometry, they obtained an exact
steady-state solution in the form of a strongly peaked, lo-
calized solitary wave (peaked in the radial direction). Ra-
dial peaking has also been considered by other au-
thors. This is desirable, as it permits the beam to
propagate without losing its intensity.

Using purely numerical methods, Kurki-Suonio, Mor-
rison, and Tajima' showed that the soliton solution was
stable to one-dimensional parallel perturbations in the
slab model (in this model operators in r, 6 are replaced by
simpler operators in x,y). From this stability property
the authors conclude that their solution is a realistic
physical candidate for the asymptotic shape of a self-
focused laser beam.

In the present paper we show analytically that the
solitary-wave profile is indeed stable to parallel perturba-
tions in the slab model. It is also shown in Ref. 1 that in
slab geometry there also exist solutions in the form of
nonlinear wave structures. Here we find that these struc-
tures are unstable. In practical terms this implies that
deviations from the exact soliton profile should lead to ra-
dial instabilities. This was indeed found numerically in
Ref. 1, where a Gaussian profile was investigated and the
growth of perturbations was observed.

The present stability analysis thus gives further indica-
tion that the solitary wave is the relevant asymptotic
state. The relevance of a transverse instability found here
will of course depend on the relevance of the slab approx-
imation. It should, however, be made known to those in-
terested in practical applications of the original idea of
radial peaking of intense laser light in plasmas. In real
life, azimuthal instabilities are a possibility. They merit
further study.

Here z is the direction of propagation of the laser beam in
the plasma. We now rewrite Eqs. (9) and (10) of Ref 1:
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Here co =4trne Im and N, =1+A.,V(1+a„)'
A., =c/co . We wi11 now limit the class of solutions still
further.

With P=pz +P (or, 0, t) and a„=a(r, H, t), and rescaling
r by A., ', t by co, co„by co, and introducing (p is the
coefficient of z in P)
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The system under study is governed by Eqs. (9) and
(10) of Ref. 1. To obtain these equations the laser plasma
system was described by taking Maxwell's equations and
the equation of motion for relativistic electrons. The
electron pressure gradient was neglected in comparison
with the ponderomotive force. Electrons were assumed
cold, and the ions, immobile. The Lorentz gauge should
have been taken (not the Coulomb gauge, as in fact A ob-
tained by the authors of Ref. 1 is not divergence free). In
Ref. 1 a trial function for the nonvanishing component of
the normalized vector potential A was assumed to be

a„(r t) [(expi[koz coot —P(r—t)] j(x+iy) .
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the above equations take the form
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nonlinear structures, is investigated by simple algebra.
Equation (2.6) is solved by e=(c, +c, ' )/2 and

ao =c
&

—1, Po =0. When these identities and the forms
(2.7) and (2.8) are substituted into the linearized forms of
(2.1') and (2.2') (neglecting 5a ), we obtain the small k, I
dispersion relation
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Here we will concentrate on the special case of const=0.
For nonzero constant only nonlinear waves exist and they
are expected to be unstable just as those with zero con-
stant will be seen to be. Now (2.1') becomes (we drop the
zero subscript in ao)

d a/dx —a(1+a ) '/d/dx[a(1+a ) '/da/dx]
—

Q =0, (2.4}
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The static case of interest in slab geometry was such that
both ao and Po were functions of x only. Now (2.2')
reduces to

AA. +BR, +C =0, (2.10)

where

0.03

and this is positive for realistic too (we will take coo=10,
whereas c, & 1}. Thus one root A, )0, and we have insta-
bility.

When the full calculation is performed for arbitrary
periodic a (x) from (2.6), we find that 5a =da /dx,
5$=const, and, in second order k, the dispersion relation
follows in the form of a biquadratic in A, ,(k, I, c„too,e):

Q =c,a+a/(1+a )'/

This equation can be integrated once to give

(da/dx) /(1+a )
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The soliton is obtained for e= —1, all other physically
meaningful solutions being in the form of nonlinear
waves when c& &0. For e= —1, both a and da/dx ap-
proach zero as x tends to infinity.

The method of stability analysis used is that introduced
by Infeld and Rowlands. ' Here the soliton is con-
sidered as a limit of nonlinear wave functions. This pro-
cedure gives information about all structures and, impor-
tantly, eliminates mathematical inconsistencies that
direct soliton-perturbation analyses suffer from. ' Here
we will omit the theory behind the calculation, as it can
be found in Ref. 10.
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and linearized (2. 1') and (2.2'). We then expand in k and
l, considered to be of the same order (for definiteness we
expand in k). Here A, is assumed to be at least of order 1

and A, , positive means instability. We take
0
-1.08

I

-1.04
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The linear limit, of little relevance to our problem, but
a useful check on the rather heavy calculations for fully

FIG. 1. Value of A,
&

for mo=10 and c& = ——', . Here the con-
stant e values vary from the linear limit ( —1.085) to the soliton
limit ( —1). In (a) 1=0, parallel perturbations. In (b) k=0, per-
pendicular perturbations (there is also a stable branch A. &0 not
shown here). The linear limit (2.9) is indicated by a solid circle
in both parts.
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A =DE, 8 =DF+EG+H, C =FG',
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&f &=ff ~x gent,

above.
The results are presented graphically in Fig. 1. We

find by manipulating the discriminant that k, is always
real. The parallel perturbation case (1=0) is unstable for
all but the soliton-limit structure. For k=0, however,
the instability does not go away in the soliton limit. The
curious fact that the linear limit is continuous for 1=0
but not for k =0 has been observed in previous calcula-
tions.

The most important practical conclusion of this calcu-
lation is that azimuthal perturbations to the soliton struc-
ture will be expected to grow. However, this is not a cer-
tainty, as we used the slab approximation to obtain them.
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