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An algorithm previously obtained for complex-energy modal probabilities in non-Hermitian

quantum dynamics is generalized to determine expectation values for arbitrary observables. When

cast in conventional form, the formalism including the generalized algorithms appears as a natural

generalization of conventional quantum theory, in that conventional quantum theory obtains in the
continuous Hermitian limit.

I. INTRODUCTION

As shown by Weisskopf and Wigner, ' a quantum sys-
tern initially in an unperturbed, energy eigenstate, to
second order in a perturbative coupling to an energy-
conserving continuum, experiences effectively both a real
and imaginary energy shift. This leads to simple ex-
ponential attenuation of the probability Pz(t) of finding

the system in the initial state for times t )0, i.e., after the
perturbation is switched on.

In a general theorem due to Fock and Krylov, any
quantum state coupled to an energy-conserving continu-
um of states undergoes irreversible decay, in that the
nondecay probability Pv(t)~0 as t ~ ao.

In the general case with several discrete states pertur-
batively coupled among themselves as well as to an
energy-conserving continuum, projection-operator tech-
niques may be employed to construct effective non-
Hermitian Harniltonians which describe the limited dy-
namics within the coupled, decaying subspace. This pro-
cedure has been employed in the decay theory of E
mesons, nuclear reaction theory, optical resonator
theory, and in theories of multiphoton ionization and ex-
citation.

It turns out, however, that the correct generalization of
the Weisskopf-Wigner analysis' to decaying, coupled
quantum substates is not trivial or completely obvious.
In particular, the customary construction of
nonionization-nondecay probability Pz(t) as a norm of
the subspace state ~4(t)), i.e., Piv(t)=(C&(t)~4(t)), has
been shown to be not generally correct. '

In a detailed investigation of non-Hermitian Hamil-
tonians, their eigenstates and dynamics, and by requiring
the finite-time definition of P~(t) to equal S-matrix re-
sults asymptotically, the present author has obtained the
generally correct algorithm that utilizes the complex-
energy eigenstates. '

In non-Hermitian dynamics (NHD), the statements of
closure and of "sum over final-state probabilities" are for-
mally different. The correct algorithm in non-Hermitian

dynamics becomes, in the Hermitian limit, identical to
the norm of state because the closure relation for the sub-
space appears in the "sum over final-state probabili-
ties. " '

The conclusion that non-Hermitian dynamical analyses
of a decaying subspace of states coupled by a strong per-
turbation must employ a different, more general, algo-
rithm has significant consequences. First, the algorithm
eliminates nontrivial contributions arising from the over-
lap of nonorthogonal complex-energy states in the usual
norm-of-state calculation. Second, one then has only in-
dependent decay from each of the complex-energy eigen-
modes and, at least in the second-order calculations, this
decay is simply exponential. Models of decay or ioniza-
tion which employ a norm-of-state definition of Piv(t) in-

variably show unphysical oscillations between being de-
cayed and being nondecayed, arising because of the non-
vanishing overlap of eigenstates of the non-Hermitian
Hamiltonian.

Not addressed in this paper is the possibility of power-
law modifications to simple exponential decay associated
with higher-than-simple-pole singularities in the energy
plane. Nor do we attempt here to define completely the
exact environment in which a non-Hermitian Hamiltoni-
an may be a realistic modeling of the physics, except to
note that decays and ionizations do become objective
facts with exponential regularity. An excellent review of
these and related questions is available. ' Finally, here
we make no effort to analyze the influence of frequent
measurements on the dynamics of an unstable system. "
In this paper we simply accept the proven utility of
effective, non-Hermitian dynamics and attempt to add
some theoretical detail as it pertains to NHD in a general
way.

The organization of this paper is as follows. In Sec. II
we present a brief review of essential results from our pre-
vious analyses. ' We present an additional argument,
simple and direct, using unitarity, to infer the correct
construction of intermediate-time probability Pz(t) util-

izing eigenstates of the adjoint Hamiltonian. In Sec. III
we consider the general derivation of effective, tirne-
dependent Schrodinger equations. We show that for t-

A
local non-Hermitian Hamiltonians H(t) and 0 (t) to ex-
ist, the decay-causing perturbation V(t) can have only
adiabatic variation. Causal transition amplitudes are
constructed that are consistent with the S-matrix limit.
In Sec. IV we analyze the construction of expectation
values of arbitrary operators. When cast in parallel with
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traditional formalism, the result appears as a nonunitary
transformation on bound-space projected operators. We
also obtain the generalized density matrix and its equa-
tion of motion, and generalized Ehrenfest relations. In
Sec. V we make some summary remarks.

II. MODAL OCCUPATION PROBABILITIES

We review here, for convenient reference, essential
conclusions of our previous NHD analysis, ' and provide
a further argument, from unitarity and consistency with
the S matrix, for our proposed intermediate-time algo-
rithms for modal probability.

Consider any quantum system containing both
discrete, i.e., bound, states, and continuum (e.g. , transla-
tional) states, the set of which we shall designate as P,
plus at least one distinct class of only continuum states,
which states we shall designate collectively as Q. Let the
states P and Q be energy eigenstates of a Hermitian Ham-
iltonian Ho. We shall refer explicitly only to the discrete
bound subspace of P in most of the following.

Suppose all the states P and Q are coupled by a time-
dependent interaction V(t), such that V(t) is different
from zero only for times between some initial time t, and
some future time t&. Thus the Hamiltonian for the sys-
tem is

H(t) =Ho+ V(t)

with

V(r)%0,

We shall permit t; and tI to be possibly infinitely remote
past and future times, so that the interaction may be con-
stant, but generally we consider V(t) to vary arbitrarily.
There should be no confusion, in context, by letting the
symbols P and Q also represent the respective projection
operators for the subspaces, satisfying P =P, Q =Q,
PQ =QP =0, and P+Q =I. The Hilbert space is thus
apportioned into disjoint complements, P space and Q
space.

The P-space states may correspond physically to, for
example, Eo states, excited-atom states, or atom plus
photons, where the photons may ionize the atom. Thus P
space comprises a set of initial states which are unstable
to decays to Q space after V(t) becomes nonzero. We
shall refer to the system whose quantum state is in P
space as an "unstable, " or "decaying" system, by virtue
of the Fock-Krylov theorem which informs us that even-
tually the system will definitely not be in P space. The
system may be simply a decaying atomic state, or an ar-
bitrarily complicated scattering complex which includes
decaying states.

Q space comprises all states that are connected by V (t)
to P space; m.-mesonic continua, atom plus emit

tedp-
hotonn states or ionized-atom states in the examples
given. One may freely choose to associate other con-
tinua, such as those of Raman processes, leptonic modes,
etc. with either P or Q. The essential point is that, for
time t =t, , it is a given initial condition that the quantum
system is in P space. The only requirement on Q space is

that it be strictly a continuum, with no disjoint discrete
subsp aces.

We define the total probability that the system at time
t, t, & t & t&, is in P space to be P~(t), and the probability
that the system is in Q space is PD(t), where we must

have, by unitarity,

P~(t)+PD(t}=1 .

With normalization these two sets of eigenvectors will
constitute biorthogonal sets' ' in that

~ A, (t)l A, (r)& =
~ A, (t) A, (t) &

' =
&„,,

and the completeness relation on P space may be ex-
pressed as

gi A„(t) &( A(r)i =I .

As has been shown, ' the states
~
A„(t) & and

~
A„(t) &

are P-space projected Lippmann-Schwinger states satisfy-
ing, respectively, "incoming" and "outgoing" boundary
conditions. (Recall that, even though we are interested
primarily in the dynamics within the discrete, bound
states of P space, these are embedded in at least an under-
lying translational continuum which permits the manipu-
lation of the necessary distributions in the derivation of
this result. ) Because V(t; )

= V(tI) =0, we have

lim
~ A„(t) &

= a„&,
l-~f, ~

lim ~A„(t)&= a, &,
t ~E

(10)

where the noninteracting ("undressed" ) states ~a„(t) &

satisfy

II„ a, &
=E„~a„& ,

a real-eigenvalue equation for the Hermitian Ho.
We shall provisionally associate to the statement, for

t ) t, , "a system is in an H eigenstate
~ A„( t) &" the impli-

cation that the system has not decayed or ionized, has an
energy Reh. „(t), and has a probability of decaying or ion-

The effective, non-Hermitian Hamiltonian H(t) that de-
scribes the dynamics only within P space, while also ac-
counting for loss of probability from P space, is

H(t)=P[H, + V(r) —S(t)—iI (r)]P

where S(t) is the Hermitian energy-shift operator and
iI (t) is a non-Hermitian (complex energy-shift) operator
which leads to decreasing P~(t) The.se operators are
defined in detail in Ref. 8. Here we require only their
properties under Hermitian conjugation.

For the Hamiltonian (4) there exists a set of eigenvec-
tors I ~

A„(t) & I, while for the adjoint fI (t) there exists an
associated set of eigenvectors I ~ A, (t) & ). Thus

u(t)
~
A„(t) & =A.„(t)

~
A„(t) &

and

H (r)~ A, (r) & =A, „'(r)~ A„(t) & .
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S, „=&A, (t)~y„(t) & (12)

where the state ~P„(t)& is obtained from solving the
Schrodinger equation

izing equal to —21m', „(t) per unit of time. (Of course,
the latter can be justified operationally only over an en-
semble of similar systems. )

The amplitude S, „ that, given the system at to is in the
state

~ A„(to) &, at some time t ) to the system will be
found in the 8 eigenstate

~ A, (t) &, is given by the expres-
sion

asymptotic, S-matrix limit. That is, for t, ~—ao,

tf ~ ~ recall that the formalism we are using applies for
an arbitrary assemblage of decaying, scattering and/or
ionizing systems. Our constructions thus include the
correct composition of 'incoming waves in outgoing
states, " etc. ' reproducing thereby the overall S-matrix
results.

We can, however, present a more direct approach us-

ing unitarity. Consider an adiabatic, but otherwise arbi-
trary, interaction with a non-Hermitian Hamiltonian
such as (4}. Let the initial state at t ~ —oo be

H(t)lp„(t) & =t—Ip„(t) &,

subject to the initial condition

»m ~y„(t) &
=

~ A, (t, ) & .
toto

(13)

The calculation of PN( oo ) leads to '

p„(~ ) = g ~c„~'exp —f y„(t)dt

(21)

(22)

The corresponding probability that the system at time
t ) to is in the eigenstate

~ A, (t) & is

P, „(t)=l&,„i'=&&„(t)IA,(t)&&A, (t)lg„(t)& . (14)

~P;(to)&= gc„(to) A„(to)& . (15)

The amplitude S, , for finding the system in eigenstate
~ A, (t) & at time t & to is then

More generally, we may permit the system to be in an
arbitrary P-space state ~P;(to) & at time to, which, by the
completeness Eq. (8), we may express as

Now, writing

exp — y„ t dt

=1—f y„(t)dt exp —f y„(t')dt'

for each term in (22), we have

p~( oo )

=g ~c„~ 1 —f y„(t)dt exp —f y, (t')dt'

(23)

(24)

S„=& A, (t) ~y, (t) &

and the corresponding probability is

P„(t)=IS„I'=&y,(t)IA, (t)&& A, (t)&& A, (t)ly, (t)& .

(16) =1—g ~c„~'f y„(t)dt exp —f y„(t')dt'

(25)

(17)

Finally, the total P-space probability at intermediate
times is obtained by summing P, ;(t) over all possible
("final" ) states

~ A, (t) &, which gives

p (t}=y ~s, „~'

where we have used normalization of the initial state,
g„~c„~ =1. Recalling the unitarity condition (3), we
therefore obtain

PD(~)= g ~c„~'

y„(t)dt exp —f y„(t')dt'

= g & y;(t) i A, (t) & & A, (t) lg;(t) & (18) (26)

= y ~c„{t )~ =1,

a condition that is quite different from the traditional re-
quirement

&P, (t, )ly, (t, ) &=1, (20)

because of the nonorthogonality of the eigenstates
~ A, (t) &.

The constructions (12}—(18) are consistent with the

Note that this result requires the particular initial nor-
malization condition on the expansion coefficients

Pw(to}= & &p;(to}lA, (to}&& A, (to)ly;(to)&

so that we may identify, or in any case assign, indepen-
dent modal occupation probabilities,

P„(t)= ~c„~ exp —f y, (t')dt' (27)

Then

PD( ~ )= g ~c„~'f y„(t)P„(t)dt,

as one would expect consistently with previous results. '

The finite-time amplitude construction (12), and the
modal probability construction (14), are therefore dictat-
ed unambiguously by unitarity and consistency with the
S-matrix limit.

It is noteworthy that the lack of oscillations in Ptv(t),
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because of (3), is equivalent to no oscillations in PD(t).
That there are no oscillations is PD(t), that is, no quan-
tum beats in the total decay amplitude, is well known.

III. TIME-DEPENDENT
EFFECTIVE SCHRODINGER EQUATIONS

space. This requires a future state with a "final-state"
condition (4~(tf}& =Q~+(tf)&=0. To solve for P P-
transitions only, we employ (35} and (36) to obtain the
corresponding retarded and advanced solutions satisfying
Iq, (t, ) &

= Iq', (tf) & =0:

Here we analyze conditions under which a non-
Hermitian Schrodinger equation such as (13) may obtain
as a local-time effective Hamiltonian. For the Hermitiah
Hamiltonian (1), the exact dynamical evolution of the
system is described by the familiar Schrodinger equation,

t~t, ;

and

~%, (r) &+= fG„(t t'—)V (t')I%, (t)&+dr' (37)

H(t)ill(t) &
=—~%'(t) &

dt
(29)

with H as defined in (1).
We apportion the Hilbert space, using the projection

operators P and Q defined above, by applying them to Eq.
(29) to find

~q, (t)& = f G,",(t —t')V„(t')i+ (t)& dt' . (38)

These may be employed in the corresponding retarded
and advanced versions of the left-hand sides of (30):

(H.„+V„) lq(t) &+ V„Qlq(t) &=—„Plq'(t) &,
dt

and

(30) [H,„+V„(t)]i+, (t) &+

+ V„(t)f G,",(t —t')V, (t')i+, (t') &+dt' (39)

(H,„+V„)P%(t)&+V„P%(t)&=—Q P(t)&,
dt

where V~~ =PVQ, etc. Letting P~'Plt) &
= ~%'z(t) & and

Q~+(t) &= ql (t) &, and ignoring the rescattering term
V, which is irrelevant for present considerations, we
have the resulting Schrodinger equation for ~%'~ &:

and

[Ho + V~~(t)]~q' (t) &

+V„(r)fG,",(t t')V„—(t')i P, (t')& dt'. (40)

—H„, iq, &=v„iq, & .

We define a retarded Green function

(32) We identify two effective-Hamiltonian operators, nonlo-
cal in time,

(33)

and an advanced Green function

H+ie—G—(t t')=Q5(—t t')—ld

dt oqq qq

H+ 4 (t)&+=[Ho +V (t)]~% (t)&~

+V„(t)fG~ "(t t')—
X V„(r')~%,(t') &~dr' . (41)

H„, ie —G,4——(r t')=Q5(t t'—) . —(34)

It is understood that the limit a~0+. Formal solutions
to (33) and (34) are readily obtained:

1
G (t —t') = dto exp[ i to( t —t ')], —

2m- co —H +i epqq

(35)

and

Thus far we have made no approximation. Equations
(39) and (40) account fully for the exact P-space com-
ponent of the state vector, allowing for regeneration of
P-space states through Q~P transitions as well as for
direct P-space transitions. However, no further general
step may be taken without approximation of some kind.

The first restricting assumption we consider is that of
adiabatic modulation of the interaction V(t). We write
V(t) in the form

Gq~(t —t')= fde 1
exp[ —i to( t —t ') ] .

Q) —Hpqq l E

V(t) =71(t}V(0), (42)

(36)

One typically is interested in initial conditions corre-
sponding to probability unity for having an unstable sys-
tem. This corresponds to setting ~W~(t; ) &+ =Q~%'(t; ) &

=0.
We can now construct transition amplitudes within I'

g(k) =fg(t) exp(ikt}dt =5(k) . (43)

Substituting (43) into (41},and use of (35}—(38), leads to

where adiabatic modulation requires the Fourier trans-
form of g( t } to approximate a 5 function:
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1
exp[ i—co( t —t ') ]

co Hpqq+l E'

X fdk exp( i—kt')rt(k)V (t')l%' (t'))+ .

H~lqi~(t))g=[HO~~+&pp(t)]I%'p(t))~+&p~(t) fdt'f da)

(44)

We now consider the traditional' approximation to
second order in Vqp, letting

IO (t')&= exp( —iH t')IV (0)& .

We tnay represent the projection operator Q as

Q= fdele)(el

where the states
I
e ) are eigenstates of Ho:

Hole ) =e le ) .

(45)

(46}

(47)

With (44}, (45), and (46) we easily perfortn the integra-
tions to obtain

H~ =Happ+ Vpp(t)

that the retarded states evolve under 8, whereas the ad-
vanced states retroevolve under 8 . Moreover, it is only
in the limit of adiabatic modulation of V(t) that the dy-
namics is local in time.

The same causal considerations which led to Eqs. (51)
and (52} also dictate the construction of transition ampli-
tudes. In particular, given an initial P state I+&(t; )) at
time t, , the amplitude for a transition to a particular P
state

I %z ( tf ) ) at time t; is

Sf,(tf, t, )= —(C~f(tf)l+,'(t, ))+ (56)

where t is any time between t; and tf, and the states
I'p~(t, ))+ and I+f(tf)) satisfy (51) and (52), respective-
ly, subject to the initial- and final-state conditions

+V (t)f dele&(elV, (t)
1

e —Happ+is
'

which are now t-local operators. Further, letting

P(t) =H+ (t)

(48)

(49)

and

(57)

(58)

we have that In order to have a notation specifically for the context of
NHD, we define

8 t(t}=H (t) . (50) Ic, (t) &
= I+„'(t)& (59)

Thus Eqs. (30) and (31) become, for P-space amplitudes
satisfying, respectively, initial- and final-state conditions
q, (t, )&,=le, (tf)) =0,

and

I @f(t)) =
I
q'f(t) & (60)

and

&(t) lq', (t) &
= '

Iq, (t) &

dt

& '(t) I+,(t) &
=

„' Iq', (t) &

dt
(52)

so that (56) takes the form

Sf (tf t )(@f(t)I'4'(t)')
the same as (59) in Ref. 8.

(61)

Using in (48) the familiar relation

x . =p x % le x1 1

xkl6 x
(53)

where P denotes principal value integration, we finally
obtain explicit expressions for the operators S(t) and
I (t) in Eq. (4):

IV. OPERATOR EXPECTATION VALUES

Given a bound-subspace state I 4( t ) ) for a decaying
system, which evolves under a non-Hermitian Hamiltoni-
an 8, the expression (17) provides the probability that the
system is in the 8 eigenstate

I A, (t) ). We define nonuni-
tary transform operators Q(t) and Q(t) in the P subspace
such that

and

S(t)=V (t}fdele)(elV (t)
1

Opp
—e

I"(t)=~V (t}fdele ) (e I V (t)5(HO e), —

(54}

(55)

and

Q(t) la, &
=

I &.(t},

Q(t)Ia, &=l&,(t) .

(62)

(63)

the same results as Eqs. (25) and (26), and (54) and (55) in
Ref. 8.

Equations (51) and (52) determine the time evolution of
the P-space component of state vectors subject to
prescribed initial and final conditions. Causality dictates

P, , (t)= (4;(t)IQ(t)la, )(a, IQ (t)l@;(t)&

=(@;(t)IP,I@;(t)),
(64)

(65)

[Compare with (121}and (122}in Ref. 8.] The expression
(17}may then be written in the form
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where P, (t) is the transformed projection operator

P, (t)=Q(t}la, )&o, lQ (t)

=Q(T)P, Q+(t) .

(66)

(67)

A. Operators

= &4, (t I}Q(t)PI ,o&o&IPQ (t)I4;(t)& . (69)

The expression (65) is in the conventional form of an
expectation value in traditional quantum formalism.
Note, however, the appropriate projection operator is re-
lated to that for the state la, ) by the nonunitary transfor-
mation Q(t).

Imagine now that at t =0 the system is Altered to re-
move any decay products, that is, a (decaying) P-space
state I4;(0) ) is produced by measurement. At some fu-
ture time t another measurement is performed upon
remaining P-state systems, to determine the value of
some operator (observable) O. Suppose that the value o
is found, which value is associated with some eigenstate
Io, ) of O. In the general case, the operator 0 will have
nonvanishing matrix elements between Q space and P
space, and the state Io. ) will have components in both
spaces.

The amplitude to find eigenvalue o (conditional upon
finding an undecayed system) A (o, } is obtained by causal
analysis parallel to that leading to (16). We find

A (o, ) = & o, IPQ t(t)l@;(t) & (68)

so that the corresponding probability is

P(o )=IA(o )I

Q(t) =(I A, (t) &, I A, (t) ), I A, (t) &, . . . )

where I A; (t) ) is an eigenket in columnar form.

(72)

B. Density matrix

We may allow for the possibility that the system is not
in a pure P state l@;(t)), but rather is in a mixture of
such states with corresponding classical probabilities P, .
Allowing for this, the result (70) generalizes to

& O(t) ) = y P, & e, (t) lo(t) le,.(t) & (73)

The sum in (70} is over the entire spectrum of the opera-
tor O.

The expression (71) is the generalization of the result in
(67). If one expresses expectation values in the conven-
tional form (70}, causal analysis requires the operators
must be transformed according to (71).

Note that a transformed Hamiltonian could be also
defined according to (71). It is not, however, a particular-
ly useful definition. The Hamiltonians that determine the
time evolution of the unstable, decaying system are
defined in Eqs. (48)—(50). We shall continue to use the
notation 8 and 8 for the "given" non-Hermitian Ham-
iltonians, whereas all other e5'ective operators must be
transformed as prescribed in (71).

In general, it would be difficult to construct the explicit
solutions for the transformation operator Q(t). In the re-
quisite adiabatic limit, however, such as obtains especial-
ly for ordinary mesonic decays or multiphoton ioniza-
tion, the general solution is readily obtained. It is provid-
ed in (122) of Ref. 8, which for completeness we restate
here:

The conditional expectation value is, therefore

&O(t)& = g o P(o, )=&4,(t)IO(t)IC, (t)),
I oj I

where we have defjl.ned

(70)

where the sum in (73) is over all states i in P space. Ex-
panding I4, (t)) in the basis set IIA, (t)) I using (7) we
obtain

I@;(t)&
= g & A, (t)l@;(t)& A, (t) ) .

It!

O(t):Q(t)POPQ (t—) . (71) The expression (73) then may be rewritten as

&O(t) &
= g P, & A, (t)le,. (t) &'& A, (t)IO(t)l A, (t) & & A„(t)l@;(t)&

Ii, r, s I

P; & A„(t)I4;(t) & & e, (t)l A, (t) & & A, (t)IO(t)l A„(t) &

Ii, r, s I

= g & A„(t)lp(t)O(t)l A„(t))
IrI

(75)

where we have defined a density matrix p(t) as

Pt)= yP, I~, «) &&~,(t}l . (76)

then we obtain the general expression

&O(t)) =Tr'p(t)O(t) . (78)

Finally, if we de6ne a trace operator Tr* such that

Tr*p(t)O(t)= g & A„(t)lp(t)O(t)l A, (t}& (77) The equation of motion of the generalized (adiabatic)
density matrix is readily obtained using (51);
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or

p(t) = „=—„gP; I @;(t)& ( @,(t) I

~ dp(t) d

(t)

i8—(t)p(t)+ip(t)8 (t)

(79)

(80)

(O(t) &
= g p, C„'(t, )C,"(t,)o, „(t)

li, r, s I

Xexp —i A, „ t' —1,,* t' dt'
0

dt
=[8(t),p(t)] +P(t)[8(t)—8 (t)] . (81) where here

(89)
It is helpful in understanding the preceding results to

consider them in the adiabatic limit. In the adiabatic
limit we have [Eq. (92) in Ref. 8], for any initial P state at
time to,

I@,(t) &
= g C„'(t, ) exp i f—A.„(t')dt'

I A„(t) & .
lrI 0

(82)

Defining matrix elements as, for example,

(83)

and taking tiine derivatives directly using (68), (74), and
(81}in Ref. 8, we find in the adiabatic limit

(90)

For example, if we set O(t)=8(t), (87) reduces to the
satisfying result

(8(t)&= g P, IC„'(t, ) I'A, „(t) exp —f y„(t')dt'
li, rI 0

(91)

Finally, if we choose 0 to be the P-space identity opera-
tor, transformed according to (71), we obtain

(I &
= g P, I C„'(t, ) I'exp —f y, (t')dt'

l~ rI 0

ip„,(t)=y [u„„(t)p„,(t) p„„(t)u—„,(t)]
nI

(84)
which gives the nondecay probability at time t. For an
initial pure state this becomes equivalent to the more re-
stricted result (91) in Ref. (8).

=&„(t)p„,(t)—p„,(t)&,"(t)
= [a„(t)—e, (t)]p„,(t)—i(y, —y, )p„(t)/2
=b,„,(t)p„,(t) iy„,(t)p„—, (t) .

(85)

(86)

(87)

We have let e„(t)=ReA, „(t) and y„=—21m', „(t) in going
from (85) to (86).

Finally, it is of interest to consider (78) in the adiabatic
limit. Using (71},(72},and (82}we have

C. Ehrenfest relations

Having obtained a generalized non-Hermitian formal-
ism, it is appropriate to ask about the time development
as usually expressed in the Ehrenfest relations. It is a
simple matter to compute directly the time derivative of
the effective operator defined in (71). Using (51) we readi-
ly obtain the results

——(O(t) & =([8(t),O(t)] &+((8 (t)—8(t)]O(t) & i —[—O(t)]
dt dt

(93)

In the adiabatic limit, using approximate orthogonality [Eq. (80) in Ref. 8] and the general adiabatic state (82), we find

——(O(t)) = X P, C,'(te)C,"'(te)O(t)Ok,, ), exPt —i I [);(t') ).;(t )]dt ——
(
—'[O(t)']I

li, r, sI 0

where

(94)

(
dg, „(t)—[O(t)] = g P, C,'(t, )C,"'(t, )

li, r, sI
exp i f [A—,„(t ') —

A,;( t ') ]dt '

0
(95)

and

O, „(t)=(a,IO(t)Ia„& . (96)

V. SUMMARY AND CONCLUSIONS

In Ref. 8 we concluded that for effectively non-
Hermitian dynamical systems, transition amplitudes

The decay attenuation of expectation values of 0 in P
space is thus seen to be implied in (93), and manifest in
(95).

should be calculated by a generalized algorithm which
becomes equivalent to the conventional one whenever
non-Hermitian parts of the Hamiltonian vanish. This al-
gorithm is most conveniently implemented using eigen-
states of the adjoint Hamiltonian 8 . This conclusion
was arrived at through a consistency requirement, that
any candidate algorithm for intermediate times must
asymptotically be equivalent to an S-matrix prediction.
The theoretical basis for the NHD algorithm lies in a
unique feature of the eigenstates of 8 t, that of being pro-
jections of relevant Lippmann-Sch winger "outgoing"
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states, while the eigenstates of 8 are projections of "in-
coming" states.

In the present paper we have analyzed the evolution of
states according to causality requirements in the local-
time limit. We have seen that the local-time limit re-
quires that the interaction vary only adiabatically. Fur-
ther, our conclusion pertaining to the correct probability
algorithm in NHD follows from the correct utilization of
advanced and retarded solutions to Schrodinger's equa-
tion, with proper regard for initial- and final-state bound-
ary conditions.

We have supplied an additional argument for the gen-
eral probability algorithm using both unitarity and the
asymptotic S matrix. This argument shows that the algo-
rithm leads to results for modal occupation probabilities
which in any case could be reasonably assigned.

We have also extended the basic probability algorithm
to the calculations of expectation values for arbitrary
operators, and have developed an appropriate generalized
density-matrix formalism. Although our calculations
have been based upon the traditional second-order ap-
proximation, ' it seems reasonable that our results might

apply for effective, local-time non-Hermitian interactions
generally. That is, our formal conclusions may be more
generally relevant than the approximation in which they
are inferred. In any case they provide a consistent, self-
contained non-Hermitian, quantum-dynamical formal-
ism.

As a generalization of Hermitian quantum dynamics,
the formalism presented here has not only practical
relevance as a generalization of Weisskopf-Wigner theory
to strongly coupled decaying discrete subspaces, but also
provides an interesting theoretical system for further in-

vestigations. Let us finally note that this formalism may
find utility in a variety of other contexts, including the
optical model in nuclear physics and, perhaps, even quan-

tum measurement theory, which considerations we plan
to address elsewhere.
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