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It is shown that n & 0 simple-harmonic-oscillator squeezed states have the same time-evolution

behavior as the fundamental (n =0) squeezed state. That is, the probability density ~t!(x,t) ~' retains

its original shape as time progresses, except that the scales of the ordinate and abscissa oscillate in a

reciprocal manner with frequency 2'. This allows the time-evolved squeezing operator SH{k, t) to
be written as a product of simple factors. Moreover, if a thermal distribution with density matrix p
is squeezed, then the mixed squeezed state with minimum free energy has a density matrix given by

a unitary transformation p, =S{A,)pS {A,), where A, is a suitable squeezing parameter.

I. INTRODUCTION

Squeezed quantum states of the harmonic oscillator
have generated much interest in recent years due to their
relevance to various experimental programs of a funda-
mental nature. For example, in gravity wave detectors
they would permit operation at a sensitivity beyond the
standard quantum limit, ' and in optics they have been
observed experimentally both for visible light, and for a
microwave cavity. Any quantum state can be squeezed,
but in usual parlance the term "squeezed state" refers to
the minimum-uncertainty n=0 (or "vacuum") state,
where n represents the principle quantum number of a
harmonic oscillator. However, since the work of Ref. 3
was done at elevated temperatures, the higher-n states of
the cavity were thermally excited, and therefore one
should not arbitrarily exclude higher-n states from the
discussion at hand.

It is only recently that squeezed higher-n states have
been analyzed. Kim, de Oliveira, and Knight ' have
studied the photon statistics (that is, distributions in n) of
these states, and have found oscillations which have ana-
logs in the squeezed n=O case. In this article, I wish to
consider another aspect of the problem, i.e., the time evo-
lution of a squeezed arbitrary-n state, and show that the
squeezed higher-n states have the same time evolution
characteristics as the squeezed n=0 state. In particular,
if x is the canonical coordinate of the problem, and p its
conjugate momentum, then for fixed n the probability
distributions ) P(x, t) t and

~! f(p, t)
~

retain their shape as
time progresses except that the scales of their ordinates
and abscissas (i.e., their "heights" and "widths") oscillate
in a reciprocal manner with frequency 2', ~here co is the
characteristic frequency of the oscillator. %'hile it is a
general property of simple-harmonic-oscillator wave
functions that their probability distributions are periodic

in time, this represents a special case where the higher-n
members of a family of wave functions have the same be-
havior as the n=O member. Similar results have been
seen before in the case of displaced states, and the under-
lying reason is the same. Namely, the relevant transfor-
mation operator (the squeezing operator in this case),
when allowed to evolve in time, can be written as a prod-
uct of simple factors of which one is the same operator
with a time-dependent argument. This factorization will
be given explicitly in Sec. II.

Kim and co-workers have also studied squeezed
thermal distributions by applying a single squeezing fac-
tor to the thermal equilibrium density matrix. In Sec.
III, I consider the justification for such a step.

II. TIME EVOLUTION OF A SQUEEZED HIGHER-n
STATE

u„(x)= 0!

&7r2 "n!
e ' "' "H„(ax), (la)

where the 0„'s are Hermite polynomials, and a is a mea-
sure of quantum iluctuations. (For a mass m connected
to a spring, ct=+mco/A'. ) In the momentum representa-
tion these functions are

u„(p) =(pin ) =( i)"—
&7r2 "n!

1/2
—(/3p) /2~ (p

(lb)

The Hamiltonian for a harmonic oscillator is
0= (6 + I /2)%co, with eigenstates n ), where
8'

~
n ) = n

~
n ) and n =0,1,2,3, . . . . In the coordinate rep-

resentation these eigenstates are represented by eigen-
functions u„(x)= (x~n ), where I follow the notation of
Schi6'.

' 1/2
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for any n (Thi.s was demonstrated by Senitzky and oth-
ers. )

The displaced ground state has achieved such a prom-
inent status in the literature that it has been given its own
name: the coherent state. It is also an eigenstate of the an-
nihilation operator 8, which helps to define its formal
coherence properties. However, in an informal sense
(i.e. , in terms of maintaining the shape of probability dis-
tributions), we see that the displaced higher-n eigenstates
are just as "coherent" as the coherent state, only that
their uncertainty products b xhp are larger. A similar re-
sult will be found for squeezed states, for which the prop-
erties of the n =0 case have already been widely discussed
in the literature. '

A quantum harmonic oscillator can mimic a classical
one in the following way. In classical mechanics, the os-
cillator is represented as a single point in phase space. If
the phase-space Cartesian axes are taken as x and p/Aa,
then the system point follows a circular orbit about the
origin with a fixed radius and frequency co. (Note that be-
cause a is a measure of quantum fluctuations, it is related
to Planck's constant and varies as A

' . In fact, the
product Aa equals mao, where m is the equivalent inertia
of the oscillator system, and being independent of fi, is
therefore a perfectly good classical quantity. ) In quan-
tum mechanics the point is expanded to an error region
whose size is governed by the uncertainty principle. "
Nevertheless, this error region still orbits the phase-space
origin at frequency co with its center at a fixed radius
equal to the amplitude of the sinusoidal displacement.

One can now transform to a rotating coordinate system
in phase space by defining operators X& and Xz in the
Schrodinger picture to be"

X& =x cosset — singlet,
Ao.

(2a)

where p= I/))ia. I have used 5-function normalization
for both ~x & and ~p & so that (x~x'& =5(x —x'),
(p~p'& =5(p —p'), and (x~p & =(2M) ' e'~"/ .

It is well known that if a wave function at time t=0 is
a displaced ground-state eigenfunction, i.e., QI)' (x,o}
=uo(x —a), then as time evolves ~go"(x, t)

~
simply oscil-

lates about the origin with unchanging shape at frequen-

cy cu and amplitude a. This result was first shown by
Schrodinger. Moreover, the momentum probability dis-
tribution ~go"(p, t)~ behaves similarly except that its
phase of oscillation difters by 90'. What is not so widely

appreciated is that the same holds true for any displaced
eigenstate P(„"(x,o)=u„(x —a). Thus

~
i)'t '„"(x,t )

~

=
~
u „(x—(2 cosmos )

~

and

~
1i/'„"(p, t ) ~

=
~
u „(p+ (rta a sin(ttt ) ~

and in the case of the displaced nth eigenstate,
~)=~2=(n +1/2) / /a. With Xi and X2 as new
phase-space axes, the error region merely sits at a partic-
ular point in this new coordinate frame.

To generate squeezed states I will make use of the
squeezing operator s(t) ) which is defined by'o

S(A)=, exp[i'(xp. +Px )/2]
and has the properties

S(A, }f(x)S (t(.)=f (e x),
and

(4a)

or

~q(„"(0)& =S(X)ln & (6a)

y(„")(x,o) =
]/2

—(ae x) /20
&7r2 "n!

(6b)

We have

)
q() )

( r ) &

—iHt /tt(S
( g )

~
n &

S (g t)~n &e
—i(n+1/2) tet

(7a)

(7b)

where

r }
—e

—tHt/AS(g)eiHt/i(

=exp[ia A(X(X'2+X22()/2] .

(Although SH has the form of an operator in the Heisen-

berg picture, we are still using the Schrodinger picture;
hence the minus sign for t. )

In terms of hx and Ap, the uncertainty product is time
dependent for

~!
g(„'( t ) &:

bx bp =(n+ 1/2) [ I+ [sinh(2A, )sin(2')t)] I .

However, the only time dependence in Eq. (8) is the im-
plicit time dependence of X, and Xz. Therefore, in terms
of ~, and EX' the uncertainty product is constant:

S(&)f(P)S'(t(,)=f(e p) . (4b)

In a particular representation wave functions are given

by

Q(2. )(x)= (x~p(2. ) &—:(x~S(A )~Q& =e)"/2$(xei'), (Sa)

P'"'(p)=&pl!g' '&—:(plS(~)lg&=e '"P(pe ') (5b)

Notice that S(A, ) is unitary so that S '(/(, )

=S (A. }=5(—t(, ). The squeezing parameter A, is taken
as a real number, is related to the squeezing parameter X
of Ref. 3 by X=e, and equals the parameter r of Ref. 4.
The phase-space error region remains constant in area,
though not in shape, during the squeezing operation.

We start at time t=o with a squeezed state S(/(, )~n &

and allow it to evolve with time:

Xz =x singlet + cosset,
Ae

[X,,X2]=i /a

(2b)

(2c)

5X& =e &n +1/2/a,
EX2=e &n +1/2/a,
b,X( b,X2 = ( n + 1/2 ) /a

(1Oa)

(10b)

( 1oc)

The uncertainty principle dictates that hX]AX& ~ I/2a, Given the commutation relation in Eq. (2c), the similarity
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in form between Eqs. (8) and (3) shows that what we have
done is to squeeze along the X, axis and stretch along the

X2 axis preserving the area of the error region.
It remains to get the explicit time dependence in either

the coordinate or momentum representation. I choose to
I

g„")(x,t)= J G(x,x', t)P„'(x',0)dx',

where'

(1 la)

start with Eq. (6b) and use the Green's function in the
coordinate representation:

G(x, x', t}=
2

2~i singlet

' 1/2

exp
—a [[x +x' ](coscot) —2xx')

2i singlet
(1 lb)

1/2
t —(')/2f'„'(x, t)=exp[i(a'x) sinh(2A, ) sin(2cot)/2]exp[ i (—n + I/2)P )(t)] — e ' "' H„(a'x) .

Moreover, we can acquire the momentum representation merely by making the substitution x ~p, a~p, and A.~ —
/(, .

We get

(12a)

' 1/2

The integration in Eq. (11) can be performed in a straightforward manner by making use of the series expansion for
H„. ' The result is

—()rp) /2~ (p
I

g'„'(p, t) =exp[ —i (p'p) sinh(2A ) sin(2cot)/2]exp[ i (n +—I /2)(t( z(t)]( i )"—
2"n!. (12b)

where
(t)e'=me (13a)

p'= pe (13b}

Pz( t) = tan '(e tancot), (13c)

A+(t) =+—,
' ln(e +"cos—cot+ e sin cot) . (13d)

This generalizes the n =0 case' and gives the desired re-
sult. We see that

'(x, t)f "=e )u„(xe )) (14a)

/(@'„"(p,t) /('=e '
/u„(pe

' ' )/', (14b)

where the only time dependence in Eq. (14) is found in
the scale factors which define the ordinates and abscissas
of the probability distributions.

The time-dependent squeezing operator can be written
in a number of equivalent ways, including the normal or-
dered form of Ref. 11. Which way is best depends on its
convenience to the problem at hand. In that respect,
Eqs. (12) and (13) give rise to a product of simple factors
as follows:

r

e ' ' "S(A,)=S X (t) exp[i(ax) sinh(2/(. )sin(2cot)/2]

(16b)

X exp[ —i (ti + I /2)P) (t)], (isa)
r

=S A. +(t) exp[ —i (Pp ) sinh(2A. )sin(2cot)/2]

X exp[ i (n+ 1/2)P ~(t—)] . (15b)

[Here I have used Eqs. (4a) and (4b) to switch the order of
S(A,+) and functions of x or P.] Alternately, we can
change the sign of t in Eq. (15) to obtain a factored ex-
pression for SH in the Heisenberg picture:

SH(/(, , t) =S k, (t) exp[ i(ax ) sin—h(2A. )sin(2cot)/2]

Xexp[i(n+ I 2/)( (t(t)) cot)], —(16a)

=S A. +(t) exp[i (pp ) sinh(2A. )sin(2cot)/2],

Xexp[i(n+ I/2)(()) z(t) cot)] . —

It should be noted that the free-particle limit can be ob-
tained by let ting co~0 and a ~0 such that
a /co=m /fi=const. Either form of Eq. (15) gives

—'P /2 A'S(g)—S(g)
—'(P ) /2 fi (17)

in agreement with Eq. (4b).

III. SQUEEZED THERMAL DISTRIBUTIONS

Since experimental realizations of squeezed oscillator
systems already exist ' or are being planned, ' we must
come to grips with the fact that in the laboratory, an
unsqueezed oscillator will never be found in its pure
ground state ~0). At best, it will be in thermal equilibri-
um at some temperature T) 0, which in many cases will
be much greater than fico/k where k is the Boltzmann's
constant. Accordingly, many of the higher-n states will
be thermally excited, so the idealized analyses in the
literature must be extended to include higher-n squeezed
states as well. It should be noted, in fact, that the au-
thors of Ref. 3 made no reference to quantum mechanics
in their own data analysis, and presented what amounts
to a classical Maxwell-Boltzmann description of their
squeezed oscillator. It was to help bridge this gap be-
tween the theoretical idealization of an unsqueezed oscil-
lator in a pure state 0) (or perhaps a displaced ground
state) and one represented by a thermal distribution that
the development of Sec. II was undertaken.

In a thermal distribution, the system is described by a
density matrix (unsqueezed) given in operator form as

p= gp„~!n)&n~!, (18)

where p„=e ""'"/ (1—e ""/" ). In fact, we can gen-
eralize this treatment and make it hold for any density
operator which is diagonal in the n representation. In
such a case, the expectation value of an operator 3 is
given by

( A ) =Tr(p/I )= g p„(n~ A ~)n ) (unsqueezed) . (19)
n

Kim, de Oliviera, and Knight ' have considered
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and the expectation va1ue for A becomes

& A ) =Tr(p, A ) = g p„& g„"
~
A

~
g„" ) (squeezed) .

t

a bXibXz = g p„p„(n+1/2)(n'+1/2)e
n, n'

(21)
I

squeezed thermal distributions by applying a single
squeezing factor to the distribution in Eq. (18). That is,
p~SpS . I now wish to examine the justification for
this approach, since, in squeezing such a distribution, we
must allow for the fact that because of a lack of detailed
control over the squeezing agent, the various unsqueezed
states ~n ) will likel~ be squeezed by differing amounts.

Thus
=S(A,„)~n'), and A,„Wit„., in general. The squeezed den-

sity operator is now

P", =XP.~4.
"

&&0.
"

~
(20a)

n

= g P„S(A,„)~n ) & n~S (k„) (squeezed)

Since we are considering (as yet) undisplaced states, we
have &X& ) = &X& ) =0, AX& = &X, ), and gX = &X )
From Eqs. (10) and (21) we get

bXi 2
=a g p„(n+1/2)e (22)

In terms of X& and L2 the Hamiltonian is

8=(a %co/2)(X&+X2), (23)

giving an energy of

E=Tr p, H =fico g p„(n + 1/2)cosh(2A, „) (24a)

=(a A'co/2) hX, +b,X~ (24b)

(25a)

A weaker form of the uncertainty relation now follows
from Eq. (22). We have

p„(n + 1/2) +2 g p„p„,(n + 1/2)(n'+ 1/2)cosh2(k„—A, „.)
n' ((n)

(25b)

or

b,X,EX& ~(n+1/2)/ a

where

n = np„,

(26)

(27)

I

ergy (E —TS), then we need to pick the distribution of
A, „'s which minimizes both Eqs. (24a) and (28a) subject to
the constraint that, say, AX, has a certain squeezed
value. This occurs when a11 the k„'s have a uniform
value k, giving

p, =S(k. )pS (k) (minimum free energy) (29)

in agreement with Refs. 4 and 5. Note that n and &n )
are different quantities. &n ), i.e., the expectation value
of 8', is given by Eq. (21) with A = 8'.

Since the experimental determination of an infinite set
(A,„)would be a tedious enterprise, it would be useful to
be able to focus only on those X„'s which are most impor-
tant. In this regard, an elementary thermodynamic argu-
ment (minimization of free energy) will achieve a great
simplification. I am assuming that the squeezing ap-
paratus leaves the p„'s unaffected (i.e., it does not alter
the ambient temperature T). The entropy S (not to be
confused with the squeezing operator S), however, will be
affected as can be seen by the following argument. An or-
der parameter for mixed states is' Tr(p ). When
Tr(p ) = 1, the system is in a pure state, perfectly ordered,
with zero entropy. When the entropy increases, Tr(p )

decreases, and always has a value less than unity for
mixed states. We can use Eq. (20b) and the unitarity of S
to compare the squeezed and unsqueezed distributions:

Tr p, = gp„+ g p„p, ~

n&'~S(A. „A„)~n ) ~

—
(,2,8a)

n nXn'

which is the desired result. The corresponding squeezed
values are

and

AX i 2
= e ( n + 1/2 ) /a

E= n+1/2 ficocosh(2A, )

(30a)

(30b)

with a "minimum value" uncertainty product

b,X, b,Xz =(n + 1/2)/a (30c)

which for a system in thermal equilibrium has n given by
the Bose-Einstein distribution:

(
AcolkT

1 )
—

1 (30d)

In many cases a system will be both squeezed and dis-
placed. Again, the state of minimum free energy is given
by a unitary transformation p~~SpS D, where D is
the displacernent operator. Since S and D do not com-
mute, one must be careful to either preserve the proper
order of products, or apply a unitary transformation to S
(of the form DSD ) to squeeze about a displaced position.

p2= Tr p (28b)
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