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Dynamics of atoms near the glass transition of simple classical liquids is studied on the basis of
the mesoscopic stochastic-trapping diffusion model recently developed by Odagaki [J. Phys. A 20,
6455 (1987); Phys. Rev. B. 38, 9044 (1988)]. The jump rate of an atom (tracer) is assumed to have a
distribution following a power-law function with exponent p, where p is a phenomenological param-
eter. A sharp transition is predicted at p=0, that is, the self-diffusion vanishes when p <0 and takes
a nonzero finite value when p>0. This transition is identified as the glass transition. With use of
the coherent-medium approximation, the mean-square displacement is shown to exhibit a power-
law dependence on time with exponent less than unity, and hence the incoherent scattering function
for small wave vectors shows stretched exponential decay when p <0. The non-Gaussian parameter
at time ¢ = oo is shown to be nonzero in the glassy state (p <0) and vanishes in the fluid state (p > 0),
indicating that this quantity may be used as an order parameter of the glass transition. The mean-
square displacement and the non-Gaussian parameter are obtained in the intermediate time scale as
well from the frequency-dependent diffusion constant. The apparent diffusion constant determined
by the derivative of the mean-square displacement at an imtermediate time shows a smooth transi-
tion instead of the sharp one, which coincides with observations in molecular dynamics studies.
The incoherent scattering function in the intermediate time scale agrees qualitatively with experi-
ments and the exponent of its stretched exponential decay deviates from unity before the glass tran-
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sition takes place, in agreement with observations made via computer experiments.

I. INTRODUCTION

Recent experimental studies' and computer simula-
tions®> 3 on glassy systems have revealed various charac-
teristics of the dynamic properties near the glass transi-
tion: (i) The diffusion constant observed in molecular dy-
namics studies shows a sharp drop near the transition
point, but it does not become as small as that extrapolat-
ed from the behavior at higher temperatures to the glass
transition region. (ii) The density-density correlation
function shows the William-Watts-type stretched-
exponential decay. (iii) The time dependence of the
mean-square displacement observed for an intermediate
time window in molecular dynamics simulations shows a
power law with an exponent less than unity. (iv) The so-
called non-Gaussian parameter tends to slow down its de-
crement for a long time as the glass transition is ap-
proached.

Several theories have been proposed to understand
these characteristic behaviors of the glass transition. The
most frequently utilized analysis is based on the mode-
coupling theory. In this approach, a feedback mecha-
nism due to a nonlinear coupling between different modes
is considered to be responsible for the glass transition.
Various kinds of the coupling have been investigated.®~®
The main conclusion drawn from these studies is that a
structural arrest, i.e., a transition from ergodic to noner-
godic behavior, takes place at a critical strength of the
coupling. As a result, the diffusion constant vanishes in
the glassy state, and hence the density-density correlation
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function stays nonzero in the glassy state in the long-time
limit. Since this function decays (simple) exponentially in
the fluid state, the value of the density-density correlation
function at time ¢ = o is considered to be used as an or-
der parameter of the glass transition. Krieger and Bosse®
showed that when the density and charge-density fluctua-
tions mutually couple, then the density-density correla-
tion function exhibits a stretched-exponential dependence
on time, which is in good agreement with experiments.!
However, a sharp glass transition predicted in this theory
is not seen in computer simulations for the soft-sphere or
Lennard-Jones glasses.

The origin of the mode coupling has been studied on
the basis of fluctuating nonlinear hydrodynamics.”!® Al-
though a simple approximation’ led to the mode coupling
exploited by Leutheusser’ and hence to the prediction of
a sharp glass transition, a more detailed study revealed
that nonlinear density fluctuations cut off the instability
and no sharp transition is expected.!® The diffusion con-
stant predicted in the improved theory does not vanish at
any density. The result seems to be consistent with the
molecular dynamics calculations as mentioned above.
However, the density-density correlation function is ex-
pected to show a simple exponential decay in time, which
does not agree with observations. (The decay constant
shows a sharp decrement near a critical point, though it
does not vanish at any strength of the coupling constant.)

Prior to these theoretical approaches, Chudley and El-
liott considered a jump diffusion model for the dynamics
in liquids.!! In their theory, jump motions as well as the
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rapid vibrational motion were taken into consideration.
The jump motion was characterized by a single jump rate
and a jump distance. The rapid vibrational motion gives
rise to the Debye-Waller factor while the jump motion
produces a simple exponential decay in time in the self-
part of the density-density correlation function. No glass
transition is expected in this model.

In this paper, we propose a stochastic model for the
dynamics of a simple classical liquid near its glass transi-
tion point. We investigate how the characteristic proper-
ties (i)—(iv) mentioned above can be explained in a unified
theory. The present model is based on the observation by
Miyagawa et al.* that atoms in the glass transition region
perform a jump motion induced by the surrounding
atoms as well as vibrational motion around local poten-
tial minima and that the jump motion will determine the
long-time behaviors of the system. We focus on the
motion of a “tracer” atom and obtain the properties of
the system through a statistical average of the properties
of this tracer. We assume that the tracer atom performs
stochastic motion governed by a random-walk equation,
in which the jump rate is a random quantity reflecting the
random environment. We further assume that the
motion of the tracer is restricted on an underlying lattice.
This assumption will be justified since near the glass tran-
sition point atoms are densly packed and their elementa-
ry motion responsible to the diffusion process will be re-
stricted within nearest-neighbor distance even though the
motion occurs stochastically. We also assume that the
jump rate between two sites is determined only by the na-
ture of the origin of the jump, and independent of the na-
ture of the destination of the jump. This model is some-
times referred to as the trapping model which can be
viewed as a mesoscopic or quasimicroscopic description
of the dynamics of atoms. We introduce a power-law dis-
tribution for the jump rate w with a sharp cutoff at large
w. The power is related to thermodynamic parameters of
the system which drive the glass transition; for example,
the coupling constant (the reduced density) in the soft-
sphere glass. We study the self-diffusion constant, the
mean-square displacement, the incoherent scattering
function, and the non-Gaussian parameter. It is known
that the diffusion constant of the trapping model is exact-
ly given by the first inverse moment of the jump rate if it
exists.'? When this is the case, we can calculate without
difficulty the mean-square displacement and hence the in-
termediate scattering function for small wave vectors.
When the inverse moments of the random jump rates do
not exist, we need a careful analysis. We employ the
coherent medium approximation'>'* to obtain the vari-
ous physical quantities. As has generally been dis-
cussed,!® behaviors of these quantities depend on the dis-
tribution, thus on the thermodynamic parameters. In our
theory, no assumption will be made about the constitu-
ents of the system. Therefore the present model may be
applied to any type of glass transitions. We feel, howev-
er, that atoms in the network glasses may obey dynamics
more complicated than we study here and that it will be
safe to apply the present results only to the glassy state of
simple liquids.

It should be remarked here that when the atoms are in-

itially distributed in equilibrium positions, the frequency
dependence of the ac diffusion constant in the trapping
model disappears and the mean-square displacement is al-
ways linear in time.!> We note that the glass transition is
not a true thermodynamic phase transition but a kind of
a slow relaxation phenomenon. The relaxation time of
the structure becomes as long as, or longer than, the or-
der of observation time. Thus the system cannot reach
equilibrium within observation time. Namely, the phase
space accessible in a glassy state for a certain time period
is restricted to a subspace which is separated from other
subspaces by very narrow channels. Therefore it takes a
very long time for a representative point in the phase
space to travel through the entire space under restrictions
imposed by conservation laws (for example, constant en-
ergy). Thus properties observed in this time period will
be a statistical average within the subspace to which the
system is placed initially and depend on the initial condi-
tions. Thus we assume in this paper that the initial posi-
tion of the tracer atom is completely random and that the
properties of the system are determined by an ensemble
average over different samples. We will see that results
obtained on the basis of these assumptions agree with ob-
servations.

It should also be mentioned that there has been consid-
erable confusion about the definition of the glass transi-
tion. Most experimental works on the glass transition
discuss thermodynamic properties such as specific heat,
enthalpy, and specific volume. In the mode coupling
theory, the transition is supposed to occur between the
ergodic and nonergodic regimes at the critical strength of
a coupling constant. As stated above, we consider the
glass transition a dynamical transition in which the
diffusion constant becomes vanishingly small at a critical
value of some parameters such as the density or the tem-
perature. In fact, we will show that such a transition
occurs in the stochastic model and study various dynami-
cal properties near the glass transition point.

We organize this paper as follows. In Sec. II, we ex-
plain the stochastic model for the dynamics of atoms near
the glass transition and give a brief summary of the
coherent medium approximation. In Sec. III, we present
results for the self-diffusion constant near the static limit
and the mean-square displacement, the incoherent
scattering function for small wave vectors, and the non-
Gaussian parameter in the asymptotic region near time
t =o. We discuss, in Sec. IV, behaviors of these quanti-
ties in an intermediate time scale which will directly be
compared with results obtained by molecular dynamics
studies. In the concluding section, Sec. V, we include a
brief qualitative comparison of the present results with
molecular dynamics calculations. More detailed analysis
will be given elsewhere of the results of molecular dynam-
ics studies for soft-sphere glasses along the present
theory.

II. STOCHASTIC MODEL

Atomic motion near the glass transition can be ob-
served microscopically by a molecular dynamics study.
According to recent molecular dynamics studies on soft-
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sphere glasses,* atoms perform stochastic motion as the
system approaches the glass transition: Most of the time,
they stay around local potential minima, performing
rather small vibrational motion. They make occasionally
a concerted motion to change their positions. The latter
motion is considered to be responsible for determining
the long-time behaviors of atomic motion such as the
diffusion constant. The concerted motion of atoms con-
sists of simultaneous motion of several atoms and occurs
randomly since it becomes possible only when the sur-
rounding atoms induce such motion cooperatively.*
Thus, if one focuses on the motion of a particular atom
(tracer), it changes its position randomly, typically by the
order of the interatomic distance in each jump, and
moves around in the system as the time goes on. The
jump rate of an atom depends on the location (i.e., the en-
vironment) of the atom and hence should be considered
to be widely distributed in its magnitude. Therefore one
can take the amorphous nature of the system into con-
sideration by introducing distribution of the jump rates.
The distribution of jump distance is considered, however,
to be less important, for the actual displacement of the
atom due to the concerted motion is more or less limited
to the adjacent neighbor distance.* Consequently, in or-
der to describe the stochastic motions of atoms, we take a
lattice model (for convenience, a simple-cubic lattice is
employed), in which the dynamics of the tracer atom is
governed by the random-walk master equation

0P (s,1]85,0)
ot = 2

s
€ NNof's

[wyP(s',t]sy,0)

—wP(s,t]s5,0)] . (1)

Here, P(s,t|sy,0) is the conditional probability that the
tracer is at site s at time ¢t when it was at site s; at time
t =0, and the summation is taken over the nearest neigh-
bors (NN) of site s. We assume that the jump rate w,
from site s to its nearest neighbors does not depend on
the nature of the destination of the jump and is distribut-
ed according to a power-law function

%w@, 0=<w,=w,,
P(wy)= { wh (2)
0, otherwise .

The exponent p represents the nature of the distribution:
When p >0, larger jump rates appear with higher proba-
bility and when p <0, smaller jump rates appear with
higher probability. p=0 corresponds to the critical
value. The parameter p is expected to decrease as the
density is increased or the temperature is reduced be-
cause smaller jump rates appear more often for smaller p.
The explicit relation between the parameter p and ther-
modynamic parameters should be determined from a mi-
croscopic theory and will be a subject of future studies.
In this paper, we treat p as a phenomenological parame-
ter. As we will show later, p>0 (p <0) corresponds to
the states before (after) the glass transition. The cutoff
w, is considered to be* of the order of 10'°-10'? sec™

We note that the nth inverse moment of w, does not
exist when p<n —1. It is known that when the first in-
verse moment of wg exists, the static self-diffusion con-
stant D (0) is given exactly by!>13

D(0)=a2<i>*‘ . 3)
ws

Here, a is the lattice constant which is of the order of the
interatomic distance of the system and the angular brack-
ets { ) denote an ensemble average. When the first in-
verse moment does not exist, the static diffusion constant
vanishes.

We calculate the time dependence of various physical
quantities mentioned in the introduction from the
frequency-dependent (ac) diffusion constant. The ac
diffusion constant D ( u) is defined by the Laplace trans-
form of the mean-square displacement R,(u)

D(u)=1u’R,(u), 4
where

u)= [ " ()= 0)F) Ye ~dt

fo“’Rz(z)e'“'dt . (5)

il

Here, (( )) denotes an ensemble average as well as an
average over all atoms, and u is the “frequency.” (To get
the real frequency dependence, one has to set u =iw.) In
the stochastic model, R,(¢) is given by

Ry, ()= I (s—s0)*(P(s,t85,0)f (s0)) , (6)

s 3§

where f(s;) is the distribution of the initial site s;. As we
explained in the Introduction, we assume the uniform
distribution for f(s,) and we can drop the average over
f(sy) from Eq. (6) since the ensemble-averaged quantity
does not depend on s,. It is apparent from Eq. (4) that we
have

D(u)=1u*73 (s—so)*(P(s,uls,))

s

) (7)

where P(s,u lso) is the Laplace transform of the condi-
tional probability P (s,t|s,0)

P(s,ulsy)= fowP(s,t|so,0)e_"’dt . 8)

We obtain the ensemble average of P(s,uls,) by the
coherent-medium approximation.'>!'* In this approach,
(P(s,uls,)) is approximated by the corresponding quan-
tity of the coherent system in which every jump rate is a
coherent one w,.(u). The coherent jump rate w,(u) is
determined by the condition!?

1 _ 1
Q+uw,(u) _< Q+ws> ’ ©
where Q=w_(u)/(1—uPy)—w.(u) and

n(x)
P = f u +zw,( u)l—x)dx

(10)

Here, z (=6) is the coordination number of the lattice
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and n(x) is the density of states of the simple-cubic lat-
tice

=_1_ _ _____1__ ® 3 ixy
n (0= Z8lx —v k)= J7 o Pe™ay

(1
with
v(k)=1( cosk,a + cosk,a + cosk,a) , (12)

where N is the total number of the lattice sites and J(y)
is the zeroth-order Bessel function. It is straightforward
to show that the ac diffusion constant is related to the
coherent jump rate through

D(u)=a’w,(u) . (13)

Another quantity of interest is the incoherent scatter-
ing function or the self-part of the density-density corre-
lation function F(k,?), which is defined by

F,(k,t)={{(exp{ik-[r(t)—r(0)]})) . (14)
In the stochastic model, F,(k,¢) is reducible to
F,(k,t)= 3 exp[ik-(s—sq)]{ P(s,t]s0,0)) . (15)

Replacing (P (s,t]s,,0)) in Eq. (15) by that of the cohe-
rent system, we find

0t +io 1
0t —iw u+zw (uw)[1—v(k)]

1
Fs(k,t)zz;r*l: edu .

(16)

III. ASYMPTOTIC BEHAVIORS NEAR ¢t =

A. Self-diffusion constant

The dc diffusion constant is determined by the long-
time behavior of the atomic motion and given by the first
inverse moment of w, in the trapping model as men-
tioned in Sec. II. Therefore we find for our distribution
(2)

-1 0 1 2

FIG. 1. Self-diffusion constant as a function of the parameter
p- The solid curve is the exact result for the static diffusion con-
stant. The critical exponent u[D(0)~p"] at p=0 is unity. The
open circles are the apparent diffusion constant D,,, determined
by the derivative of the mean-square displacement at wt =20.

TABLE 1. The ac parts of the frequency-dependent diffusion
constant. The leading terms near u =0 are shown.
D(0)/a*wo=p/(p+1) when p=0 and D(0)=0 when p=<0.
S(x)=sin(mx)/mx and #=mu/zwy, m;=1.51628. .. is the
Watson integral of the simple-cubic lattice.

p [D(u)—D(0)]/a%w,

—1<p<0 S(p+1)ua ~P—u ~%)
+[27S(p+1)/2m3] 2w 1702
p=0 —1/1In(@)
0<p<l1 [p/(p+1)S(p)]a*
p= —1a Ina
1<p u/(p’—1)

D) _ |p/(pt1), whenp20,
a2w0— 0, when —1<p=0.

(17

Note that this is the exact result.!> The dc diffusion con-
stant is plotted against p by the solid curve in Fig. 1. The
diffusion constant shows a sharp transition at p=0 which
may be identified as the glass transition. The critical ex-
ponent y defined by D (0)~p* (p~07) is unity. We also
summarize the behavior of the ac diffusion constant near
the static limit ¥ ~0 in Table I, which is obtained by
careful analysis of Egs. (9) and (10). (For details, see Ref.
15.)

B. Mean-square displacement

The asymptotic properties of the mean-square displace-
ment can be analyzed from the behavior of the ac
diffusion constant D(u) near u =0 via the inverse La-
place transformation
1 0" +iw 6D (

u)
R,(t)=— “'du .
,(2) 2 dot i 42 e“'du (18)

TABLE II. Mean-square displacement in the asymptotic re-
gion. The leading terms near t=o are shown.
S(x)=sin(mx)/mx, {=wyt, m;=1.51628. .. is the Watson in-

tegral of the simple-cubic lattice and #=0.57721... is the
Euler constant.
P Rz(t)/602
(z/my) _ (z/m)* _
—1<p<0 Slp+ D) | o TP "%
<P DT+ r2+20)
N [27S(p+1)/2m{ ] Xz /m )P~ "2 Ftpr
I'[(3+p)/2]
p=0 ) PP i
In(m, /zf) In(m, /zt)
0<p<1 p_ gy M2 i,
p+1 S(p)I'(2—p)
p=1 LT+ (m, /2 In(zf/m ) +7]}
1<p [p/(p+DIF+[1/(p*—1))m,/2)
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FIG. 2. (a) The exponent 0 of the mean-square displacement
and (b) the exponent €' of its correction term. The solid lines
are determined from the asymptotic behavior of the mean-
square displacement and correspond to an idealistic observa-
tion. The open circles (almost overlapped with crosses) in (a)
are the apparent exponent 6,,, determined at wot =20. The
squares denote existence of logarithmic corrections. Crosses
(lkJa=0.1) and closed circles (|kla=0.5) in (a) are the
William-Watts exponent y,,, determined from the incoherent
scattering function at wyt =20. For small |k|’s, the William-
Watts exponent (y,,,, the crosses) and the exponent of the
mean-square displacement (6,,,, open circles) are virtually iden-
tical.

The leading terms of R,(¢) in the asymptotic region
t ~ oo are listed in Table II. We define an exponent 6 by
R,(t)~t% (t ~ ) when the mean-square displacement
obeys a power law. The exponent 6 is found to be

ptl, —1<p<0
0= 1, 0<p. (19)
The logarithmic dependence R,(t)~t/Int is expected
when p=0. The correction to the leading term in R,(?)
can be written as ~t? for most p’s: 6'=(p+1)/2 when
—1<p=—1, 6=2p+1 when 1 <p<0, &=1—p when
0<p<1, and 8'=0 when p>1. When p=0 and 1, the
correction to the leading term in R,(¢) is in proportion to
t/[In(m,/zf)]* and In(zf/m,), respectively. Here,
f=wqyt and m, is the Watson integral of the simple-cubic
lattice. Figures 2(a) and 2(b) show the dependence of 6
and 6’ on the parameter p, respectively. Notice that
when the static diffusion constant does not vanish (p > 0),
the leading term is always in proportion to ¢. When p <0,
anomalous diffusion is observed, that is, the self-diffusion
constant vanishes while the mean-square displacement
diverges with an exponent less than unity as the time ap-
proaches the infinity. When O0<p<=<1, subanomalous
diffusion is seen,'® namely, the first correction to the lead-
ing term of the asymptotic expansion of R,(¢) is nonana-
lytic.

C. Incoherent scattering function

Determination of the asymptotic behavior of F,(k,?)
requires the knowledge of all of the singularities of
(P(s,ulsy)). In the present study, { P(s,ulsy)) can be

obtained only through numerical calculation, and hence
we are not able to determine the asymptotic behavior of
F,(k,t) for general wave vectors. For small wave vectors,
ho]\évever, we can write the incoherent scattering function
as

F,(k,t)=exp[ — Lk?R,(1)+ Lk*R,(1)* 4 ()+ 0 (k®],
(20)
where

_3 (r=r@1" _,

A(t)
5 [R,(D)]?

(21)

Therefore, for small |k|, F,(k,?) is mainly determined by
the mean-square displacement. The incoherent scattering
function is often written as'’

F (k,t)=exp[ —(t/ty)"] (22)

when it is possible, where the exponent ¥ may be called
as the William-Watts exponent. Apparently, the
William-Watts exponent for small wave vectors is identi-
cal to the exponent 6 defined in Sec. III B. Thus F,(k,¢)
is expected to be a stretched exponential function when
—1<p<0 and a simple exponential function when 0 <p.
When p=0, F,(k,t) carries a logarithmic correction in
the exponent instead of a simple power-law function.

D. Non-Gaussian parameter

In the Gaussian approximation,'® the incoherent
scattering function is given by the first term of the ex-
ponent in Eq. (20). Thus A (¢) defined by Eq. (21) is re-
ferred to as the non-Gaussian parameter. In order to ob-
tain the non-Gaussian parameter, we calculate the mean-
quartic displacement R, (t)={[r(¢)—r(0)]*) in the
coherent-medium approximation. It is easy to show that
the Laplace transform of the mean-quartic displacement
in the coherent system is given by

Ryw= [ ” Ry(ne™"du

20w, (u)?

u? u’

i w,(u)

(23)

We obtain R ,(¢) through the inverse Laplace transforma-

~ tion of this relation using w.(u) determined by the

—_

A(w)

PN T N W NN T S W 1 I B Rt

-05 p 0 0S5

1
-

FIG. 3. The t = 0 limit A4 (o) of the non-Gaussian parame-
ter as a function of the parameter p. The critical exponent
BlA(o)~(—p)flatp=—07 is unity.
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TABLE III. Leading terms near ¢t = o in the non-Gaussian
parameter A(t)—A(w). A(»)=0 when p20 and
A(@0)=2[[2+p)?/T(3+2p)—1 when p=<0. F=wt,
C=S(p+1)z/mP,d;=—S(p+1)0z/m ), d,=[27S(p
+1)/2m31 Xz /m )P~V a;=2p, a,=(p—1)/2, where
S(x)=sin(wx)/mx and m;=1.51628. . . is the Watson integral
of the simple-cubic lattice. For p <0, the leading term is given

by i =1 when —1 <p and by i =2 when p< — 1. Both terms
contribute when p=— 1.
p A(t)— A(o)
4d,[T2+p)]
—1<p<0 —_—
4 %, Cr(+2p)
r3+2p)  TR2+p) |-rq
I'd+a,+p) TI'Q+a,)
=0 1
In(zt/m )
_ e
2p zt
0<p<l1 L
P 2—p)S(p)IT(2—p) | m,
-1 2m, In?
P zt
2
1<p L2yt e
p |z(p—1) 10

coherent-medium approximation. Inserting the expres-
sions of R,(¢) andR,(¢) into Eq. (21), we find the asymp-
totic behavior of the non-Gaussian parameter A4 (z). At
t =, A(t)is given by

2[C(2+p)]?
- —1<p=<
T(3+20) 1, when <p=0

A(=)= 0, when 0=p .

(24)

Figure 3 shows the dependence of 4 () on p. This
quantity A () vanishes when the self-diffusion constant
is nonzero (p>0), and takes a finite nonzero value when
the diffusion vanishes (p <0). Thus A () can be regard-
ed as an order parameter of the transition. The quantity

s
T

8, Bapp

0—1 0 1 2

FIG. 4. The exponent 8 of the non-Gaussian parameter as a
function of the parameter p. The solid line is determined from
the asymptotic behavior of the mean-square and quartic dis-
placements and the open circles are the apparent exponent §,;,
determined at wyt =20. The squares represent existence of log-
arithmic corrections.

A () near p~—0" can be written as A (o )~(—p)?
with g=1.

The leading term of A (¢1)— A () near t = o is listed
in Table III. We define an exponent § by A4 (t)— A ()
~t 7% when the power law is obeyed. The dependence of
8 on p is depicted by the solid line in Fig. 4. When p=0
and 1, logarithmic corrections appear.

IV. BEHAVIORS IN THE INTERMEDIATE
TIME SCALE

As we stated in Sec. III, the mean-square displacement
and the non-Gaussian parameter can be evaluated from
the ac diffusion constant through the inverse Laplace
transformation. We first obtain the ac diffusion constant
by solving numerically the set of equations (9) and (10).
To simplify the numerical task, we approximate the den-
sity of states of the simple-cubic lattice by a semiellipse

n(x)=2(1—x3"?/m , (25)
for which the function Py, is given by
Pyp=2[u+zw,+V u(u+2zw)]"". (26)

The density of state (25) has the correct singularity of a
three-dimensional lattice at the upper band edge which
determines the low-frequency or long-time behaviors.
Using the numerical solution for the coherent jump rate
w,(u), we performed the inverse Laplace transformation
of R,(u), Ry(u), and Py, numerically’® to obtain the
mean-square displacement, the mean-quartic displace-
ment, and the incoherent scattering function. The time
dependence of these quantities in the intermdiate time
scale can directly be compared with computer simula-
tions.

A. Mean-square displacement and apparent diffusion
constant

Figure 5 shows the mean-square displacement in the
intermediate time scale for p=—0.2 to 1.6. Correspond-

30 5 °1 15
+-02 e
= 0 o0 @
o 02 =4
x 04 .0®
20t o 06 3@ =1
% 408 ge *° 3
® o1 .07 °, L
S ez FLe. =
) : A o x ) o0,
[e 4 - 16 g: < o
ot B g
D;O . + =
§i9-. .- [
3 * 4 + -
g (a) X (b)
OO 20 40 0 05 1 ;.5 2
wot log(wot!

FIG. 5. Mean-square displacement in the intermediate time
window; (a) a regular plot and (b) a log-log plot. Different sym-
bols represent data for different p’s between —0.2 and 1.6 for
every 0.2, the lowest one corresponding to p=—0.2 and the
highest one to p=1.6.
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FIG. 6. The apparent diffusion constant D,,, determined at
wot =20 for p>0 is plotted against p in a log-log scale. In a
certain range of p, D, is appeared to be in proportion to p““"p
as shown by the dashed line. The apparent exponent p,,, is
read as 0.45.

ing to the exponent 6 defined in Sec. III B, we define an
apparent exponent 6,,, by

1
eapp=—————d Zgl“’Rzm . 27)
0g10f
The open circles in Fig. 2(a) show the apparent exponent
0,pp determined at wyt =20 as a function of p. When the
parameter p is decreased from above, the apparent ex-
ponent 6,,, becomes smaller than unity before the transi-
tion takes place at p=0. Namely, in the intermediate
time scale, the mean-square displacement appears to be
different from the Einstein limit R,(¢)~¢ even though the
dc diffusion exists. This tendency is enhanced when the
observation is made at a shorter time and when the glass
transition point is approached.
We also define the apparent (or differential) diffusion
constant by

1 dR,(1)
WP6 dr

The apparent diffusion constant evaluated at wyt =20 is
shown by the open circles in Fig. 1. Apparently, the

(28)
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FIG. 7. The non-Gaussian parameter in the intermediate
time window. Different symbols represent data for p between
—0.2 and 1.6 for every 0.2. (The same symbols as in Fig. 5 are
used.)

FIG. 8. The incoherent scattering function is shown as a
function of time for various values of |k|a and fixed p; (a)
p=—0.2 and (b) p=0.2. The solid lines are the contribution of
the Gaussian term to F,(k,1).

sharp transition is smeared out and we do not observe
clear transition in the apparent diffusion constant. When
the apparent diffusion constant is evaluated at a longer
time, the transition becomes sharper. The apparent
diffusion constant for p <0 vanishes only when the obser-
vation is made at t = 0.

An apparent critical exponent y,,, can be estimated by
plotting log oD, against log,qy for p >0 (see Fig. 6). We
observe that for some range of p, D behaves as

u app
Dy, ~p " and p,,,~0.45.

B. Non-Gaussian parameter

From the mean-square and quartic displacements, we
calculated the non-Gaussian parameter A4 (¢) which is
shown in Fig. 7 for p=—0.2 to 1.6. We also determine
an apparent exponent §,,, from the logarithmic deriva-
tive of A (¢) with respect to log,,t. The open circles in
Fig. 4 show the apparent exponent 8,pp- We see that the
dependence of the exponent §,,, on p is smoother than
that of exponent § determined in the asymptotic region.
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FIG. 9. The incoherent scattering function is shown as a
function of time for various values of p and fixed |k|a; (a)
|kla =0.1 and (b) |k|a =0.5.
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FIG. 10. The incoherent scattering function is plotted as
log o[ — logoF;(k,?)] vs log,o(w,?) for various values of p and
fixed |kla; (a) |kla=0.1 and (b) |kla =0.5. The apparent

William-Watts exponent v, is given by the slope.

C. Incoherent scattering function

The incoherent scattering function was obtained from
Eq. (16). Figure 8 shows the time-dependent behavior of
F (k,t) for (a) p=—0.2 and (b) p=0.2 at various wave
numbers and Fig. 9 shows F,(k,t) for (a) |k|a =0.1
and (b) |kla =0.5 at various p’s. Solid lines in Fig.
8(a) represent the Gaussian approximation F(k,?)
= exp[ —k?R,(t)/6]. The incoherent scattering func-
tions are replotted in Fig. 10 as logo[ — log,oF;(k,?)]
versus log,o(twy). We define an apparent William-Watts
exponent v,,,, of the incoherent scattering function by

_ d loglo[ - logl()Fx(k,t)]
Vapp d log ot

’ (29)

where the differential coefficient is evaluated at the obser-
vation time. The solid circles and crosses in Fig. 2(a)
show the apparent William-Watts exponent determined
at wy? =20 for |k|a =0.1 (crosses) and 0.5 (solid circles).
We find that the dependence of y,,, on the parameter p is
smoothed out and that the stretched-exponential depen-
dence of the incoherent scattering function may be ob-
served before the glass transition takes place at p=0.
The difference between 6,,, and v, is very small for
smaller wave vectors.

Note that Y app depends on the wave vector |k|. The
apparent William-Watts exponent y,,, is smaller for
larger wave vectors. This may be the reason why the
molecular dynamics calculations for the soft sphere mod-
el by Kambayashi and Hiwatari (Ref. 3) yielded the
William-Watts exponent in the supercooled liquid near
the glass transition point which appeared to be
significantly smaller than those of Fig. 2(a).

V. CONCLUSION

We presented a stochastic model for the glass transi-
tion and obtained various dynamical properties near the
glass transition. The model is not based on the usual dy-
namics of atoms in the microscopic scale nor on the dy-
namics of macroscopic variables like in the mode-

coupling theory. Instead, it is constructed on the basis of
the stochastic motion of atoms recently found in molecu-
lar dynamics simulations by Miyagawa et al.* Thus the
present model can be viewed as a quasimicroscopic or a
mesoscopic model. In the present model, the microscopic
motion like vibration around the local potential
minimum is not taken into consideration since it is ir-
relevant to the transport properties. Such motions con-
tribute to the incoherent scattering function as a Debye-
Waller factor in a much shorter time scale (<<w, !).!!
This explains the offset of F,(k,?) in the short-time be-
havior observed in experiments.!

Our model predicts that F,(k,t) vanishes at ¢t =
since the mean-square displacement diverges even in the
glass region due to the anomalous diffusion. Therefore it
cannot be used as an order parameter of the transition.
This is a clear contrast to the prediction by the mode-
coupling theory, where F,(k, « ) is regarded as an order
parameter of the transition. We proposed the non-
Gaussian parameter at t = o to be a candidate of an or-
der parameter of the glass transition. We found the criti-
cal exponent 3 of the order parameter A4 (o) is unity.
The self-diffusion constant is also critical at the transition
point and the critical exponent of the diffusion constant u
as a function of the parameter p is also unity.

We predicted anomalous and subanomalous diffusion
will be observed near the glass transition point. In fact,
the stretched exponential dependence of the incoherent
scattering function is the sign of the anomalous diffusion.
Mezei, Knaak, and Farago' proposed the time depen-
dence of the density-density correlation function may be
scaled by the static diffusion constant. In our model, the
leading term of the Gaussian approximation for the self-
part of the density-density correlation function shows
this scaling property. However, this property does not
hold for general wave numbers.

We also studied effects of the observation carried out in
the intermediate time window on the nature of the glass
transition. When dynamical quantities are estimated at
an intermediate time, they show smeared-out dependence
on the parameter p. Thus the apparent diffusion constant
D,,, does not show a sharp transition and the apparent
critical exponent u,;, is reduced to 0.45 instead of unity
as expected in the ideal observation. The apparent
William-Watts exponent y,,, deviates from unity before
the glass transition takes place. These behaviors of the
dynamical properties coincide qualitatively with results
observed by molecular dynamics studies.’”> Therefore
the actual observation time affects significantly the ap-
parent dynamical properties of the system near the glass
transition point.

In this paper we employed the coherent-medium ap-
proximation to determine the time dependence of various
physical quantities. As has already been shown,'® the
critical exponent 6 of the mean-square displacement ob-
tained in the present approximation agrees with the re-
sult calculated by a renormalization group method.?
Furthermore, the result for the static diffusion constant
and hence the critical exponent u is rigorous.'>'> When
the first few inverse moments of the jump rate w, exist,
present results for the low-frequency ac diffusion constant
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agree with the exact result?! apart from a minor numeri-
cal factor. We note from Fig. 10(b) that the incoherent
scattering function F,(k,t) for large |k|a and small p does
not appear to be linear in this plot and thus may not obey
the William-Watts law. This may be due to the lattice

model employed here. More refined work is necessary to
get a conclusive result. We will report more quantitative
comparison of the present theory with results obtained by
molecular dynamics studies for soft-sphere glasses else-
where.??

*Present address: Department of Physics, Kyoto Institute of
Technology, Kyoto 606, Japan.
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