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The collapse transition of a self-avoiding walk (SAW) on a two-dimensional lattice with directed
bonds, the Manhattan lattice, is shown to occur at temperature Ty =2¢/In2, where ¢ is the attrac-
tive energy between nearest-neighbor pairs of monomers. The exact tricritical exponents are v, =%
and y,= % The latter result differs from the value for undirected two-dimensional lattices 7, =%
because self-trapping configurations do not occur on the Manhattan lattice. The exact tricritical
temperature and exponents for a constrained self-avoiding trail (SAT) on the square lattice are ob-
tained by mapping the problem onto the self-avoiding walk on the Manhattan lattice. The mapping
also shows that these SAT and SAW collapse transitions are in the same universality class. Finally,
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it is argued that the kinetic self-avoiding trail must be compact on the square lattice.

I. INTRODUCTION

At high temperatures a polymer chain in a good sol-
vent behaves essentially as if it were a self-avoiding walk
(SAW): its mean radius of gyration grows as (R ) ~N?,
where v has the same value as for the SAW and N is the
molecular weight.! As the temperature T is reduced,
however, the short-range van der Waals attraction be-
tween monomers becomes increasingly important. At a
certain temperature T, the chain collapses. The ex-
ponent v is 1/d in d dimensions for all T <T,. Finally,
the 0 point T =T, is a tricritical point.! ~3

Considerable progress has been made recently in un-
derstanding the nature of the collapse transition in two
dimensions (2D). Coniglio et al.* have shown that a
polymer ring on the hexagonal lattice at its collapse tran-
sition can be mapped onto the external perimeter or
“hull” of a percolation cluster at threshold. Since it has
been proven® that the radius-of-gyration exponent v is 4
for the perimeter of a percolation cluster at threshold in
2D, Coniglio et al. argued that the value of the size ex-
ponent at the tricritical point v, must also be Z. This ar-
gument is not rigorous, however, since a subset of next-
nearest-neighbor interactions appears in the polymer
chain’s Hamiltonian. Similarly, Duplantier and Saleur®
have shown that v,=2 for a tricritical SAW on the
honeycomb lattice with vacancies. This SAW also has a
subclass of next-nearest-neighbor interactions, so the col-
lapse transition in this model is more properly referred to
as a 0’ point rather than a 6 point. It is currently a
matter of intense debate whether these additional interac-
tions are relevant or not.*7~

A second question being investigated is whether the
nature of the collapse transition is affected by the pres-
ence of loops. To address this issue, the collapse transi-
tion in self-attracting self-avoiding trails (SAT’s) has been
studied.’”>"2' SAT’s are paths on regular lattices in
which sites may be revisited but bonds may not be.?? It
has been suggested recently that the collapse transition in
self-attracting SAT’s may be in a different universality
class than the 8 point.’® A number of exact enumeration
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studies of trails in two and three dimensions support this
view,!7 720 but these studies have been criticized?! on the
grounds that the trails constructed were all quite short.
More convincing support comes from a scanning simula-
tion on the square lattice in which trails of length
N <300 were generated.”! The resulting estimate of the
crossover exponent ¢, =0.80510.004 differs significantly
from the various values obtained for self-attracting
SAW’s in two dimensions.>%%11:1223=27 (Fqp example,
analytical work® yielded ¢,=2=0.428... for the 2D
SAW 6 point.) In contrast, the values of v, and the en-
tropy exponent Y, appear to be the same for self-
attracting SAT’s and SAW’s.%2!

In this paper I establish a rigorous correspondence be-
tween the statistics of a polymer ring on the Manhattan
lattice at the 6 point and the perimeter of a percolation
cluster at threshold in bond percolation on the square lat-
tice.”® This mapping has three important consequences.
First, it is shown that v, =2 for SAW’s on the Manhattan
lattice with nearest-neighbor interactions only. Secondly,
I demonstrate that the 6 temperature is exactly
T¢=2¢e/In2, where € is the attractive energy between
nearest-neighbor pairs of monomers. Previously, the col-
lapse transition temperature was known exactly only for
the rather nonstandard problem of Ref. 6 which included
next-nearest-neighbor interactions. This result should be
quite useful in Monte Carlo studies of the tricritical
point, since critical exponents can be computed much
more precisely when the transition temperature is known.
The third and final consequence is that the exponent v, is
exactly £ for tricritical SAW’s on the Manhattan lattice.
Since Duplantier and Saleur® have shown that 7, =2 for
their tricritical SAW, we conclude that the 6’ point is in a
different universality class than the 6 point for polymer
chains on the Manhattan lattice. The conjecture”™!? that
the 6 point is a C =1 superconformal theory leads to
¥.= 13, which differs from both our result and that of
Duplantier and Saleur.

I also demonstrate that the self-attracting SAT on the
square lattice in which consecutive bonds are restricted
to be at right angles can be mapped onto the self-
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attracting SAW on the Manhattan lattice. This bond-to-
site mapping?® between the two problems is valid for all
temperatures 7T, and so yields the exact tricritical point
and the exponents v, and y, for the SAT. The mapping
also shows that these two problems are in the same
universality class. In particular, they share the same
value of ¢,.

Finally, I consider the usual self-attracting SAT on the
square lattice in which there are no restrictions, so con-
secutive steps may be parallel. Let —2¢ be the energy as-
signed to each self-intersection of this trail. I show that
for 2¢ /T =In3=1.098. .. the SAT is equivalent to the
kinetic self-avoiding trail (KSAT) introduced by Lykle-
ma.’® Recently Meirovitch and Lim?' have used the
scanning simulation method to obtain the estimate
2e/T¢=1.086%0.002 for the 6 temperature of this self-
attracting SAT. This strongly suggests that the self-
attracting SAT equivalent to the KSAT is in the col-
lapsed phase, so the KSAT should have v=1. Although
Lyklema concludes that v=0.535 from his Monte Carlo
study of the KSAT in 2D,3° his data are consistent with a
very slow crossover to an asymptotic value of v=1.

The paper is organized as follows. The self-attracting
SAW on the Manhattan lattice is studied in Sec. II. To
be specific, in Sec. II A I determine the exact 0 point and
the value of v,. The entropy exponent ¥, is obtained in
Sec. IIB. In Sec. IIC, I show that the problem is
equivalent to two recently introduced random walks
which were studied by Monte Carlo. The Monte Carlo
work on these models provides additional support for our
identification of v, and y,. The exact tricritical point and
exponents for the constrained self-attracting SAT on the
square lattice are found in Sec. III. I consider the un-
constrained self-attracting SAT in Sec. IV. Finally, Sec.
V summarizes the results obtained in the paper.

II. EXACT TRICRITICAL POINT
AND EXPONENTS FOR POLYMER CHAINS
ON THE MANHATTAN LATTICE

A. Tricritical point and exponent v,

Consider the equilibrium statistical mechanics of a
self-avoiding loop of length N on the Manhattan lattice
(Fig. 1). For simplicity, we take the loop to be anchored
at a point. Each nearest-neighbor pair of monomers
which is not bonded will be assigned an energy —e.
Thus, if n(C) is the number of such monomer pairs in a

loop configuration C, the loop’s energy is —en(C). The
loop partition function is

ZN°P(T)= Sexp[Ben(C")], (1)

&

where B=T ! is the inverse temperature and the sum
runs over all allowed loop configurations. The
Boltzmann weight of a particular configuration C is

w (C,N, T)=exp[Ben (C)]/Z°P . )

Our first step will be to show that for T =T,=2¢/In2,
the problem is equivalent to the kinetic growth walk?!
(KGW) on the Manhattan lattice. The KGW is a grow-
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FIG. 1. Manhattan lattice (solid directed lines) and the un-
derlying square lattice (undirected dashed lines). A SAW on the
Manhattan lattice is shown in bold lines. The plaquette in the
underlying lattice which this walk visits twice is delineated by
bold dashed lines. There are two nearest-neighbor pairs in this
SAW.

ing SAW in which all self-avoiding moves are weighted
equally at each step. On undirected lattices, the walk ter-
minates if a closed loop is formed or if no self-avoiding
moves are available. The second type of termination does
not occur on the Manhattan lattice, since if the walk
enters a cul-de-sac, an exit always exists.>> This has the
interesting consequence that the KGW and the
indefinitely growing3¥3* SAW (IGSAW) coincide on the
Manhattan lattice.

To see the equivalence between the polymer loop and
the KGW, consider the ensemble of all KGW’s which be-
gin at a given point and which form closed loops after N
steps. For an arbitrary loop configuration C, the number
of twice-visited plaquettes in the underlying square lattice
is tn(C) (see Fig. 1). The probability that a loop of
length N is formed is therefore

P(N)=32 Yexp ln—zn(C’) , (3)
rat

where the sum runs over all possible self-avoiding
configurations of the loop. The probability of a particu-
lar loop configuration C (given that the walk closes in N
steps) is

p(C,N)=P~ (N2 Yexp 1—“2—2—n<C) : )
Comparing Egs. (1) and (3), we see that

ZR°P(T,)=2"P(N) (5)
while from Egs. (2) and (4) we obtain

w(C,N,Ty)=p(C,N) . (6)

Equation (6) shows that the fractal dimension of a poly-
mer loop at T =T, is equal to that of the KGW.

The second step in establishing our correspondence be-
tween the tricritical polymer loop and the percolation
hull will be to show that the KGW on the Manhattan lat-
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tice traces out the perimeter of a bond percolation cluster
on the square lattice at the percolation threshold
p=p,=L.% To see this, each time the walker in the
KGW traverses a new plaquette in the underlying lattice,
we place a bond along the main diagonal of the plaquette
parallel to the walker’s step, provided the diagonal is to
the right of the walk (Fig. 2). In this way, each time the
KGW enters a new plaquette a bond is placed on the pla-
quette diagonal with probability 2. No new bond is add-
ed if the walker returns to a plaquette. The bonds on the
main diagonals of the plaquettes are then the perimeter
bonds of a percolation cluster on the square lattice at
p =p.=1/2, and the KGW walks around this perimeter,
as claimed.

If the KGW closes in a clockwise fashion, it traces out
the external perimeter of a percolation cluster (as in Fig.
2). In the trivial case of a clockwise loop of four steps,
the KGW is the hull of a null cluster. Conversely, the
KGW walks around an internal perimeter of a percola-
tion cluster if it closes in a counterclockwise fashion. A
counterclockwise loop of four steps walks around the in-
side of a square of four occupied bonds.

Clearly, the fractal dimension of KGW’s that close in a
clockwise fashion is the same as the fractal dimension of
KGW’s which close in the opposite way. Thus, polymer
loops at T =T, have the same fractal dimension as
KGW?’s that close in a clockwise fashion. A walk of this
kind traces out the external perimeter of a percolation
cluster at threshold, as we have just seen. We conclude
that a polymer loop at T =T has the same fractal di-
mension as the external perimeter of a bond percolation
cluster on the square lattice at threshold.

Recently, Saleur and Duplantier® proved that the frac-
tal dimension of the external perimeter of a percolation
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FIG. 2. A KGW on the Manhattan lattice (directed solid
lines) walks around the perimeter of a bond percolation cluster
on the square lattice (bold lines). The underlying lattice is
shown with dashed lines. For clarity, the Manhattan lattice it-
self has not been shown.

cluster at threshold is exactly D =1 for bond percolation
on the square lattice. This result is consistent with a wide
range of analytical and Monte Carlo work.*® Thus, a po-
lymer loop on the Manhattan lattice at temperature
T=T, has radius of gyration exponent v=2. Now in
2D, the exponent v is 1 for polymer loops at tempera-

2
tures T <T,, while v takes on the equilibrium SAW
value’” 3 for T > Ty. Since v=4% at T =T, we conclude
that To=T, The exact 0 temperature is therefore
T¢=2¢e/In2. In addition, the value of v at the tricritical
point is v, = 2.

A minor technical point in this last step of our argu-
ment must now be dealt with: the external perimeter
formed by a KGW that closes in a clockwise fashion is
not the same as the perimeter studied by Saleur and Du-
plantier (SD).” These authors define the “hull of a cluster
" as the set of empty bonds that touch I' and can be
linked to infinity by a path (not restricted to the lattice)
without touching I'.”” The cluster shown in Fig. 2, for ex-
ample, has a KGW hull of length N =24, while the SD
hull contains 13 empty bonds. To avoid confusion with
N, the number of bonds in the SD hull will be denoted by
s'.

Our identification of Ty and v, hinges on the assump-
tion that the KGW hull has the same fractal dimension
as the SD hull, D =7. I will now show that this assump-
tion is correct.

There is no functional relationship between the values
of N and s’. However, given the values of s’, it is a simple
matter to obtain upper and lower bounds on N. A step in
the KGW crosses each empty bond in the SD hull, so
N =s' (Fig. 2). To get an upper bound on N, we con-
struct a “dual hull” by placing bonds on the diagonals of
those plaquettes in the underlying lattice which contain
the empty bonds of the SD hull. The bonds of the dual
hull are oriented at right angles to the empty bonds in the
SD hull (Fig. 3). Clearly, the number of bonds in the dual

FIG. 3. The dual hull (solid lines) surrounds a percolation
cluster (bold lines). The underlying lattice is shown with dashed
lines.
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hull is s’. If we take the lattice spacing of the Manhattan
lattice to be unity, then each bond of the KGW hull is a
distance 1 from a bond in the dual hull. There are eight
bonds in the Manhattan lattice which are a distance 1
away from a particular bond in the dual hull. Therefore

N <8s’, and we conclude that
s'"<N=<8s'. (7)

It is not hard to obtain a better upper bound on N, but
Eq. (7) is sufficient for our purposes.

Let L' be the side of the smallest square which com-
pletely contains the empty bonds in the SD hull. L' is a
simple measure of the linear dimension of the SD hull.
Since the fractal dimension of this hull is %,5

(s'Y~(L")""* as L' > . (8)

Now let L be the side of the smallest square which con-
tains the KGW hull of the cluster. Clearly,

L'=L+3. 9)
From Eq. (7) we have

(s)<(N)=<8(s") . (10)
Combining this with Egs. (8) and (9) we find

(NY~L"* as L > . (11)

Thus the fractal dimension of the KGW hull is 7, as re-
quired.

B. Exponent y,

We next demonstrate that the tricritical exponent y, is
exactly &. First, recall that y, is defined by

ZPN(Ty)~u N for N>>1, (12)

where ZP(T,) is the partition function of an open
chain of length N at the 8 point and the constant y is the
analog of the usual SAW connectivity constant. We shall
first determine the value of u. Since the free energy per
monomer is the same for loops and open chains in the
N — o limit,
Jlim InZX¥°P(Ty)/N = Jim InZP(Tg)/N =Inp . (13)
As shown above, Z)°P(T;)=2"P(N), where P(N) is the
probability that the KGW on the Manhattan lattice
closes in N steps. Now every loop configuration formed
by the KGW can be reflected in the x and y directions
about the point of origin to yield another allowed loop
configuration. This new loop has the same probability of
occurrence as the original loop, but closes in the opposite
way. Thus P(N) is equal to the probability that the
KGW closes in N steps given that it closes in a clockwise
fashion. The latter probability is the probability that a
percolation cluster at threshold has a KGW hull of
length N.

Recently, Ziff*® used scaling arguments and the exact
fractal dimension of a percolation cluster hull at thresh-
old to obtain exact values for other hull exponents. He

found that the probability that a percolation cluster at
threshold has a hull of length / decays as / ~7 ! for large
/, and that 7= 2. This conclusion is supported by Ziff’s
Monte Carlo work on the hulls of site percolation clusters
on the square lattice at threshold. If the result 7'=2LX is
universal, then the probability that a bond percolation
cluster on the square lattice has a KGW hull of length N
must scale as

P(N)~N~%7 (14)

as N— «. [Additional evidence corroborating Eq. (14)
will be discussed in Sec. IIC.] Combining Eq. (14) with
(13), we conclude that u=2.

Having obtained the leading-order asymptotic behav-
ior of ZRP(Ty), we turn to the first correction to this
scaling behavior. We will compare ZP*(T,) with
POP(N), the probability that the KGW on the Manhat-
tan lattice performs an N-step walk without closing. To
this end, let x(C) be the number of twice-traversed pla-

quettes in the underlying lattice in the chain conforma-
tion C. Then

PoPen(N):Z—N22K(C) , (15)
C
while
ZPNTy=32" 2. (16)
C

Both of these sums run over all open self-avoiding
configurations of length N. For closed loops we have the
equality 2«(C)=n(C). For open chains this is replaced
by the inequality 2«(C)<n(C)=<2x(C)+2, since each
chain end can have a nearest-neighbor bond with energy
—e which does not lie in a twice-traversed plaquette of
the underlying lattice. Therefore

PPN (N) <2 NZPn(T ) < 2POPN(N) . a7

Monte Carlo work>? strongly suggests that the KGW on
the Manhattan lattice must ultimately form a closed loop,
SO

PP (N)= 3 P(M)~N""*?

M=N+1

for N >>1. Applying this to Eq. (17) and using the result
p=2,wehavey, =3—7'=%,

Our exact result y,=2$ differs from the value y,=2%
Duplantier and Saleur® obtained for the 8’ point in their
model. Monte Carlo studies®!"!%2427 of the square lat-
tice 6 point yielded the estimates ¥,=0.93+0.05,
vY,=1.110%£0.022, and y,=1.07510.040, while transfer-
matrix work?® on this problem gave y,=1.00+0.05. It
therefore appears that the tricritical SAW on the
Manhattan lattice is in a different universality class than
both the square lattice 6 point and the 6’ point in the
model studied by Duplantier and Saleur. To account for
this, note that in the latter two problems the chain parti-
tion function includes contributions from self-trapping
configurations. (A configuration is called self-trapping if
growth must eventually lead to violation of the self-
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avoidance constraint.) In contrast, self-trapping
configurations do not occur on the Manhattan lattice.*
This should have a significant effect on the asymptotic be-
havior of the KGW survival probability P°**"(N), and as
Eq. (17) shows, this is what determines the value of y,.
We can understand why the IGSAW and the KGW
have the same fractal dimension on the Manhattan lattice
in much the same way. On undirected 2D lattices, the
IGSAW has fractal dimension D =Z1,%* while the KGW
has D =%.%"*" The two models differ on these lattices
because in the KGW self-trapping produces a slow cross-
over to the asymptotic value of the fractal dimension
D =4%.% This crossover is absent in the KGW on the
Manhattan lattice since self-trapping cannot occur.

C. Relation to two other models

We have shown that on the Manhattan lattice, the
KGW is equivalent to a tricritical polymer loop. I will
now demonstrate that the KGW on the Manhattan lat-
tice is equivalent to two other models, one introduced by
Gunn and Ortuno*? (GO) and the other by Roux, Guyon,
and Sornette*’ (RGS). Monte Carlo studies**** of these
models provide additional support for our identification
of v, and 7,.

In the GO model on the square lattice, a random walk-
er turns left with probability p (7 /2), right with probabil-
ity p(—m/2), and goes straight with probability p(0).
The probability of a 180° turn is p(7)
=1—p(7/2)—p(—w/2)—p(0). If the walker returns to
a site, it must make the same move (right, left, straight,
or backwards) that it made on its first visit. Each walk
begins by traversing the same bond in the same direction.
I will show that the GO model with p’s given by

plw/2)=p(—m/2)=1 (18a)

and

p(0)=p(m)=0 (18b)

is equivalent to the KGW on the Manhattan lattice.

To establish the correspondence, we perform a bond-
to-site mapping?® on the GO model with p’s given by Eq.
(18). Specifically, we place a site at the center of each
bond of the GO walk and join consecutive sites (Fig. 4).
The resulting walk is the KGW on the Manhattan lattice.
Each KGW starts at a given site; correspondingly, each
GO random walk initially traverses a particularly bond in
a fixed direction.

Grassberger** performed a Monte Carlo simulation of
the GO walk with p(7/2)=p(—7/2)=1 and found the
fractal dimension D =1.750%£0.002. This lends strong
support to the assertion that D is exactly 7 for the KGW
on the Manhattan lattice, and hence for 6 polymers on
the Manhattan lattice. In addition, Salmeron, Ortuno,
and Gunn® find that the probability that the GO walk
closes in N steps, P(N), decays as P(N)~N ~ 12 for large
N, in good agreement with our Eq. (14).

Roux, Guyon, and Sornette*’ give two distinct formu-
lations of their model. The formulation that generates a
single loop by a random walk is most easily related to the

N
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FIG. 4. Typical GO walk on the square lattice with
p(m/2)=p(—m/2)=1 shown with bold lines. The first bond to
be traversed is labeled 1, while the most recently visited bond is
labeled 2. The corresponding KGW on the Manhattan lattice is
shown with directed solid lines.

KGW on the Manhattan lattice; for completeness we will
describe the construction of the RGS walk in some detail.
We start with a square lattice, which we call the underly-
ing lattice, and construct a new square lattice—the cov-
ering lattice—by placing sites at the center of the bonds
in the underlying lattice. The walker in the RGS model
moves from site to site in the covering lattice. The initial
position of the RGS walker is fixed (Fig. 5). The pla-
quette in the underlying lattice immediately above the in-
itial position of the walker is now occupied with one of
the tiles shown in Fig. 6, with the two possibilities being
given equal weight. The walker moves along the tile di-
agonal leading from its current position, and so reaches
the edge of a new plaquette. This plaquette is randomly
occupied with one of the two types of tiles, and the walk-
er again traverses the tile diagonal. The walk continues
in this way, with a new tile being chosen each time a new

FIG. 5. Construction of the RGS walk. The underlying lat-
tice is shown using dashed lines, while closed circles denote sites
in the covering lattice. Bold directed lines indicate a represen-
tative RGS walk. Unvisited tile diagonals which lie in once-
traversed plaquettes are shown with solid lines.
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FIG. 6. Tiles used in the construction of the RGS walk.

plaquette is reached. If the walker revisits a plaquette, it
follows the tile diagonal which it had not previously
traversed. The walk ends if it returns to its initial posi-
tion.

When defined in this way, the RGS model is obviously
equivalent to the KGW on the Manhattan lattice. Roux,
Guyon, and Sornette*® find D =1.73+0.02 for their walk,
in agreement with our exact result D =Z. They also find
that the probability of forming a loop with N steps decays
as P(N)~N "1 for N>>1, with 7=2.16+0.10. This
agrees well with the exact result 7'= 1.

III. EXACT TRICRITICAL POINT
AND EXPONENTS FOR A CONSTRAINED SAT

In the next two sections we will consider the equilibri-
um properties of two different types of self-avoiding trails
(SAT’s) on the square lattice. These SAT’s have an ener-
gy —2¢ coming from each twice-visited site, while each
pair of parallel consecutive steps is assigned an energy u.
Here we consider the limit # =+ . The opposite ex-
treme u =0 will be studied in the next section.

Consecutive steps must be at right angles for the case
u =+ . Thus, by assigning directions to the bonds of
the square lattice appropriately, we may think of the SAT
as residing on the anti-Manhattan (AM) lattice (Fig. 7).
The directions of the bonds on the AM lattice automati-
cally enforce the constraint on the angle between con-
secutive steps.

The covering lattice of the AM lattice is constructed
by placing sites at the center of the bonds of the AM lat-
tice. Nearest-neighbor sites in the covering lattice are

v A\ ’ : AR ) :
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FIG. 7. The anti-Manhattan lattice (solid directed lines) and
its covering lattice, the Manhattan lattice (dashed directed
lines).

connected by directed bonds oriented as shown in Fig. 7.
Clearly, the covering lattice of the AM lattice is just the
Manbhattan lattice.

The closed self-attracting SAT with u =4+ is
equivalent to the closed self-attracting SAW on the
Manhattan lattice, as we now show using a bond-to-site
mapping.? By placing sites at the center of the bonds of
a SAT, each closed SAT with N steps on the AM lattice
is associated with a closed SAW of length N on the
Manbhattan lattice. We require each SAT to traverse a
particular bond in the AM lattice. This corresponds to
the requirement that each SAW be anchored at a point
on the Manhattan lattice. Finally, each self-intersection
with energy —2e¢ in the SAT maps onto two nearest-
neighbor pairs in the SAW with the same energy. The
SAT and SAW are therefore equivalent for all tempera-
tures T.%

We can now carry over the results of our studies on
self-attracting SAW’s on the Manhattan lattice to self-
attracting SAT’s on the AM lattice. In particular, the
collapse transition must occur at the same temperature
for both models, and both must have the same value of
v,. The 6 temperature for closed SAT’s on the square lat-
tice with u = + oo is therefore

To=2e/In2 , (19)
and the tricritical radius of gyration exponent is

(20)

NIFN

Vi

The two models must also have the same crossover ex-
ponent ¢,, although I have not been able to determine its
value.

Finally, let us determine the value of ¥, for constrained
SAT’s on the square lattice. As previously, the trails may
be considered to be embedded in the AM lattice. The
partition function for open SAT’s with N + 1 steps is

Qu +1(T)=Sexp[2BeMT)], (21
r

where the sum runs over all open SAT’s of this length
which begin at a given bond, and A(I") denotes the num-
ber of twice-visited sites in one such trail I'. In particu-
lar,

Qp 4 1(Tg)=32M0 (22)
r

We will compare this with Eq. (16) for ZgP*(T,). To ac-
complish this, let C be the open SAW of length N associ-
ated with T, an open SAT of length N +1. Each site
which is visited twice by the SAT has two associated
nearest-neighbor pairs in the SAW, except for twice-
visited sites at the ends of the SAT. If sites of the latter
kind are present, each has only one associated nearest-
neighbor pair in the SAW. Thus

In(O)=MI)=3n(C)+1. (23)
Using this inequality and Egs. (16) and (22), we obtain

ZPNTe) < Qy, (Tg) S2ZP(T,) . (24)
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Equation (24) shows that u and y, have the same value
for the SAT as for the SAW. Accordingly, the exponent
v, for tricritical SAT’s on the square lattice with u = o
is

T (25)

Recently, Meirovitch and Lim?' used the scanning
simulation method to study the collapse transition of
self-attracting SAT’s with u =0 on the square lattice.
Their results v, =0.569+0.008 and y,=1.133+0.024 in-
dicate that the SAT transition with u = o is in a different
universality class than the transition with u =0. Also, we
have shown that the collapse transitions of the SAW on
the Manhattan lattice and of the SAT on the AM lattice
are isomorphic, so these transitions belong to the same
universality class. This is in contrast to the situation for
undirected lattices, since the SAT and SAW collapse
transitions appear to belong to different universality
classes in this case.!® 2! In particular, the current best
estimate?! of the crossover exponent for the SAT on the
square lattice, ¢, =0.80510.004, is far removed from any

of the values of ¢, obtained for the SAW on this lat-
tice.6:8.9,11,12,23-27

IV. FRACTAL DIMENSION OF THE KINETIC
SELF-AVOIDING TRAIL ON THE SQUARE LATTICE

The kinetic self-avoiding trail has been studied by Ly-
klema as a model of a 6 polymer.*° The KSAT is a grow-
ing self-avoiding trail, so no bond can be visited twice,
though sites may be. In the square lattice version of the
KSAT, a walker starts at a given site at time ¢t =0. At
each subsequent time step, the walker traverses one of the
neighboring bonds which has not previously been visited.
If there is more than one such bond, the alternatives are
weighted equally. The walk terminates upon returning to
its point of origin.

We will actually study a slightly modified version of
the KSAT on the square lattice. This walk begins at an
extra site which we place midway along a particular
bond, and ends when it returns to this special site. The
KSAT rules are otherwise unaltered. It seems clear that
the large-scale properties of the KSAT are unchanged by
this modification of the initial condition. We shall show
that for the special temperature T,=2g/In3, the self-
attracting SAT on the square lattice with u =0 is
equivalent to the modified KSAT.

For the modified KSAT, the probability that a loop of
length N is formed is given by

P(N)=3"N331 | (26)
<

where the sum runs over all possible loop configurations
C’, and v(C’) is the number of twice-visited sites in the
loop C’. Also, the lattice spacing in Eq. (26) has been
taken to be unity, so the distance between the point of
origin and its nearest neighbors is 1. The probability of a
particular loop configuration C (given that the walk
closes when it reaches length N) is

p(C,N)=P {(N)3~N+1O (27

Now consider the self-attracting SAT on the square lat-
tice with u=0. We shall consider only closed
configurations of length N which contain a given bond.
The partition function for this model is

Z}l\([)op( T)___zeZst( C’) , (28)
C

where the sum runs over all allowed loop configurations
C’. The Boltzmann weight of a particular configuration
Cis
w(C,N, T)=exp[2Bev(C)1/Z}°"(T) . (29)
For the temperature T, =2¢/In3, we have
ZRP(T,)=3"P(N)
and
w(C,N,T,)=p(C,N) .

The modified KSAT is therefore equivalent to the u =0
version of the self-attracting SAT at the temperature
T=T,.

Meirovitch and Lim?' have recently performed very
accurate simulations of the self-attracting SAT on the
square lattice with % =0. They find 2¢/T,
=1.086%0.002, where the error indicates a 95%
confidence limit. In contrast, 2e/7T,=In3=1.098.. .,
which is well outside this error. It therefore appears that
T, is slightly below T'y. If so, the asymptotic value of the
radius of gyration exponent for the KSAT should be
v=1.

To analyze his Monte Carlo results on the KSAT, Ly-
klema®® assumed that the asymptotic behavior of the
mean-square radius of gyration is given by a series of the
form

(RYN))=ANY™(1+BN 2+CN '+ --+) (30)

and defined a finite-size estimator of the exponent v as
follows:

1 In[{RAN +i)) /(RN —i))]
2 In[(N +i)/(N —i)]

Here i is a fixed positive integer. Inserting Eq. (30) into
(31), we obtain

YN)=y—IBN A—ICN~ '+ --- . (32)

v(N)= (31)

Lyklema then plotted v(N) versus N ~! and extrapolated
to N = by fitting to the form (32). The resulting esti-
mate v=0.535+0.003 differs markedly from our value
V:=?.

This discrepancy can be explained by noting that our
mapping between the KSAT and the self-attracting SAT
shows that the mean-square radius of gyration of the
KSAT must have the scaling behavior!?

(RAN)=N""f(N7%) 33)

where 7,=|T,—Ty|/T,. The scaling function f(x) is
nonzero and finite for x =0, while

fx)~x

2v—v,)
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for x — . Since the KSAT is in the low-temperature
phase, v=1. We expect the corrections to scaling to be

given by an expression of the form

flx)~

for x >>1. When Eq. (34) is inserted in (33), Eq. (30) is
reproduced exactly, so Eq. (30) can be used to extrapolate
to the N=o0 limit. Equation (30) is only valid for
x;=N7, '>>1, however. Using Meirovitch and Lim’s
value?! ¢,=0.80710.005, we find that for the largest
value of N studied by Lyklema (N =2000), x, is only 6.6,
which is not large compared to 1. Chains much longer
than Lyklema’s must therefore be constructed before Eq.
(30) can be used to perform the extrapolation. We con-
clude that the asymptotic value of v for the KSAT is
most likely 1, although this will be difficult to confirm in
a Monte Carlo study because an ensemble of trails—each
of at least 10° steps long—must be generated to obtain
the true asymptotic behavior.

2lv—v,)

(a +bx 2+ex 1+ --0) (34)

V. SUMMARY

In this paper, the exact 0 temperature Ty=2¢/In2 was
determined for the self-attracting SAW on the Manhat-
tan lattice. The tricritical exponents v,=% and y,=$
were also found. These results were obtained by mapping
the problem onto the KGW on the Manhattan lattice,
and hence onto the hull of a critical bond percolation
cluster on the square lattice. Additional support for our
conclusions was obtained by mapping the KGW on the
Manhattan lattice onto the walk of Gunn and Ortuno*
and the walk of Roux, Guyon, and Sornette,*® and then

comparing with Monte Carlo work on these models.**

Our value v, =% agrees with Duplantier and Saleur’s
result for the 8’ point,® but y, differs in the two models:
y, is & for our model, while y,=2 for the ¢ point.
Moreover, numerical studies®®!1122426.27 of the § point
on undirected 2D lattices have all yielded values of y,
which are considerably larger than ¢. The low value of
Y. in our problem is due to the absence of self-trapping
configurations on the Manhattan lattice.

The second half of this paper was concerned with the
properties of SAT’s. A bond-to-site mapping was used to
establish that the self-attracting SAT on the square lat-
tice in which consecutive bonds are restricted to be at
right angles is equivalent to the self-attracting SAW on
the Manhattan lattice. This mapping shows that the col-
lapse transitions in these two problems are in the same
universality class. This is in contrast to recent work on
undirected 2D lattices which suggests that the SAT and
SAW @ points are in different universality classes.'®™2!
The mapping also yields the exact collapse transition
temperature and the exponents v, and ¥, for the restrict-
ed SAT. Finally, we mapped the unrestricted self-
attracting SAT at a particular temperature 7, onto the
KSAT. The Monte Carlo results of Meirovitch and
Lim?! were then used to argue that the KSAT exponent v
must crossover to an asymptotic value of .

ACKNOWLEDGMENTS

I would like to thank J.-M. Debierre and P. N. Strenski
for valuable discussions. This work was supported by the
IBM Research Division and the Polymeric Materials
Center of the Colorado Advanced Materials Institute.

IP. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, NY, 1979).

2P. G. de Gennes, J. Phys. (Paris) Lett. 36, L55 (1975).

31. D. Lawrie and S. Sarbach, in Phase Transitions and Critical
Phenomena, edited by C. Domb and J. L. Lebowitz (Academ-
ic, London, 1985), Vol. 9.

4A. Coniglio, N. Jan, I. Majid, and H. E. Stanley, Phys. Rev. B
35, 3617 (1987).

SH. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987).

B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987).

7P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev.
Lett. 60, 1203 (1988).

8P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev.
B 39, 495 (1989).

9F. Seno, A. L. Stella, and C. Vanderzande, Phys. Rev. Lett. 61,
1520 (1988).

10C, Vanderzande, Phys. Rev. B 38, 2865 (1988).

ITH, Meirovitch and H. A. Lim, Phys. Rev. Lett. 62, 2640
(1989).

12H. Meirovitch and H. A. Lim (unpublished).

3B, Duplantier and H. Saleur, Phys. Rev. Lett. 60, 1204 (1988);
61, 1521 (1988); 62, 2641 (1989).

14R. M. Bradley, Phys. Rev. A 39, 3738 (1989).

I5A. R. Massih and M. A. Moore, J. Phys. A 8, 237 (1975).

16y, Shapir and Y. Oono, J. Phys. A 17, L39 (1984).

I7H. A. Lim, A. Guha, and Y. Shapir, J. Phys. A 21, 773 (1988).

18A. Guha, H. A. Lim, and Y. Shapir, J. Phys. A 21, 1043
(1988).

191, 8S. Chang, A. Guha, H. A. Lim, and Y. Shapir, J. Phys. A
21, 1.559 (1988).

20H. A. Lim, J. Phys. A 21, 3783 (1988).

21H. Meirovitch and H. A. Lim, Phys. Rev. A 38, 1670 (1988);
39, 4186 (1989).

22A. Malakis, J. Phys. A 9, 1283 (1976).

23A. Baumgartner, J. Phys. (Paris) 43, 1407 (1982).

24T, Ishinabe, J. Phys. A 20, 6435 (1987).

25V, Privman, J. Phys. A 19, 3287 (1986).

26H. Saleur, J. Stat. Phys. 45, 419 (1987).

27F. Seno and A. L. Stella, J. Phys. (Paris) 49, 739 (1988).

28 A brief account of some of this work has already been given in
Ref. 14.

291. Syozi, in Phase Transitions and Critical Phenomena, edited
by C. Domb and M. S. Green (Academic, New York, 1972),
Vol. 1; P. G. Watson, J. Phys. C 3, L28 (1970); Physica 75,
627 (1974).

303, W. Lyklema, J. Phys. A 18, L617 (1985).

311, Majid, N. Jan, A. Coniglio, and H. E. Stanley, Phys. Rev.
Lett. 52, 1257 (1984); J. W. Lyklema and K. Kremer, J. Phys.



922 R. MARK BRADLEY 41

A 17, L691 (1984); S. Hemmer and P. C. Hemmer, J. Chem.
Phys. 81, 584 (1984).

32p. C. Hemmer and S. Hemmer, Phys. Rev. A 34, 3304 (1986).

33K. Kremer and J. W. Lyklema, Phys. Rev. Lett. 54, 267
(1985); J. Phys. A 18, 1515 (1985).

34A. Weinrib and S. Trugman, Phys. Rev. B 31, 2993 (1985).

35A mapping of the IGSAW onto a percolation hull at thresh-
old was obtained in Ref. 34 for IGSAW’s on the hexagonal
lattice. A random walk was first used to construct the hull of
a percolation cluster in R. M. Ziff, P. T. Cummings, and G.
Stell, J. Phys. A 17, 3009 (1984).

36See Refs. 614 of Ref. 5.

37B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).

38R. M. Ziff, Phys. Rev. Lett. 56, 545 (1986).

39L. Peliti, J. Phys. (Paris) Lett. 45, .925 (1984).

40L. Pietronero, Phys. Rev. Lett. 55, 2025 (1985).

41K. Kremer and J. W. Lyklema, Phys. Rev. Lett. 55, 2091
(1985); J. W. Lyklema and K. Kremer, J. Phys. A 19, 279
(1986).

42J. M. F. Gunn and M. Ortuno, J. Phys. A 18, L1095 (1985).

43S. Roux, E. Guyon, and D. Sornette, J. Phys. A 21, L475
(1988).

44p. Grassberger, J. Phys. A 19, 2675 (1986).

453, Salmeron, M. Ortuno, and J. M. F. Gunn, Z. Phys. B 70,
269 (1988).

46The T=0and T = o limits of this equivalence have been ob-
tained previously in P. W. Kasteleyn, Physica 29, 1329 (1963);
A. Malakis, J. Phys. A: Math. Gen. 8, 1885 (1975).



