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EfFect of logarithmic terms on the energy level and wave function of a dtp system
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The effect of the logarithmic terms on the ground-state energy level and wave function of a dtp
system is investigated. No significant contribution of the logarithmic terms on either the energy lev-

el or wave function is found. At the same time, we find the lowest upper bound of the ground-state

energy ever obtained by the variational method using the Hylleraas-type trial function and that the

corresponding wave function satisfies the cusp condition as rdt ~0 automatically to a reasonable ac-

curacy for r (3 (muonic a.u.), where r is the distance between the fused dt nuclear compound and

the muon.

I. INTRODUCTION

Bartlett, Gibbons, and Dunn' showed that the S-state
wave function of helium could not be expressed as an as-
cending power series of the interparticle distances. An
expansion incorporating the logarithmic terms of the hy-
perradius R into the power series was later shown by
Bartlett and Fock to be an exact representation of the
wave function at small R, and thus receives much atten-
tion since it is believed that an accurate calculation of
certain physical observables depends upon a good repre-
sentation of the wave function near the origin. Macek
showed that the Fock expansion of the two-electron
atomic wave function with L, M, and parity as good
quantum numbers converges for R (1/2iki, where k is
related to the energy of the system by k =v'2E, justify-
ing its existence in that region from a theoretical point of
view. More recently, Morgan was able to prove that the
Fock expansion for S states converges pointwise for all
values of R. As for the numerical calculations of the en-

ergy levels, although Hylleraas and Midtdal obtained
improved results of the energies for the ground states of
helium and some of its isoelectronic ions by incorporat-
ing a term r, r2cos81n(r&+r&) and three other noncon-
ventional terms in a 24-term variational wave function,
Hart and Herzberg later repeated their 20-parameter
calculation with the additional Hylleraas's four noncon-
ventional terms and observed no appreciable lowering of
the ground-state energies, leaving the conclusion of Hyl-
leraas and Midtdal unconfirmed. However, both the
variational calculations carried out by Ermolaev and So-
chilin and by Frankowski and Pekeris' give a lower-
energy value for the ground state of helium, the former
using a standard Fock series as the trial function while
the latter including [1n(r, +R &)]J terms for j= 1 and 2 in
their Hylleraas-type power expansion. Their results
therefore seem to support the existence of the logarithmic
terms in the exact wave function.

In the investigation of the muon-catalyzed dtp fusion
reaction, the theoretical prediction of the muon sticking
probability, although improved by the persistent effort of
several groups, still deviates significantly from the experi-
mental data available so far. Some example of this are
given in Refs. 11—19. Different methods include adiabat-
ic Born-Oppenheimer approximation, ' numerical treat-

ment of the mesic molecular wave function based on the
exact Coulomb three-body adiabatic representation, ' the
Monte Carlo calculation, ' and the variational tech-
nique. ' ' Generally speaking, while an effective muon
sticking probability to, as low as 0.35% at a target densi-

ty higher than liquid hydrogen (4.25X10 atoms/cm )

has already been observed, ' the lowest theoretical pre-
diction of to, (Ref. 20) obtained so far is 0.845%, ' giving
co, =0.541%%uo at a 1.2 liquid hydrogen density by taking
into account the muon-stripping process before the
mesic-ion (p-4He+) is stopped in the hydrogenic isotope
medium. ' The experiments by Breunlich et al. ' and by
Nagamine' give to, =0.45% and an upper bound 0.44%
of co„respectively, with no observation of density depen-
dence, which are all lower than the lowest theoretical
predictions at either high density, as given above, or low
denisty (0.1 liquid hydrogen density) co, =0.59%%uo. Al-
though the experimental data are still to be improved, the
theoretical prediction may not be accurate enough since
it depends sensitively on a correct representation of the
wave function near the coalescence point, and the wave
functions used so far do not exactly satisfy this require-
ment. This, in turn, naturally leads one to reconsider the
effect of logarithmic terms on the ground-state energy
and wave function of the dtp system. The present paper
is specifically devoted to such a kind of investigation. In
Sec. II, we study the basic theory and the analytical cal-
culation. Section III gives the numerical computation of
the energy level and muon-sticking probability. Finally,
we discuss our results in Sec. IV.

II. BASIC THEORY

In the center of mass system, a dtp mesomolecular ion
has six internal degrees of freedom. The choice of in-
dependent variables corresponding to the six degrees of
freedom is quite arbitrary, depending on the specific per-
spective from which the system is going to be described.
For example, in the adiabatic Born-Oppenheimer approx-
imation, one may find that it is convenient to use the
Jacobian coordinates rd, and r« „,where rd, connects the
deuteron and triton while r«

„

is the vector displacement
of the muon from the center of mass of the deuteron-
triton nuclear compound. For the investigation using
variational technique, it seems more suitable to choose
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three interparticle distance coordinates r«, r,„,and rd„,
which define the shape of the triangle with the particles
on its vertices and three Euler's angles, which specify the
orientation of such triangle in the space. For the S state,
the wave function of the system does not depend on the
orientation of the triangle. Therefore the nonrelativistic

Hamiltonian of a dtp system in terms of the interparticle
distance coordinates is given by

H=T+V,

with

2

( rd,
—+rd„+r,„)

rdp rtl.

2

(rd, rd„—+ r,„)
fthm rdt

(j2 1 ()2 1 ()2 ]

2m«r«Brd, 2m»r, & Br,„2md„rd„Brd„2m&rd„r,
„

(rd, +rd„—r,„)
rdp rdt

(2)

and

V= 1 1 1

rdt rdp rtp

where m; is the reduced mass of particles i and j, and r;.
is the distance between particles i and j.

An obvious advantage of the interparticle distance
coordinates is their intuitive geometrical significance.
However, since the range of one variable depends on the
other two due to the triangular condition among them
(this statement should not be misunderstood as saying
that three interparticle distance coordinates are not in-
dependent), one may find difficulties in the analytical cal-
culation of the Hamiltonian matrix elements. For this

reason, we introduce the so-called perimetric coordi-
nates defined in terms of the interparticle distances as

x =rdt +rdp rtp )

fdt rdp+ rtp &

z= —r«+rd +r,

(4)

(6)

The linear transformations given by Eqs. (4)—(6) facili-
tate the analytical calculations involved in this investiga-
tion since the ranges of x, y, and z are from 0 to ~. The
disadvantage of this transformation is that it makes the
Hamiltonian look less compact. In the new coordinate
system, the kinetic and potential energies of the S state
become

T= —2
Xy x (x +y +z) xz a2

m„(x+z)(y +z) md(x +z)(x +y) m, (x +y)(y +z) Bx

xy yz y(x+y+z) B

m„(x+z)(y +z) md(x +z)(x +y) m, (x +y)(y+z) By2

z(x+y+z) yz

m„(x+z)(y +z) md(x +z)(x +y)
xz B2

m, (x +y)(y +z) Bz2

4xy B + 4xz B 4yz B2

m„(x+z)(y+z) BxBy m, (x+y)(y+z) BxBz md(x+z)(x+y) ByBz

1 1—2 +
md, (x +y) m,„(y+z)

a

md„(x +z) Bx
1 1—2 +

m„,(x +y) m,„(y+z)
a

md„(x+z) By

md, (x+y) m,„(y+z) md (x+z) Bz

and

2 2 2V=
x+y x+z y+z

Correspondingly, we expand the S wave function of the system in terms of x, y, and z as

(e
—ax —bV+ e

—bx —
aV)e

—cz

n
1 El2n3

A ( n, , n 2, n 3 )x 'y 'z ' + g 8 (i,j,k )( lnxx )'(y lny ) (z lnz)"
i,j,k
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which is later truncated to a finite number of terms. No-
tice that the first sum in Eq. (9) is just the Hylleraas-type
trial function. The matrix element of Hamiltonian can
then be calculated analytically with the basis set given by
Eq. (9). As the first step, we diagonalize the matrix of the
Hamiltonian with all the logarithmic terms in Eq. (9)
truncated, and obtain the minimum-energy value of the
ground state by varying the nonlinear parameters a, b,
and c. With the corresponding wave function thus ob-
tained, we check the cusp condition as rd, ~0 and calcu-
late the muon-sticking probability co, . As the second
step, we add six logarithmic terms x lnx, y lny, z lnz,
x y lux lny, x z lnx lnz, and y z lny lnz to the basis
function used in the first step. Namely, in the expansion
(9}, the second sum goes over only those values of the in-
dices i, j, and k satisfying

and

O~i, j,k ~ 1 (10)

H A=cSA, (12)

where A is a column matrix representing the wave func-
tion. Its elements are given by the coefficients
A (n&, n2, n3) and B(i,j,k) in Eq. (9). S is the matrix of
the unit operator that is not diagonal since the basis set in
the wave function expansion (9) is not orthonormal.
However, S is real and symmetric and we can always find
a unitary matrix U which diagonalizes S. If the numeri-
cal result of the diagonalization of S is accurate enough,
the eigenvalues of S should be positively definite. We can
then solve

H'C =BC,
for c by diagonalizing H', where

H'=W-'"UH U-'~-'"

(13)

(14)

0&i +j+k &2 .

We then repeat the same calculations as in the first step,
keeping the values of a, b, and c obtained there un-
changed. Notice that after including the logarithmic
terms in the wave function used in the first step, the non-
linear parameters a, b, and c obtained there may no
longer be optimal. We keep them unchanged in order to
investigate the effect of the logarithmic terms. The
difference between the two results, if there is any, will
thus give us a measure of the effect of the six logarithmic
terms.

Before proceeding to the numerical computation, we

briefly review the analytical calculation carried out in this
investigation. For each given set of nonlinear parameters
a, b, and c, the upper bound of the Hamiltonian expecta-
tion value is obtained by varying the linear coeScients
3 (n, , n2, n3 ) and B (i j,k) in Eq. (9). This leads us to the
following matrix equation:

the orthonormalized basis set obtained in the diagonaliza-
tion of S and C is the matrix representation of the wave
function under this new orthonormal basis set. The wave
function A under the original basis set is then given by

a = U-'A-'"C . (16)

n1m r n1m

where P~ (r) is the hydrogenic-type wave function of
the mesic-ion (p,- He)+ in the state (nlm); e 'q' comes
from the recoiling of the ion (p- He)+ due to the sudden
emission of the neutron and

gd, „(o,o,z)
g'(r}=

f ~y„„(0,0,z) ~'dr

Notice that in Eq. (19),

z=2r, as x~O, y~O.

(19)

(20)

For the S state, g' does not depend on the angular vari-
ables. Therefore, by using

WI (r)=R„I(r)YI (&,p), (21)

with R„&(r) the hydrogenic radial wave function and

Y& (8,$) the spherical harmonics, and the partial-wave
expansion of e' ' with q along the z axis

e'q'= g &4m(21+1)ij'i(qr) YI0(8,$),
1=0

Eq. (18) can be reduced to
2

co„~m=4m(2l +1) f r dr R„&(r)j&(qr)g«„(0,0, 2r) 5

(22)

where 5 0 is just the ordinary Kronecker 5 function. No-
tice that in the spherical coordinate system we have
chosen here (q along the z axis), the muon does not stick
to the state (nlm) with m&0. Hence the probability of
the muon sticking to the state (nl) is simply given by

1

X ~i
m= —1

In terms of the perimetric coordinates, the cusp condi-
tion as rd, ~0 takes the form

lim in/«„= lim
8 . 8 8 8+

rd, 0 drd& x O, y 0 Bx @' Bz

Xin/«„—m« .

As for the probability of the muon sticking to the a parti-
cle and forming a hydrogenic ion (JM- He)+ in the state
(nlm), we accept the conventional definition in terms of
the sudden perturbation approximation. It is given
b 24

with

a=US U-'. (15)

=4~(2i+1) f r dr R„I(rj)I(qr)g„, ((),0 2r) (24)

Notice that H' is, in fact, the Hamiltonian matrix under
and the total muon-sticking probability co, is obtained by
summing co„iover all states (nl), namely,
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COS (25)

The calculation of q value plays one of the key points
in the calculation of co„lbased on the fact that ~„Iis very
sensitive to q. Since our main interest in this paper is to
investigate the effect of logarithmic terms, we are not go-
ing to discuss this any further. In the numerical analysis
presented in the next section, the value of q is calculated
using the method given in Ref. 19. Comparison of two
results with and without the logarithmic terms is also
given in Sec. III.
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III. NUMERICAL RESULTS

All numerical computations are carried out on IBM
3090 in quadrupole decision which assures at least 32
significant digits. Our results are tested against numeri-
cal round-off and/or truncation errors by changing the
system of units (for example, from muonic atomic units
in which m„=l to electronic atomic units in which
m, = 1). The change of unit system dramatically changes
the magnitude of the nonlinear variational parameters a,
b, and c, and hence changes the relative magnitude of ma-
trix elements. From the numerical point of view, this
would cause significantly different round-off and trunca-
tion errors if the program is not stable enough. Since the
same results are obtained no matter what kind of units
are used, we conclude that, up to the number of digits
given in this paper, our results are free from any inherent
round-off and truncation errors related to the numerical
computation. At the same time, in order to compare our
result with the previous calculation, ' the mass parame-
ters and the Rydberg constant we use here are the same
as those given in Ref. 19, namely, md =3670.481,
m, =5496.899, m =206.7686, and %=13.6058041.
Also, since the muon atomic units in which
e =6=m„=1are used throughout, the value of q corre-
sponding to the given mass parameters is equal to 5.846.

Table I gives the energies of the ground state, where
n;

'" is the upper bound of the summation over n; in Eq.
(9) and n '" is the maximum possible value of
n, +n2+n3. We get a faster convergence of the ground-
state energy than any previous variational calculation.
Notice that in Ref. 19, the ground-state energy
coo=319.139752 163 was obtained by using a trial wave
function expressed as a sum of 1995 terms, which is still
higher than our result coo=319.139 83493 with 435-term

FIG. 1. Comparison of the dt's molecular wave functions
with and without logarithmic terms as x ~0 and y ~0. On the
scale used here, the two curves coincide. (muon a.u. denotes the
muonic atomic units in which e =A =m„=1.)

trial wave function. Since the new coordinates x, y, and z
are simply the linear combination of the interparticle dis-
tances, the faster convergence may be attributed to the
two-center trial wave function used here as well to the
more accurate results of the Hamiltonian matrix elements
which are calculated analytically in this paper instead of
numerically as in Ref. 19. It should also be pointed out
here that although we use two exponential terms in the
trial wave function, the number of nonlinear variational
parameters are still keep at three, which is the same as
used in Ref. 19. Therefore using two exponential terms
does not give us any extra Qexibility to adjust the wave
function to obtain lower ground-state energy level.

From Table I, we also see that the effect of the six loga-
rithmic terms on the energy levels decreases as the num-
ber of power terms increases. In fact, as we have already
known,

lnx =(x —1)——,'(x —1) + —,'(x —1)

for 0(x ~2 (26)

which means that, for x near unity, the logarithmic term
behaves simply as a certain combination of the power
terms. Therefore, once the power series expansion con-
verges, the inclusion of the logarithmic terms, which in-
troduce in this case only the effects equivalent to those of
the higher power terms, will not change the energy levels
significantly. As for the effects of the logarithmic terms
on the wave functions, the almost identical results (see
Fig. 1) of the 435-term wave function (without log terms)

TABLE I. Binding energy with respect to the (tp)-d threshold and the muon-sticking probability of the (dt's) ground state (0,0).
The muon-sticking probability given here is obtained by summing the partial sticking probability up to n =30. The asterisk denotes
the numbers of terms given here are those of the expansions without the inclusion of the logarithmic terms.

Number
of terms n max

1 n max
2 n max

3
max

Without log terms
coo (eV) 10 aP,

With log terms
coo (eV) 10 aP,

84
120
200
344
435

6
7
9

11
12

6
7
9

11
12

6
7
9

11
12

319.13091099
319.132 11057
319.139775 70
319.139832 97
319.139834 93

0.216
0.045
0.928
0.888
0.875

319.131 720 66
319.132 996 74
319.139791 35
319.139 83406
319.139835 06

0.223
0.044
0.941
0.893
0.875
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(n, I)

(1,0)
(2,0)
(2,1)

(3,0)
(3,1)

(3,2)
(4,0)
(4, 1)
30 0„=)~nI

Without
log terms

0.675 79
0.097 20
0.023 51
0.029 56
0.008 48
0.00022
0.012 58
0.003 81
0.875 32

With
log terms

0.67600
0.097 22
0.023 38
0.029 57
0.008 44
0.00022
0.012 59
0.003 79
0.875 17

Reference 19

0.6826
0.0979
0.0238
0.0297
0.0086
0.0002
0.0127
0.0039
0.8854

TABLE II. Comparison of the partial sticking probabilities

obtained in this work using 435-term (without log terms) and

441-term (including the six log terms) trial wave functions with

the results in Ref. 19 using 1995 basis functions. In all the cases
no cusp condition is imposed on the wave function.

12

8-
lK

CI
LLI

0-

49
Q~-s

0

~." The reduced ma—Our result witho-- Our result with

I I I

4 6
Z(muon a.u. )

10

FIG. 2. Logarithmic derivatives with respect to rd, as rd, ~0
of the ground-state wave functions with and without logarith-
mic terms. See also Eq. (17). (muon a.u. denotes the muonic
atomic units in which e =A= m„=1.)

and the 441-term wave function (including the six log
terms) give us the same conclusion as that for ground-
state energy. Table II compares our partial sticking
probabilities with earlier theoretical values.

The nonlinear parameters a, b, and c used depend on
the number of terms included in the expansion of the trial
wave function. For the ground-state 435-term trial wave
function, a=1.0115, b=1.2095, and c=0.8900. In that
case, further variation of a, b, and c around the given
values causes only a small shift (about 10 eV) in the en-

ergy level, revealing the nonsensitivity of the dependence
of the energy level on the nonlinear parameters when the
number of terms in the trial wave functions are big
enough. This conclusion is the same as obtained and ana-
lyzed in Ref. 19. On the other hand, we notice that the
difference between a and b should reflect the difference
between the masses of the deuteron and triton. Using
Eqs. (4)—(6), we can rewrite the exponential term in the
trial wave function as

e =e—gz —by —gz "dp. ~"tp ~"dt
(27)

with

a=a —b+c,
P= —a+b+c,
y=a+b —c .

(28)

(29)

(30)

Therefore, for the ground state, we have a=0.6920,
P=1.0880, and y=1.3310. If the wave function has a
correct asymptotic form, a and p should be proportional
to the reduced masses md„and m,„,respectively. Since
in the muonic atomic units md =0.9467 anddfl
m,„=0.9637, we see that the values of a and p obtained
do not accurately reflect the difference between the
masses of deuteron and triton. The second exponential
term with a and p switched compensates this deficiency
and as a result, our trial wave function has a better
asymptotic form than the wave function with only one

1.6
(

1.4

1.2 1

0.8-

Without log terms

Mydrogenic

0.6 — ('

0.4-

0.2-

I

Z(muon o.u. }
10

FIG. 3. Comparison of the dt's molecular wave function as
x ~0 and y ~0 with the hydrogenic ground-state wave function
of the (p- He)+ ion. (muon a.u. denotes the muonic atomic
units in which e =4=m„=1.)

exponential term.
The singularity of the first derivative of the logarithmic

term at the origin seems to be effectively removed be-
cause of its slower speed of divergence than that of the in-
verse power and hence does not exhibit any influence on
the wave function. This is demonstrated numerically in
Fig. 2, where we give the logarithmic derivatives with
respect to rd, [see Eq. (17)] of the wave functions in two
different cases. It is interesting to notice that for z&6
(muonic a.u. ), two kinds of ground-state wave functions
satisfy automatically the cusp condition (17) to a quite
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reasonable accuracy. Since the wave function is propor-
tional to e "and in this case,

(0.0048, for z )6 (muonic a.u. )

the deviation of the wave function from the cusp condi-
tion for z) 6 should not affect the calculations of the
ground-state energy and the corresponding sticking prob-
ability significantly. This might explain the similar re-
sults obtained in Ref. 19 with and without the cusp con-
ditions imposed on the wave function.

In Fig. 3, we compare the 435-term wave function

Pd,„(0,0,z) (without logarithmic terms) with the exact
ground-state wave function of hydrogenic ion (p-'He)+.
Two features can be seen there. The first one is that
1(t«&(0,0,z) smears a little more to outer regions than the
wave function of (AM- He)+. This means that when the
ion (p- He+ ) is formed by the fusion of deuteron and tri-
ton in a dtp molecule, the muon is less bound to the nu-
cleus ( He) + than the muon in (p- He)+ in the ground
state. The second feature is that the overlap of two func-
tions is almost equal to 1, revealing that the escaping of
the muon from the bound state of (p- He)+ when fusion
occurs is almost due to the recoil of (p- He)+ as a result
of neutron emission.

IV. DISCUSSION

In this paper, we study the effect of logarithmic terms
on the ground-state energy and wave function of the

dt's

system and find no significant improvement on either en-
ergy or wave function by the introduction of the logarith-
mic terms. Although lnx, lny, and lnz are used instead of
lnR, where R is the hyperradius, we notice that lnx, lny,
and lnz keep the same characteristic of singularity as that
of lnR, which is the essential point of the Fock expansion
theory. Since some lower values of the helium ground-
state energy have already been obtained by incorporating
the logarithmic terms into the wave function, our result
seems to reveal that the effects of the logarithmic terms
depend on the mass ratios of the three particles in the
system. That is to say, the smaller the mass ratio, the
greater the effects of the logarithmic terms. This con-
clusion is still to be confirmed by further investigation on
other three-body systems.
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