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A system that consists of a monolayer spread on a solution containing a monovalent and a di-
valent ion is investigated. The solution of the Poisson-Boltzmann-Stern equation for this system in-
dicates that the metal ions segregating to the surface can be found in two distinct states. Divalent
ions are chemically condensed on the monolayer, while monovalent ions are electrically attracted to
it. We derive simple expressions for the charge left on the surfactant monolayer and the amount of
metal ions condensed on the monolayer. These formulas reproduce very accurately (to within pro
milles) the values obtained using the nonlinear Grahame equation and eliminate the need to solve
that equation. That permits a simple identification of the state of the surfactant monolayer and we
propose a universal condensation chart that characterizes the state of the surfactant. We further
derive a chemical equilibrium equation for the surface components that has considerable range of
validity. This equation requires a knowledge of the bulk concentrations only, and thus allows in
many cases the identification of the state of the monolayer, avoiding the need to solve the full non-
linear Poisson-Boltzmann equation. All existing experimental results on Langmuir systems are in
good agreement with the one-dimensional Poisson-Boltzmann-Stern model with no adjustable pa-
rameters. Several of these fits are presented in this work and are also mapped on the condensation
chart. Our calculations point to some characteristic differences between the monovalent and the di-
valent ions that explain why it is possible to build Langmuir-Blodgett multilayers from divalent

compensated surfactants but not from monovalent ones.

I. INTRODUCTION

Surfactant monolayers on liquid and solid substrates
have been the subject of experimental investigations for
almost a century now. They received renewed attention
with the advent of tools that could measure in vitro the
in-plane structure that the surfactant chains acquire on a
molecular scale.! ”* Langmuir monolayer molecules con-
sist of a hydrophobic chain that keeps them afloat on a
liquid aqueous surface and a hydrophilic polar head that
interacts with the components of the aqueous solution.
The balance of the two interactions creates an organized
single layer on the surface of the liquid. It has been
known for several decades now that these surfactants can
be withdrawn from the liquid-air interface and be depos-
ited on a solid substrate to create layered composite ma-
terials.” 7 Interest in these materials has been aroused
by the application possibilities vested in using these con-
trollable monolayers for electronic and optical com-
ponents on the atomic scale® [see a review article 8(b) by
Agarwal].

One structural aspect of these monolayers—the segre-
gation of metal ions from the liquid bulk to the liquid-
surface—monolayer interface and the eventual condensa-
tion of the metal ion on the monolayer —has been experi-
mentally studied extensively over several decades.’”?
Metal ions in the subphase solution are known to play a
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central role in the modification of the characteristics of
the Langmuir monolayer spread on liquid subphase. The
surface pressure-area diagrams show a characteristic ten-
dency to be stiffer upon the addition of minute quantities
of divalent ion to the subphase solution. The minimal
area per surfactant molecule is smaller and the electric
potential of the surfactant changes. Monolayers of sur-
factant withdrawn from the liquid were shown to incor-
porate the metal ion in their three-dimensional (3D)
structure in very specific positions.*> The presence of the
metal ion at the surface was also verified using radio
tracer techniques directly on the surface of the liquid and
recently the x-ray near-total external fluorescence
(NTEF) technique was employed to obtain an absolute
value of the amount of metal ion segregating to the liquid
surface.* The experiments revealed that the amount of
metal ion next to the surface is dependent on the nature
of the ion, the concentration of the metal ion, and the hy-
drogen ion in the subphase. Earlier attempts to explain
the metal ion segregation to the liquid surface, induced
by the surfactant monolayer, were phenomenological in
nature and invoked the notion of mixture between disso-
ciated and condensed surfactant species with some ad-
justable interchange energy parameter.’ !' These para-
metric models assumed that the concentration of the
solute ions at the interface is equal to that in the bulk and
thus ignored the electrical attraction of the cations to the
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surfactant and did not distinguish between condensed
ions and those that are only electrically attracted. A
physical description of the problem was introduced based
on the electrochemical double layer concept.’* 3% After
spreading on the surface of the water, the surfactant par-
tially dissociates and becomes negatively charged in the
process. The metal ions in the subphase solution and the
hydrogen ions are electrically attracted to the surface and
their concentration in the vicinity of the surface is greatly
enhanced. The higher concentration of the positive ions
at the surfactant surface causes a larger degree of conden-
sation of the proton or the metal ion on the monolayer.
This in turn reduces the negative charge on the mono-
layer and by that, the concentration of the cations next to
it. An equilibrium is then reached between the ions at-
tracted to the interface and those chemically condensed
on it. This system can be described in terms of the
Poisson-Boltzmann-Stern (PBS) equation. The Poisson-
Boltzmann (PB) equation deals with two competing pro-
cesses occurring in an electrically polarized system. Gen-
erally speaking, some of the charges in the system under
investigation are fixed in space and provide the electro-
static boundary conditions for the system. The rest of
the charged particles are free to move under the influence
of the electric field of the system until they reach a static
distribution in space. The distribution in space of the
free charged particles can be derived by solving the
Poisson-Boltzmann equation subject to the assumptions
inherent in the Poisson-Boltzmann equation. The electri-
cal interaction, described by the Poisson equation, tends
to bring together charges of opposite signs and thereby
minimizes the total energy of the system. In the absence
of other mechanisms opposite charges would have of
course collapsed on each other and thereby the system
would have ceased to be polarized. For an ensemble at a
temperature of the same order of magnitude as the elec-
tric interaction, the attraction is counterbalanced by the
entropy of the system which obtains a minimum when
the charged particles are evenly distributed in the system.
The equilibrium that the system reaches as the result of
the two opposing interactions results in a Boltzmann dis-
tribution of the distances between the positive and the
negative particles and with a finite distribution distance.
The Poisson-Boltzmann equation was applied extensively
since its first introduction by Gouy,** Chapman,’® and
more than 75 years ago in disciplines as diverse as plasma
physics and electrochemistry. The spherical PBE was the
starting point in the theory of Debye and Hiickel for the
screening of strong electrolytes in solutions.>® The cylin-
drical PBE was first employed by Katchalsky and colla-
borators in their polyelectrolyte theory.’” The subject of
this work, the one-dimensional Cartesian Poisson-
Boltzmann (PB) sometimes referred to as the Guoy-
Ghapman equation, was extensively used in the last two
decades to describe the electrochemical nature of mem-
branes of vesicles made of lipids and related materials
significant to biophysical research.’® The general Carte-
sian Poisson-Boltzmann equations are collected in the
Appendix. The PB equations for a solution mixture of
1:1 and 1:2 electrolytes can be found in the membrane
vesicle literature of the last decade or so. In Sec. II A we

collect those equations that are relevant to the Langmuir
monolayer system. The approximations involved in the
PB equation and the validity of the application of the PB
equation to our systems are discussed in Sec. I B. These
equations require numerical solutions, however. We
derive simple approximate formulas for the electrochemi-
cal quantities of a Langmuir monolayer relevant to our
system for (i) monovalent ions (Sec. IIT A). (ii) a mixture
of two monovalent ions (Sec. III B). (iii) divalent ions
(Sec. III C), and (iv) a mixture of monovalent and divalent
ions (Sec. III D). The accuracy of these formulas is tested
against the numeric solution of the PB equation. We
compare in Sec. IV the experimental values obtained for
the amount of monovalent and divalent ion segregating
to the Langmuir monolayer to the theoretical predictions
using the equations of Sec. III. In Sec. V we review ear-
lier models used to explain the metal ion segregation to
Langmuir monolayers (Sec. V A), comment about the
condensation state of the monolayers (Sec. V B), compare
it to the state of a hypothetical 3D solution of the mono-
layer material (Sec. V C), and comment about the general
qualities of the monovalent and divalent systems (Sec.
V D) and the transition region between a monovalent and
divalent dominated system (Sec. VE). The conclusions
are presented in Sec. VF.

II. POISSON-BOLTZMANN-STERN EQUATION
OF A SYSTEM WITH MONOVALENT
AND DIVALENT COUNTER IONS IN SOLUTION

The Poisson-Boltzmann-Stern (PBS) equations were
very successful in describing the electrochemical state of
vesicle membranes.>® That model was, however, rarely
applied to resolve the Langmuir monolayer structure. A
large body of experiments on Langmuir monolayers was
published without a convincing theory to explain the
metal segregation to the monolayer (see Sec. V A). As of
now we are aware of only one recent study where the
Poisson-Boltzmann equation was used to analyze a Lang-
muir monolayer system with only a monovalent metal ion
solution.’® Since Langmuir systems generally involve a
divalent ion in the solution, it was of great interest to ap-
ply the Poisson-Boltzmann equation for a mixture of
monovalent and divalent solution near a flat partially dis-
sociated interface.’* Not only do the equations for a di-
valent ion take a different form than in the monovalent
case but also the effect of the divalent ion on the proper-
ties of the surfactant is remarkably different. These for-
mulas are our starting point and are used in the rest of
the work. They can be found in the vesicle membrane
literature of the last decade or so and are presented for
completeness in Sec. II A in the context of a Langmuir
monolayer.

A. Electrochemical description of our system

We consider a system made out of a surfactant fatty
acid monolayer, indicated schematically by LH, where L
stands for the amphiphilic carbohydrate chain and H is
the proton in the carboxylic group. Each surfactant mol-
ecule occupies area A4 of the liquid surface. The mono-
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layer is partially dissociated as a result of interaction with
a subphase aqueous solution. If the surfactant monolayer
were to be completely dissociated, then it would carry
one electron unit of charge ¢ = —1 on each chain and the
surface charge would originally be 0 =1/4 in electron
units. The subphase solution contains monovalent and
divalent cations N* and M?% and their counterpart
monovalent anions. The charge left on the surfactant
chains L~ upon dissociation is offset by the condensa-
tion*® of the divalent and the monovalent ions according
to the reactions

L +H"=LH, (1a)
L +M* =(LM)", (1b)
L +NT=LN. (1c)

The condensation ratios of the divalent ion, the mono-
valent ion, and the proton on the chains to the dissociat-
ed chains are determined by the chemical equilibriums

S
M*
Xy= =KM<D;42+ ’
D -
Ly
Xy= =Ky®,+, 2)
P
L
Xy= Y =Ky ;{+
.-

with the chemical equilibrium constants Ky, K, and K,
for these three reactions. ®°, is the concentration of

component A; at the surface.

In these equations the concentrations of the com-
ponents at the surface are different from those found in
the bulk and are yet unknown. The sum of the surface
concentrations of the different surface species is equal to
the monolayer concentration ®;,=®), ++®;y+P;y
+<I>SL_. The fraction of the monolayer that is condensed

with hydrogen to make the LH species is given then us-
ing Eq. (2) by

S
X
LH H
Cig= = . 3
P e T Xy T Xy Xy ()
Similarly,
S
X
LN N
F = = N 3b
e, 14X+ X+ Xy (30)
q)iM* . Xy
o= = ’ (3¢)
@5,  1HXy+Xy Xy
and the fraction of the dissociated chains is given by
P _
r,_=—- ! : (3d)
) 1+Xy+ Xy +Xy
The sum of the fractal condensations is
Fu+Ty+T,,+0, =1. @)

In Eq. (2) the divalent ion is considered to bind to the
negative surfactant ion and to form only 1:1 complexes
(LM)™. We found that fits to the experimental condensa-
tion curves such as those shown in Sec. III do not require
condensation with two surfactants to a single divalent
metal ion and the equilibrium constant for such process
would be negligibly small. The structure of fatty acid
soaps reveals that the divalent metal ion (in Ca stearate)
orients itself almost colinearly with two neighboring car-
bohydrate chains. The carbohydrate chains are oriented
antiparallel to each other, facing the metal ion with their
carboxylic groups. This conformation cannot be realized
when the two chains are parallel to each other, as in a
surfactant spread on solution. This could be the reason
for not having a significant amount of 2:1 complexes in
surfactant systems. Researchers studying the membrane
vesicle systems arrived independently to the same con-
clusion. They found that for their systems (phos-
phatedylserine as membrane material, the monovalent
sodium ion and divalent nickel, manganese, calcium,
magnesium, cobalt, barium, and strontium), the inclusion
of 2:1 complexes did not contribute to agreement with
the experimental measured electric potential.*! If such
complexes were to be significant, then the dependence of
the § potential on the concentrations of the monovalent
and divalent ions would have been different than ob-
served. This is because of an additional term in the equi-
librium equation proportional to the square of the con-
centration of the dissociated surfactant [L ~]°. They
have also found that a reversal of potential and charge
occurs when a sufficient amount of divalent ion was add-
ed to the solution,*? as expected when the number of the
1:1 complexes [(LM)™ ] is larger than that of the dissoci-
ated membrane molecules [L ~ ] [see Eq. (8) below]. This
concentration is generally higher by orders of magnitude
from that used in surfactant Langmuir systems. That
might explain why such a reversal of potential was not re-
ported yet in Langmuir systems. The average charge per
surfactant chain in electron units ¢ includes a negative
contribution originating with the dissociated fatty acid
chain [L "] and a positive charge contribution originat-
ing with the [LM * ] species condensed on the monolayer.
This feature is special to a divalent counterion and is the
origin of the different behavior of this monolayer to that
spread on a monovalent solution. Using Eq. (3) one ob-
tains an explicit form of Eq. (A6) in the Appendix:

g=oA=r,, .~ =2  +C u+tTy—1
Xy—1

= . 5
1+ Xy + X+ Xy ©)

The divalent contribution X,, appears both in the nomi-
nator and the denominator while the monovalent contri-
butions Xy and Xy appear only in the denominator in
the last equation.*’ This turns out to be the origin of the
stronger condensation of the divalent ions and allows us
the derivation of the equilibrium condition for a mono-
layer spread on a solution with both monovalent and di-
valent ions.

The surface charge invokes redistribution of the free
ion concentrations @ A‘(z) in the subphase. The concen-
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trations of the counterions at a distance z from the inter-
face are

. (z2)=P(z)®°

H h
D, (2)=P(2)D} ., , ()
D, 2+ (2)=PH2)®% 5. .

Here
P(z)=exp[eW¥(z)/T] (7

is the Boltzmann concentration enhancement factor of a
positive monovalent ion at a distance z from the solution
surface, and ®% is the bulk concentration of ion i. The

at a distance z from the interface is the sum of the contri-
butions from the monovalent and the divalent ion charge
densities

p'=e(®] .+ I[P(z2)—1/P(2)],
9)
p'?'=2e® . [PH2)—1/P(2)] .

Equation (9) includes the excess charge due to the cation
and also the depletion of the negative monovalent anion
charge near the liquid surface.

Equation (8) is substituted in (A3) and yields after in-
tegration

_ 4me Q(z)
total charge density E(z)= c 4 (10)
p(z)=p'V'+p'¥ (8)  where
J
Q(Z)__. (z)=— M (I)b ‘+‘¢b +Cl)b P(z)+2 2 (11
4 77 P(2)R, [Py TP+ TPy [P2)F2]) |

The integration constant was determined by the condi-
tion that the electric field inside the liquid far from the
interface vanish, i.e., E(z— o« )—0. Here R0=27re2/
Te=~4.37X10"7 cm for water at room temperature.
Similar expressions were given in the literature for the
charge density of a mixture of a monovalent and divalent
ion in interacting cellular surfaces* and for charged
phospholipid membranes.*’

Comparing g from the condensation expression Eq. (5)
with (10) with z =0 yields our Grahame equation

Py—1 Po+2 |17
UpXy+UyXy+ Uy Xy
P, P, |
1—-X
= M , (12)
1+ Xy + X, + Xy

where Uy = A%/(RyKy), and Uy and U,, are similarly
defined with N or M substituted accordingly in the last
expression. Substituting X; from (2) and using (6), a poly-
nomial equation of the seventh order in the enhancement
factor P(z =0)=P, is obtained. A simple conclusion can
be drawn from that equation in the limit where condensa-
tion is not allowed and at low bulk counter-ion concen-
trations. These conditions are met when the surfactant
monolayer would be completely dissociated with
Ky=Ky=K,;=0 and at large concentration enhance-
ments P,>>1. Then X;=0, but U, X,=R,/A*=R,0*
and Eq. (12) for a single ion (either divalent or mono-
valent) takes the form

Pi=R,0’=dlexp(eWyz/T) 13)
or
T1n10 Ryo’
Vo= p logyo PP (14)

At room temperature 7 In10/e equals about 60 mV and

f

therefore that would also be the slope of the potential as a
function of the logarithm of the bulk concentration of a
monovalent ion (with z=1). For a divalent ion (z =2)
the slope will be 30 mV accordingly.’® In obtaining (14)
we note that when no condensation is allowed, the charge
on each surfactant monolayer is

g=—1le, (15)

and therefore the average charge density of the mono-
layer is equal to the inverse of the area per surfactant
chain 4. The 60-mV/decade slope is believed by some to
originate with considerations more general than the
Poisson-Boltzmann theory. In Sec. III we derive an
equivalent relation in the highly condensed regime.
There, of course, the residual charge on the surfactant is
much smaller than le. The expressions for the mono-
valent and divalent ion are different than those in the un-
condensed case that we consider here but the slopes are
still 60 and 30 mV per decade of concentration of the
monovalent and the divalent ions, respectively.

For a general system P, is calculated numerically from
(12) and used to find all the other parameters of the sur-
face. The condensation fractions I'; y, ',y and Lo
are determined by substituting P, in Eq. (3) and using Eq.
(6).

The concentration profile of the counterions for our
system is obtained by substituting the charge density
from (8) in (AS) and replacing variable ¥(z) by P(z),

Rp dP
+zy=—— , (16)
z+zg 2 f(p—1){P[1+(1D—1)C]}“2
where R, =(®’R,)" 12 C=d,, /9’ and

PP =300 ,. + 0 .+ ..
(16) we obtain

Upon direct integration of
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2 [ L
Rp fipo)
where (17)
172 172
_pHleptl—c)
f(P) (P ___1)1/2 )

We will use this equation in Secs. III A and III C to ob-
tain the falloff radii for the concentration profiles of the
monovalent and divalent ions next to the interface.
Equation (17) yields after some algebraic manipulation an
analytic expression for the concentration profile P(z) of a
mixture of monovalent and divalent ions at a distance z
from a charged interface,

P(z)=——R2——=coth2(¢)
(R2—1) ’
where
z+z z+z
R=|[1—< |cosh 9 — Lsinh 0 ,
R, 2 R,

(18)
¢=arccosh(R) .

z, is an integration constant determined by the boundary
P(z=0)—P,. Using the hyperbolic sum formulas Eq.
(18) can be rewritten as

z+z
R =(1—¢)"%cosh 9

D

with zy=2z,+r and coth(r /R )=(2—c)/c.
Substituting this value for R in (16) we obtain*
cosh’[(z +24)/Rp]

P(z)=— . (19)
sinh?[(z +z,)/Rp]—c/(1—¢)

The integration constant z, (different from z) is given by
the boundary condition P(z =0)— P, which, after some
algebra, yields the result

20 _, PY2+[(P,—1)C +1]'7?
—=In
RD (Po_l)l/Z(l_C)l/Z
Expression (19) yields a coth?[(z +z,/R,] dependence
for a monovalent ion, as can be evidenced by substituting
¢ =0 (®},+=0) in (19). This is noteworthy since this is

also the same functional concentration profile depen-
dence obtained for a dissolved polymer which originates
from a completely different Hamiltonian.*¢

Integration over the concentration profiles of the cat-
ions and anions in the solution, substituting (19) in (9),
yields the charge excess of the monovalent and divalent
ions near the surface. The excess charges on the ions at-
tracted to the monolayer ¢’ compensate the net negative
charge on the partially condensed monolayer g and since
the system is neutral as a whole it requires that g = —gq"'.
This identity was used to check the accuracy of our nu-
merical solution of Eq. (12). In all cases we obtained a
convergence better than 0.00le >¢g +gq'.

We also obtained the condensation fractions D[,

[y and Ty of the M, N, and H ions condensed on
the monolayer, the fractions of the M and H ions attract-
ed electrically in the diffuse double layer I'{); and I' [y,
and the electrical contribution to the surface pressure II,.

B. Applicability of the PBS equation for Langmuir monolayers

While the spherical PB equations requires the lineari-
zation of the concentration exponent, the one-
dimensional Cartesian PBS equation is integrable analyti-
cally for any electric potential [Eq. (A3) in the Appen-
dix]. The Cartesian PBS equation still requires a number
of assumptions that seem at first to severely restrict its
usefulness. These limitations received extensive atten-
tion. (i) It assumes that the charge on the liquid surface
is distributed with a uniform density q / A and disregards
the discrete nature of the charge g associated with each
surfactant monolayer. (ii) It also assumes point charges
for the counterions and co-ions in the solution. (iii) It
further neglects the variation in the static dielectric con-
stant near the interface as a result of the high concentra-
tion of the counterion near the interface.

It is therefore surprising that this simple model was
successful in reproducing with remarkable accuracy ex-
perimental results on phospholipid vesicle mem-
branes.*”® The exponential dependence of the electrical
potential on the bulk concentration of the counterion was
verified to be about 60 mV per decade of monovalent
counterions (see the discussion following Eq. (14) [Refs.
47(b)-49]) and so was the absolute value as predicted by
the PBS equation. The potential in these experiments
was either measured directly with an electrode above a
spread monolayer (Ref. 50), or using electrophoretic mo-
bility, ion conductance, or NMR (Ref. 51) and ESR (Ref.
52).

In a different set of experiments aimed at measuring
the error introduced in the PB equation by assuming a
fixed spatial dielectric constant the force between bilayers
was measured as a function of the distance between the
bilayer surfaces®>~® and was found to agree with the
Poisson-Boltzmann equation for distances larger than 20
A. Smaller distances were dominated by the hydration
force, and the applicability of the PB equation could not
have been tested for them.

Models that take into account the discreteness of
charge effect, such as the Nelson-McQuarrie model,*
predict that the potential of membranes with equal but
opposite charge densities would differ not only in sign but
also in magnitude. NMR and fluorescent experiments!
failed to find this asymmetry and the results agreed much
better with the simple PB equation. Failure to observe
the Esin-Markov deviation of the electric potential from
the values expected from the PB equations further indi-
cate that the discreteness of charge corrections seem to
be not significant even when the distance between the
charges is of the order of magnitude of the Debye length.

A simplistic argument suggests that since the ions are
not static but have a thermic motion, each of the ions in
solution experiences a “mean-field potential” originating
with the charges on the interface and the rest of the ions
in the solution. This time averaged potential would not
carry the discreteness information. The averaged poten-



41 CONDENSATION OF MONOVALENT AND DIVALENT METAL ... 849

tial calculated from the Nelson-McQuarrie model®® is
indeed equal to the potential obtained from a system with
its charge homogeneously spread at the interface.®® This
however cannot fully account for the validity of the PBS
equation since the ion population expression requires the
averaging over the exponents of the potential—the
Boltzmann factors—and that average does not necessari-
ly coincide with the exponent of the averaged potential.
Recent work® based on a comprehensive theoretical
work by Kjellander and Marcelja®*% seems to suggest
that when the finite size of the ions in solution and their
mobility together with the discrete ions at the interface
are taken in account, then the system behaves very much
like that expected from the simple Poisson-Boltzmann
equation.

The approximations involved in taking the ions as
point charges were further addressed by computer simu-
lations,* by finite-size corrections to the PB equation,®>%
by experiments where different size counterions were test-
ed,” and also by changing the Debye length through
changes in the concentration.*® These studies indicate
that the finite size can be disregarded for counterions
smaller than the Debye length.*

A further possible source of error in the use of the stat-
ic Poisson-Boltzmann equation is the disregard of the
possible currents of chemical products in the z direction,
perpendicular to the interface. In our system the conden-
sation products [L H], [LM], and [LN] are bound to the
monolayer at the surface of the liquid. Therefore in a sta-
tionary system the current density of each surface prod-
uct is J A,=0. We also assumed for simplicity that the

cations and anions in the solution are completely dissoci-
ated and therefore there is no “creation” or ‘‘annihila-
tion” of their products in the bulk liquid. It is important
to note, however, that even if such reactions were to be
allowed, the concentration enhancement P(z) of the vari-
ous components of the components of a reaction at any
distance z from the surface would have still satisfied the
chemical equilibrium equation

©, 2Py (2)  P(2)®).[1/P(2)]P
@ 45(2) ¢€AB]
b b
_ PPy _x
- TR aB) -
Of 4p)

Thus the stationary concentration profile at the interface
is not accompanied by currents of the chemical products
(and the associated electrical currents). When
concentration-dependent activities are required in the
chemical equilibrium equations (generally at high concen-
trations), then the equilibrium equation is not satisfied
simultaneously for every z, and steady currents might be
significant.5’

In conclusion, for systems where the surface charges
are bound to the interface, as is the case for the Langmuir
systems and for nonpolyvalent ions, there is mounting ex-
perimental data and theoretical work to suggest that the
Poisson-Boltzmann equation has a range of validity far
wider than that which one could have naively expected
from the approximations leading to this equation.

III. THE POISSON-BOLTZMANN-STERN
EQUATION FOR A LANGMUIR MONOLAYER

The Grahame equation for the classical Cartesian
Poisson-Boltzmann equation for a solution of a mixture
of divalent and monovalent counterions is of the third or-
der in the electric potential exponent at the interface
exp(eW/T) and was solved analytically.*> Equation (12)
for the Poisson-Boltzmann-Stern system yields a
seventh-order equation in the surface potential exponent
and requires a numerical solution. We find, however,
that when only one type of counterion exists in a dilute
solution, either monovalent or divalent, the parameters of
the charged Langmuir monolayer in the PBS equations
can be approximated by simple closed-form expressions.

Consider the Grahame equation (12) in the dilute solu-
tion limit. This condition is equivalent (see below) to
having a large enhancement factor P,. In this limit Eq.
(12) reduces to

I_XM
1+ X+ Xy + Xy

=—(XgUg+XyUy+Xy Upy)'? .

(20)

A. The monovalent case

The equations for the proton H and the monovalent
ion N are identical. The difference in their effect on the
monolayer originates from a difference of about five or-
ders of magnitude in their equilibrium constants.

When the concentration of the monovalent ion N is
high enough to dominate the system and when P, > 1 (20)
takes the form

1

— —_ 1/2. 21
1+ Xy (UnXy) (21)

q:

For Uy <1 the solution of (21) yields
Xy=Uy'P=2>1. (22)

Substituting X back in (21) and using (5) one obtains the
net average charge per surfactant

g=T y—1=—-Uy’+iU}’s0. (23)

The last expression indicates that the charge on the sur-
factant monolayer for Uy <1 is small. The original
charge on the monolayer is neutralized by condensation
of the monovalent ions on the monolayer chains so that
I y=1—UY?*<1 and r,-= 320. The concentra-

tion enhancement of the monovalent ion is

(24)

in the high condensation limit Uy <<1. The surface con-
centration of the monovalent ion in this regime

e -—UA?]/3_%
n+=Po®y+= T Ky (25)
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is independent of the bulk concentration of the mono-
valent ion <I>j’v+.

Numeric examples for the monovalent hydrogen and
sodium counterions are given in Table I. The condensa-
tion parameter U for both is smaller than unity, although
it is still about six orders of magnitude larger for the sodi-
um ion. Consequently the surfactants in both systems are
primarily condensed but the charge on the monovalent
ion is not negligible (—0.28¢). Note that the simple ap-
proximate equations developed in this section for the
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than in the noncondensing regime (compare the values
for the surface concentrations of the two cases in Table
D.

The falloff radius 7y of the concentration profile for a
monovalent ion attracted to the surface is defined as the
distance from the interface at which the concentration
enhancement P™(ry ) drops to half its value at the surface
PY. With Uy <1 we obtain from Eq. (16) after expansion
to second order in Uy <1

charge and the monovalent ion concentration in the con- N ~(2'2—1)P; 2 =0.414P; 2

densed regime [Eqgs. (23) and (25)] are in excellent agree- Rp

ment with the values obtained from the numeric solution KyA 1/3

of the seventh-order Grahame equation (12) for both =0.207 - 3 s (26)
ions. These values should be compared to those obtained Rj

from the conventional Poisson-Boltzmann equations (14)
and (15) derived by Gouy** and Chapman.’

The surface concentration of the monovalent ion is in-
dependent of the bulk concentration in both regimes.
Not surprisingly the surface concentration of the coun-
terions is very high in the noncondensing regime, as is the
surface potential.

In both the strong condensation regime and also the
noncondensing regimes the surface potential ¥, will
change by about 59 mV per decade of bulk concentration
change of the monovalent ion. This is due to the ex-
ponential dependence of the potential in both regimes on
the monovalent ion bulk concentration ¢5’v+ [compare
Egs. (14) and (24)]. Therefore the classic 59-mV per de-
cade slope does not distinguish between the condensed
and the dissociated state. The absolute value of the po-
tential in the condensed regime is many times smaller

i.e., in the limit of total electrical neutralization, ry is in-
dependent of the bulk concentration of the monovalent
ion. ry can be used to obtain a rough estimate of the to-
tal charge g’ electrically attracted to the surface per one
surfactant monolayer. Using Eqgs. (24) and (26) we obtain

1>>q'=ary AP, . <Uy’=gq . 27
a is of the order of unity and is introduced to compensate
for the approximation in the integration. This result is
consistent with the charge neutrality requirement for the
whole system, i.e., the attracted charge g’ would be equal
in value and opposite in sign to the charge on the mono-
layer g. The possible high concentration of the mono-
valent ion at the surface [see Eq. (24)] is still consistent
with the small total charge excess attracted to the surface
since the excess radius ry is very narrow. For hydrogen

TABLE I. Using the equilibrium constants K, from Ref. 68 the condensation parameters U = 4?/(K,, R,) for a surfactant spread
on a solution with dilute concentration of HY, Cd, Ca, Ba, and Na are calculated for an area of 20 A? per surfactant. These are the
equilibrium constant values that we used in all our fits. Using these values the ion concentration near the surface was calculated by
solving numerically the seventh-order Grahame equation (12), and using formulas (24) for the monovalent and (38) for the divalent
ion. For comparison the values for the Poisson-Boltzmann equation without condensation are also given [Eq. (13)]. Next the charge
per one surfactant chain Q is given using the Grahame equation and our formulas (23) and (36). For comparison the values for a sys-
tem without condensation are also given [Eq. (13)]. From these values it is clear that (i) the monovalent and divalent ions are primari-
ly condensed, with the divalent ions more so than the monovalent; (ii) the simple explicit expressions (23) , (36), (24), and (38) provide
very good approximations and a numerical solution of Eq. (18) is not required. The asterisk shows a value extrapolated from low-
concentration data.

Ion H* Ccd*t Ca*?t Ba?* Na™*

log,K (A 3/particle) 8.090 5.150 3.721 3.561 2.449*
U(4=20A7 7.44x1078 6.49X 1073 1.74x 1073 2.51X1073 3.25X 1072
®*(mol/1)

Eq. (12) 0.0032 0.0116 0.292 0.415 14.88

Eq. (24) 0.0032 14.57

Eq. (38) 0.0116 0.290 0.411

Eq. (13) 177 177 177 177 177
Q (electron)

Eq. (12) —0.0042 —0.0079 —0.040 —0.047 —0.284

Eq. (23) —0.0042 —0.285

Eq. (36) —0.0080 —0.040 —0.048

Eq. (15) —1 —1 —1 —1 —1
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we obtain ry =25 A. This distance is considerably small-
er than the Debye radius R =(<I>f’V+R0)_'/2 [see Eq.
(16)] which for a neutral solution (pH=7) yields
R, =2000 A. More importantly, the algebraic form of
the Debye radius would not satisfy the charge neutrality
of the system and the association’!3* of R, with the con-
centration falloff radius seems to be inaccurate.

B. Two different types of monovalent ions exist
in the subphase solution

The case where both a monovalent ion and a proton
coexist in the solution has practical implications as it is
impossible to have a monovalent solute ion in aqueous
solution without the presence of hydrogen ions. When
the two monovalent ions N* and H" coexist in the sub-
phase solution and are dilute enough so that P,> 1, Eq.
(12) takes the form

1
qt+X;

g=— =—(UX)"?, (28)

where
X=Xy +Xy=(Ky® . +Ky®® )P, ,
U;=A4%/(RoK;) ,
and
L

b,
Ky— —+ v
@ b,

Vol b,

K= (30)

Equation (28) is of the same form as the equivalent ex-
pression for a single-type monovalent ion and we can gen-
eralize the results of Sec. IIT A to this case by substituting
the single-ion quantities by their correspondent combined
quantities defined by Eqs. (29) and (30). The combined
chemical equilibrium constant K; is a weighted average
of the chemical equilibrium constants of the constituent
ions multiplied by their fractional concentrations. The
condensation condition U; <1 for this combined system
maintains the same formal form as that of the individual
components. The total charge is given by

g=T y+T y—1=—U*+1U¥350. 31)
The concentration enhancement for both types of ions is

the same:

—1/3_ 2
U, 5

Plm— 2 (32)
Ko7,

is the concentration enhancement in the total condensa-
tion limit U, << 1.
The surface concentrations of each monovalent com-
ponent is dependent on its relative bulk concentration
—1/3 _ b
UI %— ¢N+

K, <1>’;+

’

—plgspd —
jv+—Po¢N+—

(33)
vy

s =plpb = .
+ 0 +
H H K; (I)l;+

However, the total surface concentration of the two types
of monovalent ions

—1/3_2
U, 5

S =@ L +PS ,=
+ + +

1 N H K,

is independent of their bulk concentrations just as in the

single monovalent case. The condensation fractions of

the two ions are given by

Ky®® .,
r.[LN]"_‘ iv (l_‘Ull/B) y
K;®;
+
Ky®b
F[LH]:—:I 1=U}"?) .
K ®;

C. The divalent case

When the concentration of the divalent ion is high
enough to dominate the system and when P> 1, then
Eq. (12) takes the form
XM - 1
Xy +1

q=

=—(Up Xy )%, (34)

where X, =KM¢>1;{2+P(2) and Uy, = A?/R,K,,. For prac-
tically all cases of interest for a divalent ion U,, <1 using
K,, from Table I, the solution of Eq. (34) then yields

Xy=~1-2U}*<1 (35)
and
q=2T 1y, —1=—Us/*+ Uy 50 (36)

[see Eq. (5)]. The absence of charge on the monolayer is
achieved in the divalent ion case by having approximate-
ly half of the surfactant chains condensed with the
(LM), species carrying + le and the other half dissociat-
ed with the charge — le so that

T, +=t1-Uy/")sL, T, =11+Uy/HzL. 37
The concentration enhancement of the divalent ion is
1-2U,/?
(PAR=—T" (38)
Ky®.

in the limiting case when U,; < 1. The surface concentra-
tion of the divalent ion is

— p2gb
@50 =PFOL 5,

=[1-2U{*1/K,, . 39
The expressions for the concentration enhancement, the
uncompensated charge, and the surface concentration
take different algebraic forms for the divalent ion as com-
pared to the monovalent ion. However, in both cases the
surface concentration is independent of the bulk concen-
tration, and the condition U <1 where the monolayer is
almost completely charge free is identical for both. The

surface concentration ®;, , is only slightly dependent on

the density of the monolayer. This is in contrast to the
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monovalent case where the surface concentration is pro-
portional to 4 ~2/3. The different dependence originates
with the two different compensation mechanisms for the
two cases. In the monovalent ion case charge compensa-
tion occurs when almost all the surfactant monolayers
are condensed and Xy >>1. In the divalent ion case only
half of the surfactant monolayers need to be condensed
with the divalent ion for complete charge neutrality so
that X, =~1. Therefore the area per surfactant scales out
in this approximation. In Table I we show the charge per
surfactant and the surface potential for the divalent bari-
um, calcium, and cadmium that we later use in our fits to
experiments. Note that just as in the monovalent case
the simple approximate expressions (36) and (39)
developed in this section for the divalent strong condens-
ing case gives values indistinguishable within the accura-
cy of the calculation, from those obtained by numerically
solving the Grahame equation (12).

For the falloff radius r,, of the concentration profile of
a divalent ion attracted to the surface, we take the dis-
tance from the interface at which the concentration
enhancements PM(r,,) drops to half its value at the sur-
face Py (0)=P¥. When U, <1, expanding Eq. (16) to
second order in Uy, <1 we obtain after somewhat lengthy
algebra

172
r 1/2 __ 172
—Mz(—2~———”3—1>(;1 ~0.358P; ' =0.179
Ry 2

Kum
Ry

(40)

Here again, the algebraic form of r,, is different from the
monovalent expression, but as in the monovalent case it
is also independent of the bulk concentration of the di-
valent ion. ry, can be used to obtain a rough estimate of
the total electrically attracted charge per one surfactant
monolayer

1>>q'=ary A®} . =Uy’=—¢q . (41)

a is of the order of unity and is introduced to compensate
for the approximation involved in replacing r,, as the
mean integration value over the concentration profile.
This result is also consistent with the charge neutrality
requirement for the whole system that is ¢ +¢q'=0. For
divalent cadmium we obtain a falloff radius ry=5.6 A.

D. The divalent and the monovalent ions coexist
in the solution

In the following discussion we refer to index I as the
subscript for a single monovalent ion, but the conclusions
can be generalized in a straightforward way using the re-
sults of section III A for any number of monovalent ions.
From the previous discussion we concluded that when
both U; <1 and Uy, <1 then the monolayer is almost to-
tally electrically neutralized and the residual charge ¢ per
single chain is much smaller than le [see Egs. (23) and
(36)]. The dissociated monolayer is neutralized with
complete condensation when a monovalent ion is dom-
inant in the solution but requires only half of the divalent
ions for complete condensation. The enhancement factor

P(z=0)=P, is given by Egs. (32) and (38), respectively,
when one of the ions is dominant in the solution. It will
always take the smaller of the two values in the presence
of both ions since by reaching this enhancement factor
the total neutralization of the monolayer is achieved.
This is demonstrated on the condensation diagram (Fig.
1). The axes of this diagram are log,,P¥ and log,,P..
Contour lines of the enhancement factor log,,P, calculat-
ed using Eq. (12) appear as straight parallel and perpen-
dicular lines on this diagram. The inflection point of the
contour lines occurs when the enhancement factors of the
two ions are equal. Using (38) and (32) we obtain the
equation for the locus of the inflection point to be a
straight diagonal line that crosses the origin on the con-
densation diagram (heavy diagonal line on Fig. 1)

logoP§ —log,oPy’ = %IOglo(KM‘pﬁ,H )
—log,o(K; 7, ) —4log,U; =0 .

(42)

It divides the condensation diagram into a lower right tri-
angle dominated by monovalent ion enhancement factor
P! and an upper left triangle dominated by the divalent
metal ion enhancement factor (P} )* given by Egs. (32)
and (38), respectively.

From Egs. (3) and (6) we obtain the ratio between the
condensation fractions of the two ions

_ T Xy
XM ’

N

I-‘LM

It would be incorrect to use expressions (29) or (35) for
Xy or X,, because they were obtained for a system with
only one kind of counterion, either monovalent or di-
valent but not both. Using (2) for X, and X,, and with
(6) we obtain

log,06; 310810(K1q>11’+ )—log (K ®? 2+ )—10g 0P

=21log,oPy’ —log 1P} —1og1oPy

Note that PY and P! are free variables defined by the
bulk concentrations of the monovalent and the divalent
ions using Eqs. (24) and (38). P,(P},P{), on the other
hand, is the actual concentration enhancement of the sys-
tem, which depends on P} and P} and can be determined
using the condensation diagrams (Fig. 1) or the Grahame
equation (12).

As in the enhancement factor diagram we can also
divide the condensation diagram into an upper left trian-
gle that corresponds to states with divalent ion condensa-
tion and lower right triangle that corresponds to states
with monovalent ion condensation. However, the transi-
tion region between the divalent condensed and mono-
valent condensed monolayer states does not coincide with
the transition region defined by the monovalent and di-
valent enhancement factors but is shifted horizontally
into the divalent ion enhancement region by 1log,,U;.
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The horizontal transition width Alog,,P§=Alog,,© be-
tween the monovalent and divalent condensation regimes
can be estimated. The condition where there is only 10%
monovalent condensation corresponds to
O,,=I'; /T ;4=0.1/0.45=0.2. The condition where

853

the monovalent ion is 90% condensed corresponds to
O,,=I' /T [4=0.90/0.05=18. The condensation
transition region between the monovalent and divalent
condensation regimes Alog,,©O; =log,0,,—1o0g;0,, is
therefore equal to Alog,,P{=1.95 as can also be seen on

0.0 0.0

— 3
amM = _UM

40 é.o
Iogm(Pg)

0.0

FIG. 1. Universal condensation charts for a surfactant monolayer spread on aqueous solution of a divalent salt. The coordinates
are log,o(P§') and log,o( P§’) where the enhancement factors for the monovalent and divalent ions P¥ and (P} )? are given by Egs.
(32) and (38). It is evident that for low-bulk divalent metal ion or proton concentrations (Di{” and <l>;+, the charge per surfactant

molecule g is very small (a). In comparison a completely dissociated monolayer would yield a value of g =—1(e). The straight
dashed horizontal and vertical contour lines of log,o( Py ), where P, =<I>;{ + /<l>l‘f[Jr is the Boltzmann concentration enhancement factor,

as shown in (b). The value of log,o(P,) is calculated using Eq. (12) and is equal to that of the X and Y axes, demonstrating that the
concentration at the surface is independent of the bulk concentrations, and is given by Egs. (32) and (38). The inflection points in
these contour curves indicate the conditions where the proton and divalent ions are equally dominant in determining P,. The locus
of these inflection points is indicated by a heavy diagonal line. The area to the right of this line describes systems whose enhancement
factors are given by P{. The area on the left of this line is of systems with the enhancement factor PY¥. The fractional condensation
of the metal ion T .y + is indicated by the solid diagonal contour lines. These lines lie in the region where the enhancement factor is

given by the divalent ion enhancement (P} )2. This results from their different valency and thereby a different algebraic dependence
of the compensation mechanism. The fact that the condensation transition region is governed by (P} ) allows us to obtain the surface
equilibrium Eq. (46). The maximum metal ion condensation exceeds 0.5 ions per surfactant molecule at high metal ion concentra-
tions for P > 1. In this situation the monolayer is positively charged. This charge reversal is strictly a divalent ion effect. High hy-
drogen concentration (large P}) can at most electrically neutralize the monolayer.
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the condensation diagram (Fig. 1). Therefore, in a system
with —1log, U, > 1Alog,;©, =1, the condensation equa-
tion (43) takes an especially simple form. In this impor-
tant case, which occurs when the monovalent ion is pri-
marily hydrogen (pure aqueous divalent metal ion solu-
tion or such solution with only low additional concentra-
tion of monovalent ion), Py(PY,PL)=(P})? in the tran-
sition region and can be substituted in (43)

Py K o7,

- U,’/3P(’) - (KM(DLH)I/z :

(44)

N

Hence we find that the loci of fixed condensation fraction
ratios ©; are straight diagonal lines on the universal con-
densation diagram with log,,P} and log,,P} as its coor-
dinates (Fig. 1).

Since the monolayer is virtually completely condensed
and therefore neutral we can derive a simple expression
for the monovalent ion and the divalent metal condensa-
tion fractions per one surfactant molecule:

1 SH

Fw=g 32 "u=e 12 @3

O, can take values between O and oo, and the ranges of
values that I'; iy and ', can take are O to 1 and £ to O,
respectively, consistent with our condensation picture.
Substituting ©, from Eq. (43) in Eq. (45) and using the
equilibrium constants of Table I we quantitatively identi-
fy the composition of the surfactant monolayer and this
constitutes one of the central results of our derivation.
Equation (45) is valid for all the divalent ion monolayers
for concentrations d)ng <1/K,, (e, Pé” > 1) and thus

covers the range of concentrations of interest for Lang-
muir materials.

Equation (12) reveals a feature special to the divalent
condensation at high divalent ion concentrations. When

K beilp > 1 the charge condensed on the monolayer rev-

erses its sign and becomes positive. This occurs with the
condensation fraction I';, . >3 and I', - <5. The con-

centration enhancement P, becomes smaller than unity
(see the upper third of the condensation diagram) in an
attempt to deplete the concentration of the divalent ion
D 2s =(P0)2<I>Klz+ so that the total charge condensed on
the monolayer would be minimal. In the monovalent
case a full ion condensation I'jy=1 or Xy >>1 can at
most drive g very close to zero [Eq. (21)] but cannot over-
compensate the monolayer. This charge reversal is also
clearly seen on the condensation diagram (Fig. 1), where
for P} <1 the contours of condensed charge become pos-
itive while high hydrogen concentration (small P} on the
right portion of the condensation diagram) cannot re-
verse the charge on the surfactant to be positive. It is in-
teresting to note that although the divalent and mono-
valent ions have different algebraic forms in the conden-
sation equation, the condensation condition for both

cases takes the same algebraic form
U,=A4%/(R,K ,)<1.

IV. COMPARISON BETWEEN EXPERIMENT
AND THEORY

The addition of metal ions to the subphase changes the
properties of the monolayer. The effect of metal ions in
the subphase solution on straight paraffinic acid surfac-
tant was observed as changes in the 7-A4 diagrams of
these materials (see Refs. 15 and 18 for divalent ion
effects and Ref. 19 for monovalent ion effects). Experi-
ments aimed to measure quantitatively the segregation of
metals ions to the monolayer-liquid-surface interface
could be crudely divided into two groups. (i) Experi-
ments that measure the amount of metal ions that segre-
gate to the liquid surface using in situ radiotractor tech-
niques® 2% where soft characteristic radiation from a ra-
dioactive metal ion in the solution was collected and a
model was used to relate this quantity to the total metal
ion segregating to the surface. (ii) Determination of the
amount of metal in the material collected from the liquid
surface using chemical analysis, IR spectroscopy, photo-
electron spectroscopy, or neutron activation analysis.'?
Recently Richardson and Roser!> measured the
reflectivity of Langmuir monolayers spread on water and
extracted from the reflectivity profile the amount of metal
ions attracted to the monolayer. The synchrotron NTEF
technique was used recently to obtain a direct and abso-
lute measurement of the amount of metal segregated to
the monolayer.*

We compiled and digitized most of the experimental
data known to us where quantitative accumulation of
metal ions from the subphase was reported as a function
of subphase pH or divalent and monovalent ion concen-
trations in the subphase. Several representative experi-
mental results together with our model predictions using
Eq. (12) (solid line) and the approximate Eq. (44) are
presented here. It should be emphasized that there are
no fitting parameters in this model. The calculated
curves to all the above experiments were done using the
equilibrium constants tabulated in Table I. Equilibrium
constants for long chain fatty acids and their salts are
scarce. However, for carbohydrate chains with the num-
ber of carbon atoms n >3 the equilibrium constants are
dependent primarily on the polar head ot the acid (Ref.
68). The change in the equilibrium constants as a func-
tion of chain length was negligible as compared to the ac-
curacies of the measurements and we primarily used
values given for butanoic and propanoic acid. These
values should be compared to those measured and report-
ed in the vesicle membrane literature. For the associa-
tion constant of phosphatidylserine (PS) and calcium ion
for example, the range of values reported in the literature
covers five orders of magnitude, from 0.1 1/mol (165
A3/particle),®™  to  1X10* 1/mol  (165X10*
A 3/particle).”! Careful analysis of the experimental tech-
niques leading to these values’” indicated that the low
values were due to the assumption which was proved in-
correct,*”’37* that monovalent ions do not bind to the
membrane while the high values originate with the er-
raneous assumption that the divalent ion next to the in-
terface is all bound and condensed on the membrane.
When both assumptions are corrected, then the associa-
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FIG. 2. Experimental fractional condensation of Ca on
stearate acid as a function of proton concentration in the sub-
phase solution (Ref. 9). The Ca concentration in the bulk is
1X107* The solid line is calculated using our Eq. (12) with the
equilibrium constants from Table I. The dashed line was ob-
tained using the surface equilibrium Eq. (46) approximation.

tion value obtained for phosphatidylserine (PS) and the
calcium ion is of the order of 10 mol/l and of phospha-
tidylserine (PS) and the sodium ion is of the order of 0.5
mol/l and is consistent with electrophoretic measure-
ments.”? These values are larger by a factor of 3 than

]
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FIG. 3. Experimental fractional condensation of Cd on ara-
chidic acid as a function of proton concentration in the sub-
phase solution (Refs. 12 and 29). The Cd concentration was
10~* mol/1 (open circles) (Ref. 29) and 3X 10™* mol/1 (solid cir-
cles) (Ref. 12). The solid and dashed lines are calculated using
our Eq. (12) with Ky;=84.8 and Ky =7.40X10* mol/1 from
Table I. The approximate surface equilibrium Eq. (46) yielded
curves indistinguishable from those obtained with (12).
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FIG. 4. Experimental fractional condensation of Cd, | RN

at pH=28 on arachidic acid as a function of the Cd salt concen-
tration in the liquid bulk (Ref. 12). The solid line is calculated
using our Eq. (12) with K4 and Ky from Table I. The dashed
line is calculated with the approximate equilibrium Eq. (46) and
provides a good approximation.

those we used in Table I (3.2 and 0.17 mol/1 for calcium
and sodium, respectively). The difference can be attribut-
ed to the different surfactant (fatty acid and phospha-
tidylserine). In any case, since concentrations in the
Langmuir systems typically vary over several decades
and are generally observed on a logarithmic scale (such as
pH), we consider the fact that the equilibrium constants
are of the same order of magnitude to be supportive of
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FIG. 5. Experimental fractional condensation of Ca ion on
arachidic acid as a function of a Na ion concentration in the
liquid bulk (Ref. 11). The Ca concentration in the subphase
solution is 1.7 X 107> Mol/1 and the pH of the subphase solution
is 8. The solid line is calculated using Eq. (12) with the equilib-
rium constants from Table I. The dashed line is calculated with
the approximate equilibrium equation (46). See Sec. V E for the
discussion of the applicability of (46).
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our approach.
The condensation fraction FLCa+ of divalent Ca ions

on a monolayer of stearic acid increases when the pH of
the solution is raised (Fig. 2). When the divalent Cd ion
concentration in the subphase solution is raised, then the
onset of the CD metal substitution in a monolayer of ara-
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FIG. 6. Condensation (a) and accumulated charge (b) for the
experimental conditions of Fig. 5 as a function of Na ion con-
centration pN= —log10¢;a+ in the subphase. The curves were

calculated by solving the nonlinear Eq. (12). The equations of
Sec. III provide a satisfactory approximation. At low Na-ion
concentrations ¢;a+, the total charge on the monolayer is very

small, ¢ =—0.04¢ /(surfactant molecule) [Eq. (36)]. The di-
valent Ca ion is almost completely condensed on the monolayer
in the form [LM™*] with average fractional condensation

I“LCa+z%(l+q)=0.46 [Eq. (37)], i.e., about every second sur-

factant molecule L is condensed with divalent Ca ion. The
amount of Ca’* ions electrically attracted to the surfactant for
low Na concentrations I' Ca2+=0'04 e/surfactant molecule is

equal to the charge on the monolayer, is small, and is not indi-
cated on the figure. The Ca concentration near the surface is,
however, not negligible @, 2+ =0.29 mol/1 [Eq. (39)]. This con-

centration is required to have the Ca ions condense on the
monolayer and neutralize it. When the bulk Na concentration
¢;a+ is raised, the surfactant monolayer is charged. Using (23)

we obtain the charge on the monolayer to be g =-—0.28
e/surfactant and the electrically attracted Na fraction to be
[ +=—9=0.28/ (surfactant/molecule). The surface concen-
tration of the Na ion ® ,=14.5 mol/l is given by Eq. (25).
Thus the monovalent ion exists in both states: condensed on the
monolayer [LNa] and electrically attracted to the liquid mono-
layer interface Na*.

chidic acid occurs at lower pH (higher hydrogen concen-
tration) (Fig. 3). This effect can also be evidenced when
the amount of condensed divalent Cd metal is measured
as a function of the metal concentration in the subphase
(Fig. 4). The addition of a monovalent ion to the sub-
phase solution charges the monolayer. The equilibrium
coefficient for monovalent ions is typically one to two or-
ders of magnitude smaller than that of the divalent ions
and therefore Uy is larger than that for the divalent ion.
More importantly, because of the different form of the
condensation expressions (28) and (34) for the mono-
valent and the divalent ions the residual charge on the
monolayer has a different power-law dependence on Uy
as compared to Uy, [see Egs. (31) and (36)] which further
favors the electrical attraction mechanism. For sodium
g=—U}3=~—0.28 for our example while for the di-
valent calcium ¢ = — U}/*~ —0.04. The charging of the
monolayer that occurs when the monovalent ion concen-
tration is increased, was noted by Helm and collaborators
(Ref. 33) in a system with a single monovalent ion in the
subphase of a lipid monolayer. They assumed, however,
that the chemical equilibrium constant of dissociation K
of the monovalent ion from the lipid is zero and therefore
their calculation predicted a completely dissociated
monolayer. We analyzed a system that contains a mono-
valent Na and also divalent Ca ions in the subphase. Our
calculations provide here also good agreement with ex-
periments where the divalent ion and the monovalent ion
compete in their segregation to the liquid surface (Fig. 5).
In Fig. 6 we show the amounts of condensed divalent
metal, monovalent metal, and hydrogen, as well as the
amount of monovalent metal attracted electrically to the
surface calculated as a function of the monovalent ion
concentration in the subphase. The concentration excess
of the monovalent ion which is relatively small when the
divalent ion neutralizes the monolayer becomes substan-
tially larger when the monolayer is compensated with the
monovalent ion. This is in agreement with the finding
that monovalent compensated surfactant ions carry
significantly more charge than their divalent counter-
parts.

V. DISCUSSION

A. Comparison with earlier models

In the past, attempts were made to understand experi-
mental adsorption diagrams along the ideas of Langmuir
for adsorption of gases on metals. This approach was
suggested by Matsubara and his collaborators’ and used
by several researchers to interpret their adsorption
data.!'”!* Their model considers the surfactant mono-
layer as a 2D lattice where each surfactant monomer is
occupied by a condensed metal ion or a proton (the full
condensation regime in our treatment Uy <1 and
Uy <1). They further suggest that the interaction be-
tween two neighboring surfactant monolayers would be
strongly dependent on the type of ions condensed and
their nearest neighbors and thus the energy difference €
between the two types of neighbors would require the
modification of the equilibrium equations. This
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modification was implemented by having e-dependent ac-
tivities substituted in place of the bulk concentrations in
the ordinary chemical equilibrium equations [such as Eq.
(2) in this text]. From the fit of their model to experimen-
tal data they obtained a value for their phenomenological
mixing parameter €. The Langmuir-Bragg-type mixing
model could describe gas adsorption on a 2D matrix. It
is, however, inadequate for the description of the adsorp-
tion mechanism from electrolyte solution since it ignores
the concentration variation of the constituent electrolyte
ions @, ,4, @+, and P, near the surfactant charged

interface due to the electrical attraction.”” In reality our
calculations show that the electrical attraction of the cat-
ions to the surface enhances the cation concentration by
several orders of magnitude and is the primary effect that
defines the adsorption-condensation characteristics.
Matsubara et al. used bulk concentration values in their
chemical equilibrium equation [similar to our Eq. (2)].
Therefore, his model required the introduction of an
empirical parameter € that had the effect of modifying
the values of the concentrations and by substituting these
empirical activities in place of concentrations in the
chemical equilibrium equations. It is demonstrated here
that the Poisson-Boltzmann solution captures the major
features of the interaction of partially dissociated surfac-
tant ions with the monovalent and divalent ions in the
subphase solution. We were able to reproduce the main
bulk of metal condensation data accumulated over some
40 years using the numerical solution of Eq. (12). No ad-
justable parameters were used and no new mechanisms
had to be invoked in our model. We further showed that
it is not necessary to resort to a numerical solution since
for the ranges of interest for Langmuir systems simple
analytical expressions provide a satisfactory approxima-
tion. The agreement between the experiments and the
calculations presented here are also an indication that the
interaction with neighboring-site ions are small enough to
be ignored in evaluating the condensation state of the
surfactant beyond the electrical interaction. Our calcula-
tion implicitly includes the change in the interaction
within the surface charged monolayer by allowing the
surfactant monolayer to acquire a partially neutralized
state that is determined by solving equations (11) and (12)
self-consistently.

B. The condensed and the attracted systems

Another result of our model is the realization that the
metal ions in the proximity of the surfactant are always
found in two distinct states: condensed on the monolayer
and electrically attracted to it. One cannot exist without
the other and the ratio between the two defines the disso-
ciation level of the monolayer. The sum of the charges of
the tWo ¢' =¢ (ondensed T 9 attracted 1S €qual (after normaliza-
tion per one surfactant chain) to one electron charge +e
and thus maintains the neutrality of the system as a
whole. The uncompensated charge left on the monolayer
is ¢ = —e +qondensea- This is the charge responsible for
attracting the solute cations and for creating the concen-
tration excess of the electrolyte ions in the subphase near
the surfactant interface. This ion excess determines,

through the chemical condenation equilibrium between
the ions and the surfactant, the amount of charge that is
actually condensed on the monolayer g ngenseq- W€ fur-
ther find that surfactant systems can be divided into two
groups: (i) systems that are condensation driven, and (ii)
principally dissociated systems. Type (ii) monolayers pri-
marily electrically attract the subphase ions but little
chemical condensation takes place. This occurs in sys-
tems where the condensation energy cannot offset the
electric energy stored in the excess electrolyte layer. We
identified a simple criterion that identifies to which of the
two a system belongs. Using equilibrium constants listed
in the literature, we find that all the surfactant systems
with a divalent metal ion and also, but to a lesser degree
of completion, monovalent ion aqueous solutions of fatty
acids satisfy the condensation conditions Uy <1 and
Uy, <1 and belong to the first group.

C. Comparison between the condensed 2D surfactant systems
and conventional 3D solution

The condensed systems of type (i) attempt to primarily
minimize the free charge on the surfactant by having the
positive ion condense on the monolayer and almost com-
pletely neutralize the negative monolayer charge. In or-
der to do so, the monolayer controls the concentrations
of the electrolyte ions near the surface ®; and brings
them to a level that will satisfy a full chemical condensa-
tion. The surface concentration at which full condensa-
tion occurs depends on the chemical equilibrium constant
of the surfactant-ion interaction and on the surface con-
centration of the monolayer, but is almost independent
on the bulk subphase concentration (or any other bulk
quantity). For this reason the surface concentration of
these systems is (almost) completely independent of their
bulk concentrations [Egs. (33) and (39) in the text].
Therefore, even miniscule amounts of metal ion bulk im-
purities (10~ !! mol/I in high-pH systems in some cases)
result in substantial concentration near the surfactant
and can dramatically alter the monolayer qualities. This
buffering effect at the interface manifests itself in stabiliz-
ing the surface concentration and by neutralizing the
charge on the monolayer. In Figs. 7 and 8 we compare
the equilibrium condition obtained using our Poisson-
Boltzmann equation (12) with the hypothetical system of
“3D surfactant material” dissolved in the solution but
with all other properties similar to the 2D monolayer sys-
tem. In the 3D case the hydrogen condensation on the
“3D surfactant” ®{py; is very small throughout the
whole range of the divalent ion concentrations while the
divalent ion concentration CDf‘}?M] is negligible below
pM =4 and then smoothly rises and obtains the max-
imum value 1 at about pM =1.5. Similarly the charge on
the 3D surfactant is close to —le up to concentration of
pM =4 and then rises smoothly and reaches the max-
imum value of +1 e by the time the metal is completely
condensed on the monolayer. In our real 2D case, the
electrochemical balance adjusts the concentrations of the
different ions in the solution near the surfactant in order
to minimize the charge on the monolayer. At low di-
valent ion concentrations the buffering effect of the sur-
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FIG. 7. Condensed divalent metal [LM] and hydrogen [ LH]
for a surfactant monolayer spread on aqueous solution of di-
valent ion and the equivalent values that would have been ob-
tained if the surfactant were to be dissolved in the solution. The
buffering effect in the surfactant case stabilizes the values
[LH]=1 and [LM] z% required in order to electrically neutral-

ize the charge on the surfactant. See the discussion in Sec. V.

factant monolayer, organized as a plane sheet on the
liquid surface, manifests itself in raising the concentra-
tion of the hydrogen near the surface @}, + to a level that

will maintain full condensation of the hydrogen on the
surface (' 1S 1). When the bulk divalent ion concen-
tration q)1bw“ is raised, the concentrations of both ions at

the surface @} .. and @} . are adjusted so that the

charge on the monolayer will still be negligible. At even
higher divalent ion concentrations (pM > 5) the concen-
tration of the divalent ion at the surface ®; ,. obtains a
value close to 1/K,, and stabilizes the condensation frac-
tion of the divalent ion to be I';)~3. At concentra-
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FIG. 8. The charge on the monolayer for the conditions of
Fig. 7. In the hypothetical bulk condition the surfactant is first
negatively charged and when the divalent ion concentration
reaches a certain value it soon becomes positively charged. In
the surfactant case the charge is neutralized for most of the con-
centration range of the divalent ion. For concentrations above
pM =1 the monolayer cannot control the concentration of the
divalent ion near the surface and the monolayer gets to be posi-
tively charged.

tions higher than pM =0 the monolayer cannot adjust
the surface concentration efficiently any more, and the
surface metal concentration @}, rises. The monolayer

is overcompensated by excessive divalent ion condensa-
tion and consequently is being charged (Fig. 8). The cat-
ion excess near the surface that is required for the com-
plete neutralization seems at first to violate the charge
neutrality of the system as a whole since the excess
charge carried by the cations should be cancelled by the
residual charge on the monolayer. The high surface con-
centration of the divalent cation is, however, achieved
with only small total charge excess in the subphase solu-
tion. This is because the concentration profile of the dis-
solved cations is appropriately narrow [see Egs. (27) and
(41)]. The divalent ion concentration profile P?%(z) would,
with everything else similar, create a charge excess larger
by the order of P, but also narrower as compared to that
of the monovalent ion with concentration profile P(z).
This is consistent with our result that divalent ions have a
considerably greater tendency to condense than mono-
valent ions and therefore the condensed monolayer car-
ries a smaller net negative charge to compensate the
charge on the ions attracted to the interface. However, a
small residual charge on the surfactant is always neces-
sary to provide the attraction for the ions in the subphase
and even in condensed monolayers some charge is always
left uncompensated for [Egs. (23) and (36)]. When the
system is monovalent ion condensed the net charge on
the monolayer is larger than when this ion is absent from
the solution. To neutralize the larger charge on the sur-
factant more net charge is also attracted to the surfac-
tant. This effect is demonstrated in Fig. 6.

D. General qualities of the
monovalent and the divalent systems

By virtue of their almost complete neutrality the con-
densation driven condensed systems of type (i) lend them-
selves to a simple algebraic description. Their properties
can be remapped into a condensation chart that would al-
low the determination of the state of the monolayer at
specific concentrations of the different subphase ions.
This same quality allowed us to give closed-form expres-
sions to all the other relevant quantities of the monolayer
such as residual charge on the monolayer, the falloff ra-
dius of the concentration profile, and the condensation
fractions of the monovalent and divalent ions. It is im-
portant to note that these expressions take a different
algebraic form for the monovalent and the divalent sub-
phase ions. Also, the nature of the fully condensed state
is completely different in the two systems. This difference
may seem peculiar at first since the only difference be-
tween the two systems is the charge on the counterions,
which could have suggested that the formulas for the two
are scalable. It is therefore important to realize that the
ratio between the charge on the dissociated surfactant
molecule (—e) and the charge carried on a counterion +
e or +2e is a characteristic quantity of the system and
therefore the divalent or the monovalent ions constitute
systems of different symmetry and are not independently
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scalable. Furthermore, Egs. (28) and (34) contain only
one characteristic parameter: either U; or U,,, and nei-
ther of them contains bulk quantities. Therefore, the sur-
face quantities—concentration, condensation, and
charge—are completely independent of the bulk quanti-
ties for the pure divalent and monovalent systems and are
not the result of the approximations used in solving Eqgs.
(28) and (34). Also, the “contact value theorem” of about
60-mV change in the potential per decade of monovalent
ion concentration will be still valid in the condensed re-
gime, as it is for the noncondensed Poisson-Boltzmann
regime, but with a different coefficient [compare Eq. (13)
with Egs. (25) and (39)].

This is no more true when the subphase contains a
mixture of divalent and monovalent ions. Then, even in
the regime treated in this work the surface qualities are
also dependent on the bulk concentrations. Equation (20)
can be solved only after the substitution of P, in X and
Xp. This leaves the bulk concentrations to be parame-
ters that define the concentration enhancement.

E. The transition region between
the monovalent and the divalent region

We have shown in Sec. III D that the condensation
transition region is shifted by log,,(U; !?) into the di-
valent dominant enhancement factor, i.e., into the region
where the concentration enhancement factor is given by
the divalent expression (38). It was also shown that the
transition region halfwidth is A(log,,P})/2~1.00.
Therefore, for systems with both monovalent and di-
valent components, and when U {, of the monovalent ions
mixture given by Egs. (29) and (30) is smaller than 103,
the condensation transition region will occur wholly in
the region where the enhancement factor is given by Eq.
(38). This celebrated result permits us to substitute the
enhancement factor given by (38) in the surface equilibri-
um condition (43) and to derive a simple closed-form re-
lation that describes the transition region surface state of
the surfactant monolayer using bulk concentrations. We
copy Eq. (44) here:

K, @7,

. (Ky® )

l“LI

o, = (46)

I‘LM

This expression should be compared with the 3D bulk
solution equilibrium condition of the same materials

0,= |2 | = aad 47
b= T T Koo (47)
LM |p M ¥ 2+

O, is different from O, in the exponential dependence of
O on the concentration and equilibrium constants of the
divalent ion. The numerical results are also markedly
different. Using Eq. (43) we obtain ©,=0.93 for an aque-
ous solution of 1X 1073 mol of Mn ion and pH=6. It in-
dicates that the surfactant is condensed with almost equal
amounts of hydrogen and Mn ions. Using the bulk equi-
librium expression would yield ©,=11.7 and that would
have suggested that the surfactant is primarily hydrogen
condensed. The condition U} < 1X 1073 required for Eq.

(43) to correctly approximate the transition region be-
tween the divalent and the monovalent condensed mono-
layer is stricter than the condition U{ < 1 required for the
approximations for a monolayer constituted entirely of
monovalent or divalent ions (Secs. III A, III B, and II1 C).
It is still applicable to most of the Langmuir systems of
interest. For a monolayer spread on a pure divalent solu-
tion and area of 20 A ?/chain, Uy =7.44X107% and the
system clearly satisfies this requirement. Thus, Eq. (43)
describes adequately all the systems composed of divalent
ions in pure water. We have used Eq. (46) to model the
fractional condensations given in Figs. 2—5. They pro-
vide very good approximations to Eq. (12) for Figs. 2-4.
The surface equilibrium equation approximation (46) de-
viates from the exact solution of Eq. (12) for the case
where high concentration of sodium ion is added to the
aqueous divalent solution. Sodium at the experimental
conditions for Fig. 5 yields Uy, =3.25X 1072 From Eq.
(30) for a mixture of two monovalent ions we obtain
1 1

11 P, 1 Pk
U Uy, @ Uy @}

Using the last expression we find that a solution of Na
ions in water would satisfy the requirement UJ <1X107?
if its concentration ®%, in the solution would be smaller
than 1.28 X 10*X ®%. For a solution of pH 6, Eq. (43)
can thus be useful up to Na* concentrations of ~0.01
(mol/1). Accordingly the curve obtained using Eqgs. (46)
and (45) (dashed line on Fig. 5) shows a growing deviation
from the solid line calculated using Eq. (12) for concen-
tration values ®%,>0.01 moles (below pNa=2.0). Such
a concentration is, however, rarely used in Langmuir
monolayers.

F. Conclusion

We demonstrated that the Cartesian one-dimensional
Poisson-Boltzmann-Stern ~ formalism  (the  Gouy-
Chapman-Stern equation) yields a surprisingly accurate
quantitative description for the monovalent and divalent
alkali-metal ion segregating from a dilute aqueous solu-
tion to a Langmuir monolayer spread on the surface of
the solution. This we did by comparing experimental
values of metal ions segregated next to the liquid surface
to those values obtained from the PBS equation using the
conventional equilibrium constants found in literature.
The calculations presented here capture remarkably well
the major features of the metal substituted monolayer.
This is in view of the simplifications introduced in the as-
sumption that the charge is uniformly distributed on the
surface of the liquid following the Gouy-Chapman mod-
el.>»3% We cannot, however, reproduce with this assump-
tion the phase transitions predicted from kinks in the
II- A diagrams. Such transitions would require a discrete
surfactant model and inclusion of the cooperative in-
teraction that drives the transition.

We have also identified universal parameters that
define the extent and nature of the metal ion condensa-
tion on the monolayer. They permit one to predict the
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state of a monolayer. A simple equilibrium equation for
the monolayer condensation reaction has also been de-
rived. Only bulk concentrations of the ions enter into
this equation. The use of the universal parameters and
the equilibrium equation eliminates the need for a numer-
ic need to solve the Grahame equation numerically and
suggests additional physical insight into the problem. Fi-
nally, our calculations may provide a clue to the origin of
the in-plane structure of Langmuir-Blodgett (LB) mono-
layers.

(i) 50% of the surfactant molecules on a divalent ion
solution are metal condensed and carry a positive charge.
The other 50% are dissociated and carry a negative
charge. It is therefore expected that the distance between
two similar molecules would be different than that be-
tween two molecules with opposite charges. The smallest
unit cell in this case would be orthorhombic rather than
the triangular closed pack. In this structure each surfac-
tant molecule would have four nearest neighbors of the
opposite charge and two next-nearest neighbors of the
same charge. This orthorhombic structure is indeed the
symmetry that LB multilayers and monolayers acquire on
a solid substrate.

(ii) Multilayers could be produced from many fatty
acids and from their divalent ion soaps. It is considered
impossible to build monovalent soap Langmuir-Blodgett
multilayers. Our calculations indicate that monolayers
compensated by monovalent ions are charged while the
acid surfactant and the divalent substituted monolayers
are neutralized. We suggest that the negatively charged
monovalent monolayers are electrically attracted to the
liquid and therefore are not likely to be withdrawn intact
to a solid substrate.
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APPENDIX: THE POISSON-BOLTZMANN EQUATION

An idealized Poisson-Boltzmann system consists of a
flat plane interface charged with a fixed surface charge
density . We assume the interface to lie in the x -y plane
(i.e., z=0). The semi-infinite volume with z > 0 is electri-

cally natural as a whole but contains positive and nega-
tive charged ions free to move in that volume. The elec-
tric potential W(z) originating with the surface charge o
and the charge distribution p(W¥(z)) has to satisfy the
Poisson equation

3MW(z)
dz?

with the given Neuman boundary condition of surface
charge o on the interface.

The charge density p(z) is a function of the concentra-
tions ®;(¥(z)) of the different counterions and co-ions
A, in the solution at a distance z from the interface

p(2)=p((®,(¥(2)))) .

In Egs. (A1) and (A2) W(z) is the electric potential at a
distance z from an interface. The distinctive signature of
the PBE is the dependence of the charge density p on the
distance from the interface only through the electric po-
tential. This allows for a simple integration of (A1) re-
sulting in

=~i€71p<\p<z)> (A1)

(A2)

172
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oz

8T W(z)
— v )dVy'
. fw=0p< )d

The potential at the interface W(z =0)=V¥, is obtained
from the boundary condition
172

v
Ez=0=2To= |37 [ pwigw | | (a4
€ € V=0

0

the last being known as the Grahame equation.’”® o is the
surface charge density of the system at the interface.

The electric potential profile is obtained by second in-
tegration of (A3):

dVy

z+z,= [ o (A5)

3 1Y waw

€ v=0

z, is an integration constant defined by substituting the
electric potential W, at the interface (z =0) obtained by
solving the boundary Grahame equation (A4).

In the classical Poisson-Boltzmann equation o has a
fixed given value. It was first suggested by Stern that the
charged static ions at the interface responsible for the
charge density o could react with the counter ions in the
solution next to the interface (responsible for the charge
density p) and thus reduce the net surface charge at the
interface.”” In such model the net surface charge o de-
pends on the concentration of the different counter ions
at the interface [®{(¥,)]=[P;(z =0)] so that

o=o[P}(¥,)] . (A6)

An electrochemical system is defined by substituting an
explicit form for p(¥(z)) in Egs. (A3) and (A4) and for
the net charge density o(¥,) in Eq. (A6).
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