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Velocity distribution function of a dilute gas under uniform shear flow:
Comparison between a Monte Carlo simulation method and the Bhatnagar-Gross-Krook equation
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A Monte Carlo simulation method is used to study a dilute gas of hard spheres under uniform
shear flow in the hydrodynamic regime over a wide range of shear rates. The results for the com-
ponents of the pressure tensor and also for the distribution function are presented and compared
with those obtained by using the Bhatnagar-Gross-Krook model kinetic equation. The agreement is
fairly good for the pressure tensor and also for the velocity distribution function in the small-

velocity region, while discrepancies appear for large velocities.

The possibility of using a

maximum-entropy method to construct an approximate distribution function is discussed. It is
shown that the inclusion of the pressure tensor leads to a distribution function significantly different

from the one obtained in the simulation.

I. INTRODUCTION

Exact solutions to the Boltzmann equation are scarce.
At the level of the velocity distribution function (VDF),
the only solutions we are aware of refer either to spatially
homogeneous systems' or to situations not directly relat-
ed to transport problems.? There are two other solutions
corresponding to more interesting physical situations,
namely, uniform shear flow>? and steady heat flow,* both
for Maxwell molecules. In the first case, nonlinear ex-
pressions for the shear viscosity and the viscometric func-
tions are obtained. In the second case, the heat flux is
shown to be linear in the temperature gradient. Never-
theless, these two solutions are constructed by using the
moment method, and explicit expressions for the distri-
bution function are not known. In order to get informa-
tion about the VDF in transport far from equilibrium,
one can resort to computer simulations or tractable mod-
el kinetic equations.

Perhaps the most used model kinetic equation is the
one proposed by Bhatnagar, Gross, and Krook® (BGK).
The Boltzmann collision term is approximated by a relax-
ation term with a characteristic time that is modeled ac-
cording to the interaction potential considered. The
BGK equation keeps the main properties of the
Boltzmann equation, namely the conservation of mass,
momentum, and energy. An H theorem can also be
proved for the BGK equation. However, little is known
about the relationship between the solutions of the
Boltzmann and the BGK equations for a given physical
situation beyond the limit of small gradients.

In 1979, Zwanzig6 derived an exact solution of the
BGK model kinetic equation describing a system under
uniform shear flow with arbitrary shear rate. For
Maxwell molecules, the shear viscosity and the
viscometric functions have explicit analytical expressions
which coincide with those obtained from the Boltzmann
equation.>® In the case of hard spheres, Zwanzig was
able to obtain a closed differential equation for the non-
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linear shear viscosity. The hydrodynamic solution to this
equation as a function of the shear rate has been numeri-
cally constructed.” Zwanzig also gave® a formal expres-
sion for the VDF, although its explicit form for the hy-
drodynamic regime was not discussed. On the other
hand, in the context of the Boltzmann equation for hard
spheres, only the first few terms of the Chapman-Enskog
expansion are known.®

In this paper, we study a dilute gas of hard spheres un-
der uniform shear flow by means of a Monte Carlo
method to simulate the nonlinear Boltzmann equation.’
This method allows one to follow the time evolution of
the VDF, starting from arbitrary initial conditions. Of
course, the moments can be easily obtained from the
knowledge of the VDF. In particular, some results for
the nonlinear shear viscosity were presented in a previous
paper.!® We were able to show that, after a transient
period, the system reaches a hydrodynamic stage, in-
dependent of the initial conditions. Also, the simulation
data were compared with the BGK results and an excel-
lent agreement was found. Here, we extend the compar-
ison to a wider range of shear rates and also to other
components of the pressure tensor. Again, the agreement
turns out to be quite good. Therefore, the BGK seems to
be a fair approximation to the Boltzmann equation for
the calculation of the first few moments. Regarding the
VDF, we will see that the agreement is only qualitative.
This is not surprising, since the detailed Boltzmann col-
lision operator is replaced by a much simpler effective
term in the BGK equation.

As said above, most of the solutions to the Boltzmann
equation provide explicit expressions, exact or approxi-
mate, only for the first moments. A very interesting
question is whether an accurate VDF can be constructed
from the knowledge of those moments, as is the case in
equilibrium situations. A standard method is to use in-
formation theory. As a test of its usefulness in far from
equilibrium situations, we have used the pressure tensor
obtained from the simulation to generate a maximum-
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entropy VDF and compared it with the one provided by
the simulation. The results show that the maximum-
entropy criterion is not a very good one. This suggests
the need for the search of alternative methods.

II. THE SIMULATION

The uniform shear flow (USF) state is characterized by
a constant density, a spatially uniform temperature, and a
local velocity field given by
a;=ad;9;

xSy 2.1)

where a is the constant shear rate. Due to viscous heat-
ing effects, the temperature monotonically increases in
time. It has been shown!! that the Boltzmann equation
admits a solution describing such a state when Lees-
Edwards boundary conditions'? are introduced. These
are equivalent to periodic boundary conditions in the lo-
cal rest frame.
For dilute gases, there exists a natural time scale
defined from an effective collision frequency v as
stn=[larwr’) . 2.2)
0
Thus, s(¢) is a measure of the number of collisions per
particle between O and 7. An expression for v can be ob-
tained from the Navier-Stokes shear viscosity 7yg (Ref. 5)
nkgT
V= ’
TINs

(2.3)

where 7 is the number density, kj is the Boltzmann con-
stant, and T is the temperature. For hard spheres of di-
ameter o and mass m, one gets

2y T 12

3 A, (2.4)
mir
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with A being the mean free path,

L= 1

=_—, 2.5
V2mno? @:3)

Therefore, v is an increasing function of time due to
viscous heating.

We have used the Boltzmann Monte Carlo method to
simulate a system of hard spheres in the USF state. As
discussed at length by Bird,’ this method has been dev-
ised in order to mimic the dynamics described by the
Boltzmann equation. Since the details of the method can
be found in Ref. 9, we only give here the key points. At
each time, both the position and velocity components of
all the particles are stored. Their values are modified as
the particles are followed through representative col-
lisions and boundary interactions. The spatial volume is
split into cells across which the change in flow properties
is small. The molecular motion and the collisions are un-
coupled over a time At small compared with the mean
free time. In the collision process, the relative positions
of the particles in each cell are disregarded and any pair
of particles chosen at random forms a possible pair. The
pair is accepted or rejected according to a probability

that depends on the relative velocity and the interaction
law. If accepted for collision, the post-collision velocity
components are calculated from an appropriate random
impact parameter and the pre-collision components. For
each cell, a time counter is conveniently advanced after
each collision. The collision process is repeated until the
time counter exceeds the time step At.

Our system consists of N particles enclosed between
two plates perpendicular to the y axis and separated by a
distance L. In the simulation, the system is split into k
layers parallel to the plates. These choices are based on
the fact that in the USF only gradients along the y direc-
tion are present. In fact, just the y coordinate of the posi-
tion of each particle, in addition to the three components
of the velocity, are followed and recorded. To create a
USF with shear rate a, a particle is reentered through the
lower (upper) plate after it leaves the system through the
upper (lower) one. In addition, the x component of the
velocity is decreased (increased) by an amount equal to
aL. As discussed above, the relevant time scale for the
USF is the one defined by Eq. (2.2). Therefore, instead of
considering a constant time step At, we have worked with
a constant As, which for hard spheres corresponds to a
At <[T(1)]'2

From the simulation data, we compute the following
quantities. The number of particles in layer a, N, is
given by

N
N,= 3 6,y), a=1,... k.
I=1

(2.6)

Here ©,(y) is the characteristic function of layer ¢, i.e.,
O,(y)=1 if y is inside the layer a, and ©,(y)=0 other-
wise. The average velocity u,, the temperature T, and

the pressure tensor P, ;; are
1 N
ua=—1€ I=1v,6a(y,) , 2.7)
N
INkpT,=1m 3 (v;—u,)*O.(y,) , (2.8)
L=l
N
Pa,ij=m > (vl,i_ua,i)(vl,j_ua,j )8,(y,) , 2.9)
1=1

where v, ; is the i component of the velocity of particle .

The knowledge of the velocity of all the particles al-
lows one, in principle, to construct the VDF correspond-
ing to layer a, f,(v). However, this is an involved func-
tion to deal with, since it depends on the three velocity
components. Consequently, we will focus on some re-
duced distributions that retain the main physical features,
such as the distortions resulting from the fact that the
system is far from equilibrium. Namely, we have con-
sidered

@5 (V)= [ dv, [ 7 dv,H (v, Fu,,)f,(v),

Vi=v,—ug,, (2.10a)
@ (V)=[" dv, [7 dv,H(tv, Fu, )f(v),
V,=v,~u,,, (2.10b)
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where H (x) is Heaviside’s step function. To obtain the
VDF from the simulation data, one has to consider finite
velocity intervals. Thus, what is actually computed are
the discretized versions of Egs. (2.10). For instance,

LS H(o,—u, —V,+1AV,)
Vy lgl Uy “Uay y T 287y

+ —
L (V)=

A

XH(V,+3AV,—v, ,+u, )

XH (v, Fug )0,y . (2.11)

Therefore, ® y(V,)AV, represents the number of parti-
cles in layer a having a velocity v with components such
that

Uy —Ug >0, V,—3AV, <v,—u, <V, +3AV,,
and arbitrary v,. Analogously, one can define
@, . (V,)AV, for particles with v, —u, , >0 and

V=LAV, <v,—u, <V, +1AV, .

All the above quantities are in general functions of
time and position, the latter being measured by the index
a. Nevertheless, in the USF state only u,, depends on
a, all the other quantities being uniform across the sys-
tem. We have checked that our simulation maintains in
time the features of the USF state when starting from ap-
propriate initial conditions. Therefore, in order to im-
prove the statistics, we have averaged over the layers to
obtain the temperature T and the pressure tensor P;.
For the VDF, in addition to the homogeneity, the sym-
metry of the state requires that

DLV, )=D (—V,), D (V,)=D,(—V,).
Thus, what we have actually computed from the simula-
tion is

HoL(V)+d (—=V )],

although we keep the notation ®}(V,) because of the
above symmetry property. We have proceeded in a simi-
lar way for <I>;( V,).

We have considered the following values of the simula-
tion parameters: N =2000 particles, L =10A, k =40 lay-
ers, and As =0.016/V 7. Also, the results we will report
correspond to averages over N =200 different realiza-
tions. The statistical error of a given quantity 4 () has
been estimated by first evaluating the standard deviation
A ~,4(1) of the averages corresponding to 10 blocks of

N[ =20 realizations each. Then, assuming that the error
decreases as N 172, we get

ANA(t)=(./V1/./V)1/2AN]A(t) )

III. RESULTS

We are interested in the hydrodynamic regime, where
the evolution of the system does not depend on the initial
condition. In a previous paper'® we have shown that
such a regime can be identified by comparing the evolu-

tion corresponding to different initial conditions.

In the USF, the hydrodynamic dimensionless VDF
must be a function of V*=(v—u)/V2kzT/m and
a*=a /v, where v is given by Eq. (2.3) and, therefore, de-
pends on time through the temperature. In fact, a* is the
uniformity parameter of the system, measuring the ratio
between the mean free path and the characteristic hydro-
dynamic length. Consistently, the hydrodynamic dimen-
sionless pressure tensor is just a function of a*. It must
be noticed that a* decreases in time, so that the system
asymptotically tends towards local equilibrium.

First, we discuss the results obtained for the pressure
tensor. Figure 1 shows the behavior of the generalized
shear viscosity, defined as

*

=2 (3.1

at

n*(a*)=—

where P =P;; /p, p being the hydrostatic pressure. The
simulation data are compared with the shear viscosity ob-
tained from the BGK equation for hard spheres’ and
from the Boltzmann equation for Maxwell molecules.>?
The simulation was started with an initial condition cor-
responding to a*?=10* Therefore, the reported values
of 7* can be considered as hydrodynamic.!® Quite good
agreement is found in both cases. In particular, the BGK
equation turns out to be a very good approximation to
the Boltzmann equation for the calculation of the shear
viscosity in this system. It must be noticed that the
agreement appears over a very wide range of values of

a*. In fact, the behavior of the simulation data for large

a* is consistent with an asymptotic decay of the form
n*~a* %3, as predicted by the Boltzmann equation for
Maxwell molecules and also by the BGK equation for
any potential. This extends the conclusion reached in
Ref. 10, where only the region 0 <a* < 1 was considered.

To analyze the behavior of the diagonal elements of the

pressure tensor, we introduce the viscometric functions
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FIG. 1. Reduced shear viscosity n*(a*). The circles are
simulation data, the solid line corresponds to the BGK equation
for hard spheres, and the dotted line corresponds to the
Boltzmann equation for Maxwell molecules. The error bars in
the simulation lie inside the circles.
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¥,(a*)=(Py —P%)/a*?,
Y,(a*)=(P%—P})/a**.

(3.2)
(3.3)

It is seen in Fig. 2 that the BGK equation reproduces the
simulation data for ¥,(a*) very well. Although the same
qualitative behavior is also obtained from the Boltzmann
equation for Maxwell molecules, the quantitative agree-
ment is not so good. We have observed the same tenden-
cy for values of a* much larger than the ones reported
here. On the other hand, very small values of a* are
hard to obtain in computer simulations, since they re-
quire a huge number of collisions and, therefore, a lot of
computer time. Nevertheless, there is no reason to ex-
pect a worse agreement for a*2<0.2. In particular, the
Chapman-Enskog expansion up to the Burnett order
leads to W, = —2.028 for hard spheres.®

Both the BGK equation and the Boltzmann equation
for Maxwell molecules yield W,(a*)=0, while the
Chapman-Enskog expansion for hard spheres gives
¥,=0.172 in the limit a*—0.® The results of the simu-
lation, shown in Fig. 3, give a ¥, definitely different from
zero, and also a tendency for a*—0 that is consistent
with the Chapman-Enskog value. Therefore, both the ki-
netic equation and the interaction potential play an im-
portant role in the determination of the viscometric func-
tion W,(a*). Nevertheless, given the small value of ¥,,
one can conclude in summary that the BGK equation
gives a fair approximation to the pressure tensor for a di-
lute gas under USF.

Let us now check whether the above conclusion also
applies to the VDF. We have considered the dimension-
less distributions

+ (V1)
R; (V;,a')=m , (3.4)
(V1)
Rf(V}at)=——2—, (3.5)
F/(V,,1)

where ®; and @, have been defined in Sec. II, and F;
and Fy+ are the corresponding local equilibrium expres-
sions, namely,

S z
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FIG. 2. The same as Fig. 1 but for the first viscometric func-
tion ¥,(a ™).
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FIG. 3. Simulation data for the second viscometric function
W,(a*). Notice the change of scale as compared to Fig. 2.
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F;(Vx,t)=%% , (3.6

and equivalently for F,’.

In Figs. 4 and 5, we compare R : and R; , respectively,
for a*?=0.85, as obtained from the simulation data and
from the BGK equation.!’ It is clear that there are
significant discrepancies, especially in the high-velocity
region, although the qualitative behavior in the small ve-
locity region is quite similar. In particular, we notice
that the BGK equation predicts fairly well the position
and symmetry of the maximum in Fig. 5. The disagree-
ment for high velocities is not surprising, since the evolu-
tion of the VDF in the BGK equation is governed by
only the first five moments.

A very interesting problem in nonequilibrium statisti-
cal mechanics is the construction of the distribution func-
tion of the system starting from the knowledge of the
transport properties. If one uses information theory, it is

ol . , . )

FIG. 4. Relative distribution function R, (V,}), defined by
Eq. (3.4), for a**=0.85. The circles are simulation data, the
solid line corresponds to the BGK equation for hard spheres,
and the dotted line corresponds to the maximum-entropy func-
tion.
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FIG. 5. The same as Fig. 4 but for the function R/ (V}),
defined by Eq. (3.5).

clear that the knowledge of the hydrodynamic fields is
not enough, since it leads to a local equilibrium distribu-
tion. Here, we have explored the possibility of building
an approximate VDF for a dilute gas under USF by as-
suming that the pressure tensor is given. Therefore, we
look for a VDF f(V) maximizing the entropy

S=—[dVFinf (3.7)
under the constraints

favf=n, (3.8)

favvi=o, (3.9)
and

Jav V,.ij=%1>,, : (3.10)
Then, f has the form

FOV)=nm"3%det 4)2% """ (3.11)
where

A;=Imn(P7"), . (3.12)

Using the pressure tensor from the simulation, we have
also plotted in Figs. 4 and 5 the functions R and Ry+
corresponding to the maximum-entropy distribution
(3.11). As was the case for the BGK equation, the agree-
ment is better for R than for R;". In any case, f is not
able to reproduce the details of the actual VDF of the
system. For instance, f leads to a shifted maximum in
Fig. §, Ry+ being quite symmetrical around it. In fact,
Figs. 4 and 5 show three distributions giving the same
values for the hydrodynamic fields and very close values
for the pressure tensor, but having quite different shapes.

IV. CONCLUSIONS

In this paper we have used a Monte Carlo simulation
method to study a dilute gas of hard spheres under uni-
form shear flow. The components of the pressure tensor

have been obtained over a wide range of shear rate values
and compared, first, with those obtained from the
Boltzmann equation for Maxwell molecules and, second,
with those from the BGK model kinetic equation for
hard spheres.

The first comparison shows a fairly good agreement,
indicating that the influence of the interaction potential
on the transport properties is not very strong when quan-
tities are properly scaled. In this context, it is worth
mentioning that very recently Loose'* has compared
molecular-dynamics results for a dilute Lennard-Jones
gas under USF with an approximate solution to the
Boltzmann equation. This solution turns out to be the
exact one for Maxwell molecules. He also found a good
agreement, which confirms the weak influence of the in-
teraction potential.

On the other hand, the agreement is much better when
the comparison is carried out with the BGK model for
hard spheres. This indicates that the nonlinear BGK
equation provides a very useful tool to get approximate
transport properties in far from equilibrium situations.
In fact, as mentioned in the Introduction, the pressure
tensor under USF obtained from the Boltzmann equation
and from the BGK equation coincides for Maxwell mole-
cules for all values of the reduced shear rate.

A much more difficult problem is to obtain the none-
quilibrium VDF of the system. In particular, no exact
solution to the Boltzmann equation at this level is known
for the USF, even in the case of Maxwell molecules. The
comparison between the simulation and the BGK model
shows a good agreement for small velocities but
significant discrepancies appear in the high-velocity re-
gion. This leads us to conclude that the BGK equation is
a good approximation for low moments of the distribu-
tion but fails for high moments. This is consistent with
the results obtained by Loose and Hess!> by using a
moment-expansion method for the Boltzmann equation.

We have also explored the applicability of the informa-
tion theory method to determine the VDF of a system in
a far from equilibrium situation. The results show that
the knowledge of the fluxes, the pressure tensor in our
case, is not enough to get an accurate distribution. Be-
sides, the addition of the next order moments is not ex-
pected to produce a significant improvement. This fact
emphasizes the importance of nonlocal effects in far from
equilibrium situations. While the distribution function
based on information theory is always a local functional
of a finite number of moments, the solution of the BGK
equation is a nonlocal functional of the first five mo-
ments. This nonlocal character makes the BGK equation
to be a much better approximation to the Boltzmann
equation. In addition, the information theory method re-
quires the knowledge of the first moments, while they are
self-consistently obtained in the BGK equation.
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