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We consider qualitative and quantitative properties of “snapshot attractors” of random maps. By
a random map we mean that the parameters that occur in the map vary randomly from iteration to
iteration according to some probability distribution. By a ‘“‘snapshot attractor” we mean the mea-
sure resulting from many iterations of a cloud of initial conditions viewed at a single instant (i.e.,
iteration). In this paper we investigate the multifractal properties of these snapshot attractors. In
particular, we use the Lyapunov number partition function method to calculate the spectra of gen-
eralized dimensions and of scaling indices for these attractors; special attention is devoted to the nu-
merical implementation of the method and the evaluation of statistical errors due to the finite num-
ber of sample orbits. This work was motivated by problems in the convection of particles by chaot-

ic fluid flows.

I. INTRODUCTION

The problem of the effect of random (or “noisy”) dy-
namics on strange attractors can be addressed in two very
different ways.

Problem 1. Consider a cloud of initial conditions and
evolve it forward in time under a given realization of the
noisy dynamics. Then view the resulting measure at a
single instant of time t =t, where t is large.

Problem 2. Look at the evolution of a single initial
condition under a realization of the random dynamics,
and plot its position in phase space for times ¢ in the
range t, <t <t,, where 1, and 1, —1, are large.

Throughout the present paper, the random dynamical
systems we study are maps of the general form

x; +1=F(x,,p;) , (1)

where x; and F are two-dimensional vectors and p; is a
parameter vector which varies randomly from iteration
to iteration, and we take the p; to be independent identi-
cally distributed random vectors.

In the absence of randomness in the dynamical system
[e.g., p, =P in (1), where P is a fixed parameter], problems
1 and 2 are thought to be typically equivalent for mixing
strange attractors. That is, the same measure is generat-
ed in the limits

for problem 1, and

to,tf—t0—>+oo

for problem 2. In fact, this is rigorously true for hyper-
bolic attractors as shown by the proof of the existence of
a natural measure for such cases.! For nonhyperbolic
systems, such as the Hénon map, a natural measure is
still widely thought to exist. Indeed, numerically, one
finds that the procedures specified by problem 1 and by
problem 2 yield the same picture of the Hénon attractor
and its measure.

The situation is very different, however, when a ran-
dom dynamical system is considered. The result of the
procedure specified in problem 2 is an attractor with a
smooth density of points: essentially a fuzzy version of the
strange attractor that exists in the absence of random-
ness, where the extent of the fuzziness increases with the
amount of the randomness in the system. In contrast, the
result of the procedure specified in problem 1 is typically
a fractal measure. We call this fractal measure a snapshot
attractor. Note that gross features of a snapshot attractor
(e.g., its overall macroscopic shape and position) depend
on the time ¢, at which it is viewed. Its multifractal
properties (i.e., its dimension spectrum) should, however,
typically be independent of ¢,. While problem 2 has been
much studied,? problem 1 and its resulting snapshot at-
tractors have received little attention.’

Nevertheless, as we shall argue below, problem 1 is
very interesting from a number of points of view, and this
paper will be devoted to its study. In particular, we
present the first investigations of the spectrum of dimen-
sions for the multifractal measure of snapshot attractors
of random maps.
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As motivation for this study, consider the motion of a
cloud of particles in an incompressible fluid flow, v(x,z).
If the particles have a density different from that of the
fluid and are of not too small a size, they will, in general,
move with a velocity which can depart significantly from
that of the fluid. That is, the velocity of a particle at x
[denoted u(x,?)] will not be the same as the fluid velocity
v(x,t)#u(x,t). In particular, this is because of the
effects of buoyancy, Stokes’s drag, inertia, etc.* The
equations describing the particle trajectories are not
volume preserving [in contrast to the case of small parti-
cles, where dx/dt=v(x,t) and V-v=0]. Thus strange
attractors are possible in this case. In particular, for non-
random temporally steady or periodic flows, it has been
shown that the distribution of particles can be on a
strange attractor in phase space, and, moreover, the dis-
tribution in physical position space can also be fractal.’
Since the fluid flow v(x,?) may have chaotic time depen-
dence, however, one is also led to the consideration of
particle trajectories in a system which is effectively ran-
dom. Equation (1) where F is area contracting may be
thought of as the simplest nontrivial (but crude) model of
such a situation. In particular, since (1) can yield fractals
for problem 1, we expect a “snapshot” of the convected
particles in a temporally chaotic fluid flow to also typical-
ly reveal a fractal distribution. The related problem of
the fractal distribution of the magnitude of the gradient
of a passive scalar which is convected with the flow
(u=v) has been considered in Refs. 6 and 7. In addition,
the fractal distribution of a vector field convected with a
fluid flow arises in considerations of the kinematic
dynamo problem.” In regard to the latter two problems,
Ott and Antonsen®’ consider a simple two-dimensional
baker’s map with random parameters as a crude model of
the effect of random fluid flow. We also note a similarity
between problem 1 and the (much harder) problem of tur-
bulence in fluids. In particular, in the large Reynolds
number limit, a snapshot of a fluid that is in a fully
developed turbulent state will yield a distribution of vor-
ticity squared which is concentrated on a fractal.®®
[Note that, as in problem 1, it is important that a
snapshot be taken. If the distribution is averaged over
time, as in problem 2, it is smeared out, and the fractal
nature is gone (the distribution is a smooth density).] The
above discussion is meant to motivate considerations of
problem 1, and to make the point that (at least in some
general way) such considerations can shed light on situa-
tions of physical interest. Undoubtedly other examples,
in addition to the above, also exist.

The plan of this paper is as follows. In Sec. II we in-
troduce the snapshot technique which is then used to
display the gross qualitative features of attractors of the
Hénon and Ikeda maps with random parameters. In Sec.
III we discuss the spectrum of generalized dimen-
sions!®"!° and how they can be determined using the
Lyapunov number partition function method.'>'®!° This
method is then particularized for maps with uniform
Jacobian, and its numerical implementation is discussed.
In Sec. IV we use the Lyapunov method to analytically
calculate the dimension spectra for the generalized
baker’s map with random parameters. These results are

then compared with those obtained from a numerical im-
plementation of the Lyapunov method, thus providing a
test of this implementation and its numerical accuracy.
In Sec. V we describe numerical results obtained for the
generalized dimensions of the random Hénon map using
the Lyapunov method. Finally in Sec. VI we summarize
the main conclusions of this paper.

II. SNAPSHOT ATTRACTORS OF RANDOM MAPS

In this section we discuss the qualitative aspects of the
attractors of random maps. In order to obtain plots of
these attractors we proceed in the following way: take a
number of initial conditions N in the basin of attraction
of the attractor, iterate each of them » times, and plot the
last iterate of all of them. This procedure corresponds to
problem 1 of the Introduction, and we refer to it as the
snapshot technique. To contrast with this technique, we
also take a single initial condition and plot the iterates
under the random map. This corresponds to problem 2.

As our first example we consider the well-known
Hénon map?® with random parameters

_ 2
xXiyy=a;~x +by,,

(2)
Yi+1=%i
where
a;=a+A,r,
b,-=5+Abri s

a, A,, b, and A, are fixed parameters, and 7; is a discrete
uncorrelated random variable with a uniform probability
distribution in the interval [ —1,1]. We shall always take
A,A, =0, so that at least one of the quantities a or b is
nonrandom.

In Fig. 1 we have plotted the snapshot attractor using
N = 10* initial conditions in the case of fixed parameters,
A,=A,=0. We see that the attractor is apparently the

FIG. 1. Attractor of the Hénon map for a=1.15, b=0.4,
A,=A,=0.0, n =250, N =10% N is the number of initial con-
ditions; n is the number of iterations.
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same as the usual Hénon attractor (see Ref. 20), obtained
by iterating a single initial condition and plotting all the
iterates (after discarding the initial transient) as it should
be.

Turning our attention to the random case we first take
A,=0 and A,70. In Fig. 2 we have plotted all the
iterates of a single initial condition; the picture clearly ex-
hibits a smooth density as expected for problem 2. In
Fig. 3(a) we have plotted the nth iterate of N =10* initial
conditions for the same parameters as Fig. 2; the result-
ing snapshot attractor resembles that of a fixed parameter
map. In particular, it is fractal. Thus, if we look more
closely at the attractor we can recognize the Cantor-set-
like structure transverse to the predominantly linear
structure. This can be seen in Figs. 3(b) and 3(c) which
are enlargements of the small boxes in Figs. 3(a) and 3(b),
respectively.

Qualitatively similar results are obtained by taking
A,#0 and Ay =0. This is illustrated in Fig. 4 where the
snapshot attractor of the random map again resembles
that of the attractor of the fixed parameter map.

As a second example we consider the so-called Ikeda
map?! ~2* which models the propagation of a laser field in
a ring cavity (a brief description can be found in Grebogi
et al.?*). The map has the form

X;+1=a +b[x;cos(6;)—y;sin(6;)] ,
(3)
Y, 41=b[x,sin(6,)+y;cos(6,)],
with
Pk
1+x2+y? ’

t

where a, b, and k are fixed parameters and p; is the ran-
dom parameter,
DPi =ﬁ+Ap ro

with r; as in the case of the Hénon map.
In Figs. 5-7 we have plotted attractors for the Ikeda

y, OF

FIG. 2. Attractor of the (random) Hénon

» map for a=1.15,
A,=0.0,6=0.4,A,=0.05,n =10, N=1.
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map for the nonrandom case (Ap=0, Fig. 5), for a case
corresponding to problem 2 with A, =0.5 (the fuzzy at-
tractor of Fig. 6), and a snapshot attractor with A, =0.5
(Fig. 7). These figures show the same features already
found for the Hénon map.

The results presented here for the Hénon and Ikeda

maps are typical of two-dimensional maps with random
parameters.
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FIG. 3. Attractor of the (random) Hénon map for a=1.15,
A,=0.0, b=0.4, A,=0.05, n =250, and (a) N=10% (b)
N =2X10° [enlargement of the box in (a)], (c) N =4X 10° [en-
largement of the box in (b)].
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FIG. 4. Attractor of the (random) Hénon map for 5=0.4,
A,=0.0,a=1.15, A, =0.05, n =250, N =10,

FIG. 5. Attractor of the Ikeda map for a =0.85, b=0.9,
k=0.4,p=8.0,A4,=0.0, n =250, N =2X 10%.
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FIG. 6. Attractor of the (random) Ikeda map for a =0.85,
b=0.9,k=0.4,p=8.0,A,=0.5,n =2X 10, N=1.

III. GENERALIZED DIMENSIONS

A. Review of dimension spectra formulations

An important way of quantitatively characterizing the
properties of chaotic attractors is through the spectrum
of generalized Renyi dimensions commonly denoted by
D,, where q is a real parameter.'®”'> The Renyi dimen-
sions are defined by

9 g—1les0 Ine ’ @
where 7; is the measure of the attractor in the cube S; of
a grid {S;} of N(e) cubes of grid size € which cover the
phase space. For ¢ =0 Eq. (4) reduces to the so-called
capacity dimension and in the limit ¢ — 1 to the informa-
tion dimension (e.g., see Ref. 25).

A more general spectrum of dimensions was intro-
duced by Grassberger'® and Halsey et al.!* Essentially it
generalized Dé” in the same way as the Hausdorff dimen-
sion?® generalizes the capacity dimension, by allowing a
cover of the measure by a set of cubes {S;} of variable
edge lengths €;. To define this new spectrum, which we
denote by D,:Z’, one proceeds as follows.

(i) Introduce a quantity
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FIG. 7. Attractor of the (random) Ikeda map for a =0.85,

b=0.9, k =0.4, p=8.0, A,=0.5, n =250, and (a) N =2X 104,
(b) N =4 X 10° [enlargement of the box in (a)].



788 FILIPE J. ROMEIRAS, CELSO GREBOGI, AND EDWARD OTT 41

w9
[(g,D,{S,},6)=3 —,
1 el
where m; is the natural measure of the attractor in the
cube S; whose edge length ¢, is restricted to be less than
€; D is a non-negative parameter and 7 is an auxiliary pa-
rameter defined by

7=(q—1)D ;

in analogy with statistical mechanics ' has been called
the partition function.

(ii) Optimize over all possible ways of covering the
measure to obtain

SUPys,|[r(q,Da {S,‘},G)], 720

r'(g,D,e)=
9 inf,s |[[(q,D, (S,},€)], 7<0.

(iii) Take the limit € —O0 to obtain

I'?(g,D)=1lim I'?(g,D,€) .
e—0
(iv) Define the generalized dimension as the critical
value of D, D;?, for which I'*'(¢,D) goes from zero to
infinity, that is,

. 0, r<7;
CoeDi=3 o (5)
’ q9
with
7o' =(g—1D2 .

These two formulations of the spectrum of generalized
dimensions [Egs. (4) and (5)] are expressed in terms of the
natural measure of the attractor. More recently two al-
ternative formulations were introduced which give the
spectrum in terms of the dynamical properties of the sys-
tem, as determined by eigenvalues of the orbits. The first
of these, introduced by Morita et al.'> and Grebogi
et al.,'®! gives D, for nonrandom two-dimensional maps
in terms of the eigenvalues of the dense set of periodic
saddles on the attractor. A new partition function is
defined by (we restrict the definition to the two-
dimensional case; for higher-dimensional cases see Gre-
bogi et al.’)

Fg,D,n)=3 () %Ay~ e~ P=, (6a)
J
where A\Y)>1>21Y) are the magnitudes of the unstable
and stable eigenvalues of the Jacobian matrix of the n-
times-iterated map (that determines the dynamical sys-
tem) calculated at the jth fixed point of the map and the
sum is over all fixed points. Taking the limit n — o one
obtains
r'(g,D)= lim T'*(q,D,n) .
n-—» oo
The dimension D'*’ is then determined by Eq. (5) with
I'® replaced by I'*’ and 7' by 7).
The second of these dynamical formulations was given
by Morita et al.,'> Badii and Politi,'® and Ott et al."® A

Lyapunov number partition function is defined by
I'%(g,D,n)={{A,(x)[ A, (x)]P " 1}179) , (6b)

where A, > 1> A,, are the magnitudes of the eigenvalues
of the Jacobian matrix of the n-times iterated map for or-
bits originating at an initial position x=(x,y) in the basin
of attraction, and the angular brackets denote an average
with respect to the initial positions x. Taking the limit
n— oo, we get
'“(g,D)= lim I'*(q,D,n) ,
n-»o

the generalized dimension D'* is again determined by

Eq. (5) with I'*?’ replaced by ' and by b

The discussions of the periodic points partition func-
tion ¥ (Refs. 15-17) and the Lyapunov number parti-
tion function T''* (Refs. 15, 18, and 19) were in the con-
text of nonrandom maps. For snapshot attractors of ran-
dom maps, examination of the original derivations of
Egs. (6) for I'* and T'® indicates that they still apply.
[For the random case, periodic orbits do not exist, but
the definition of I''® in terms of fixed points of the n-
times iterated random map (6a) for a given realization of
the random process is still sensible.] In the remainder of
this paper we will not consider I'® further, but will re-
strict attention to [''* since it appears to offer a much
more easily implementable and efficient numerical reali-
zation.

How are the different D!” for i =1,2,3,4 related to

q
each other? Firstly it can be easily shown that

(2) <
D, =D, .

Furthermore, results obtained in cases where both of
these dimensions can be explicitly calculated analytically
support the conjecture'* that they are equal for typical
chaotic attractors. It has also been shown'” that

2) < (3
D '=D;",

and conjectured'® that the equality holds for typical
chaotic attractors below a critical value of ¢, ¢ <g¢r,
where a ‘“phase transition” occurs at g;.2"3* Finally it
has been conjectured'®*° that

(4)— n(2)
Dq _Dq ’

for hyperbolic attractors and also for typical nonhyper-
bolic attractors provided that g is less than g;. In addi-
tion, for the case ¢ =1 (the information dimension),
D;‘”=D¢;2) has been rigorously proven for snapshot at-
tractors of general random maps.3

An alternative characterization of natural measures on
chaotic attractors was introduced by Halsey et al.'* They
consider a spectrum of singularities determined by two
indices: a scaling index a, which determines the strength
of the singularities, and f,, which determines how dense-
ly the singularities are distributed. These authors show
that a and f, can be obtained from the spectrum D, by
the Legendre transformation

_d
a—d—q[(q—l)Dq] , (7a)
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fa=ga—(g—1)D, . (7b)

In Ref. 14, f, is interpreted as the Hausdorff dimension
of the set of points whose pointwise dimension is a. Ac-
tually this statement should be qualified somewhat; f,
appears to be the dimension of the points whose point-
wise dimension is a only for hyperbolic attractors or for
nonhyperbolic attractors below the phase transition
point,'*¥ g <g,.

B. The Lyapunov method: Critical condition

As we have just seen the generalized dimension D, is
the value for D for which lim,_, ,I'(g,D,n) goes from O
to o, where I' is the Lyapunov number partition func-
tion defined by Eq. (6b) [from now on we drop the suffix
(4) used in Sec. III A]. If we now write I in the form

I'(q,D,n)=exp(nl,) ,
where [, is defined by

I, =Linr(g,D,n) ;
n

the critical condition is equivalent to requiring that
lim, , I, =0, that is,

lim ~InI(g,D,,n)=0, ()
n—so N
provided this limit exists.

For a given realization of the random process, we can
use (8) to calculate Dq. For an ensemble of realizations,
the D, for individual realizations are the same with prob-
ability one.” Denoting this common value of D, by D,,
in the case of a random map, /, will be a random variable
with an average value T independent of n, and some fluc-
tuation’ which goes to zero as n goes to . Then the
critical condition determining qu takes the form’

lim ilnl"(q,D—q,n)ZO , 9)

n—wo N

where the overbar denotes an ensemble average.

C. The Lyapunov method: Maps with uniform Jacobian

The determination of the spectrum of generalized di-
mensions from the Lyapunov number partition function
becomes particularly simple in the case in which the
Jacobian determinant of the random map, J(i), is in-
dependent of position at each iterate i. Thus the Jacobian
determinant of the n-times-iterated random map, J,, is
given by

J,=T170)=A, Ay,
i=1

and we can use this equation to eliminate A,, from Eq.
(6b) to obtain

(g, D,n)=JXALE) , (10)
where the quantities 7 and & are defined by

n=(q—1)(1—-D), (11a)

E=(g—1)2—D). (11b)

Substituting this partition function into the critical con-
dition (8) we obtain an equation giving 7 in terms of the
parameter &,

ne=K, lim L,(£), (12)
where

Ln(§)=%ln(hﬂ,§> : (13)
and

KLJ= — tim %an,, . (14)

Finally the spectrum D, as a function of g can be ob-
tained in parametric form with parameter £ from Egs.
(1,

g=1+&—n,, (15)
1

1=§/ Me .
The spectrum f, can also be expressed easily in terms of

£. Using Egs. (7) we obtain, after some trivial manipula-
tion,

D=1+ (16)

1

a=1+—" (17)
1—1/7;
1+&—7;
=14+n+—=>. (18)
fa= 14 1—1/7}

The quantity n;=d7./d§ that occurs in these equations
can be calculated from Egs. (12) and (13):

17'§=KJ lim L,(§), (19)
where

1 (A;5InA,,)

(20)
no (A5

L, (&)=

These results have a simplified form in the cases ¢ =0
(the Hausdorff dimension) and g — 1 (the information di-
mension), which we record here for later use. For g =0,

D0:2+§o:fa0 ’

) (21)

a0=1+’—“_‘_7‘ >
where £ is the solution of the equation
1+§0_77§0=0 .
For g —1,
1
D, =1+——=q,= ,
1 1_1/772) 1 fa‘
22
. <1n}‘2n> ( )
1/no=1+ lim

n-—-ow (lnk,,,) ’



790 FILIPE J. ROMEIRAS, CELSO GREBOGI, AND EDWARD OTT 41

where we have taken into consideration that the limit
g —1 implies {—0. Equation (22) is the Kaplan-Yorke
conjecture.

In the special case of a map with fixed Jacobian deter-
minant we have J(i)=J and J,=J"; Eq. (14) then be-
comes

1
—=—InJ . . (23)
kK,
In the case of a map with a random Jacobian deter-
minant, InJ, is the sum of n independent random values,

InJ,= 3 InJ(i) .

i=1

For very large value of n this random variable will have a

normal distribution and InJ, =n InJ +O(n'/?), where InJ

denotes the ensemble average of InJ(i). Thus Eq. (14) be-

comes
1

J

=—InJ . (24)

If j has a probability distribution P(J) and takes values in
the interval I, then

1 _ =~
ro J 47 P . (25)

D. Numerical implementation of the method
and error estimates

The Lyapunov method for the determination of the
spectrum of generalized dimensions of a map with uni-
form Jacobian requires the calculation of the average
quantities {A;,¥) and (A;fInA,, ). In order to do this we
take a large number of initial conditions, N, uniformly
distributed in a box placed in the basin of attraction of
the attractor, calculate the eigenvalue A{" for each of the
corresponding orbits, and substitute in the expressions

(pH=L 5 o
A== 3 (A}, 7>,
n N ol n
. 1 X )
(A;fInA,, =N 3 (AY) " EmAl)
1 =1
These two expressions can be written in the form

(z)=L 520
z, ) == 3z,
n Nl=1n

and {z}""}, _, v, {z,""}; =1 v are the set of values taken by
z, and z,, for the set of N initial conditions. z, and z, can

be considered as random variables and

tn =12, ,

w,=(z.),
are their average values. But u, and u, are themselves
random variables (the ‘“‘sample mean”), corresponding to
different realizations of the set of N randomly chosen ini-
tial conditions. Following Ref. 19, by an argument de-
scribed in the Appendix, approximations to the standard

deviations of these random variables o, and o}, are given
by

0= (2 = (2,092
0;:.‘7%_((2’:'2)_“’;)2)1/2 ,
where
<23 =i % (z'('lJ)Z ,
N =y
” :l N r(1)\2
(z,%) DT

We will use the quantities o, and o, as estimates for the
errors made in the calculation of the averages (A;,¥) and
(AL fInA,,).

The quantities that actually appear in the calculation
of the spectra D, and f, are not these two averages but
the functions of these two averages L, and L, defined by
Eqgs. (13) and (20). We conclude this section by defining
relative errors in these two quantities expressed in terms
ofu,,o,,u,,and a,: @)

B, if |BWLS) > 1B

E,(L,) E(L!™)), otherwise (26)
where
(+)
EwLF)=—"——1,
n ) L
and
1
L, =—1
n n nllJ’n >
1 27
L\Y'=—In(u,t0o,);
n
(i)
EwWw, ™), if |[EWL) ) =B
E, (L=
o(Ln) E(L)'™)), otherwise @8)
where
)
E(L,*)=—"—~1,
and
=1 K
Tonpy,
, (29)
pro=1 Hnto

np,¥Fo,sgnlu,to),)
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IV. THE GENERALIZED BAKER’S MAP

A. Random baker’s map and its Lyapunov
partition function

The generalized baker’s map was introduced in Ref. 25
as a model of dimension studies which is accessible to
analysis yet also has nonconstant stretching and contrac-
tion. It is a map of the unit square [0,1] X[0,1] into itself
defined by the equations

x; p1=ax;ulc —y;)+(bx; + Huly,—c), (30a)
y,-+,:%y,-u(c—y,-)+T%;(y,-—c)u(y,-—c), (30b)

where u is the unit step function,

0, 6<0

u(@)= 1, 6>0

and the parameters a, b, and c, satisfy the inequalities

O<c<l1,

0<a,b=;.

The action of the map on the unit square can be de-
scribed in the following way (see Fig. 8): divide the
square into a bottom part, [0,1]X[0,c), and a top part

791

the rectangle of width b so that its lower left corner is at
the point x =, y =0.

In this section we consider a modification of the gen-
eralized baker’s map in which on each iterate we choose
the parameters a, b, and ¢ at random. Let a;, b;, and ¢;
denote the parameter set at iterate i. Consider an orbit,
and let o,=0 if y;<¢; and o;=1 if y,>c¢; [ie,
o,=ul(y;—c;)]. Also let y;=1—0,. In terms of these
quantities we can express the Jacobian matrix of the ran-
dom baker’s map evaluated at a point x;=(x;,y;) at

iterate i as
b; 0

0 1/(1—¢)

a O

TxI=10 1/

vit

o;.

The eigenvalues of this matrix are then

i o,
}\.l(x )—‘2,_+ Py

i 1_Ci
A(x;)=v;a,+0,b,,

and the Jacobian determinant is

a; b;
J(x,-)=)\,(x,))»2(x,)=y,——CT+0,- —¢ -
Furthermore, since the Jacobian matrix is diagonal, we
can simply express the eigenvalues of the n-times com-

posed random map,

O

[0,1]X(c,1]; compress the bottom (top, respectively) A = n (1—c)
part by a factor a (b, respectively) along the x axis, and In ™ 'I=11 ¢ Ci ’
stretch it along the y axis by a factor 1/c¢ [1/(1—c¢), re- '
spectively], thus obtaining two rectangles, both of verti- A, = r"I al b 31)
cal height unity, and widths a and b, respectively; move toa
| |
/ N ] ,\\ - 1
/ NP N % E
N N |
N ]! N / i
\I7ENZ|
N ! Zi
N ] : / |
N 1 / !
\ \ / \ 4: \ |
N 1 N |
o b\ / N N .
I 0 a w2 w2¢bl O 172 t I
a I72+b
a(i/2+b) I72+b(1/2+b)
asz2 172+ b/s2
a? 1/2+ab

FIG. 8. Generalized baker’s map: illustration of two successive applications to the unit square.
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From the form of the map the natural measure is uniform
along the y direction. Thus, if y; is chosen at random
with respect to the natural measure [ie., y;, is
chosen with uniform probability in (0,1)], the probabil-

S, ={o,050;...,0,}is

ity of the orbit following a given sequence  Thus the Lyapunov partition function is
J
n n , |2
g - —a
I(g,D,n)= 3, c, (A=c) "l "(1—¢;)) 7 Ha,-y‘b,-‘ ,
S, =1 i=1
|
where the sum is over all possible sequences of zeroes and K,=—(na) .

ones of length n. This can be rewritten as

I'(g,D,n)= 3 |]] (¢fa] [(l—c "b”]
Sn i=1
where 7=(1—¢g)(D —1), from which we see that the

Lyapunov partition function for the random baker’s map
takes the simple form
I'(g,D,n) H [cfa"+(1—c;)9b] . (32)

i=1

B. Calculation of dimension spectra for the random
baker’s map

Let us assume, for simplicity, that only one of the pa-
rameters is allowed to vary randomly. We denote this
parameter by p and rewrite Eq. (32) in the form

n

[IT(¢D;p,) . (33)

i=1

I'(g,D,n)=

Substituting this partition function in the critical condi-
tion (8) we obtain

n
lim 1 > Inl'(g,D,;p;)=

n—w N2

If we assume that the parameter p follows some probabili-
ty distribution P(p), and takes values in some interval I,
then this condition becomes

fidp P(p)InT'(g,D,;p)=0 . (34)

This equation can be explicitly solved in two particular
cases.

Case I: a =b fixed, c random. a <c <(1—a); this con-
dition is necessary to guarantee that the Jacobian deter-
minant of the generalized baker’s map is less than 1.
From Eq. (32) and (33) we obtain

I'(g,D;c)=a"S(q;c),
where
S(g;c)=ci+(1—c)?,
which on substitution in Eq. (34) gives
=K dc P .
T, “fi c P(c)InS(q;c) ,

where

We now take c to be of the form
c=c+A.r,

where € and A, are fixed and r is a random variable with
uniform probablhty distribution P(r)=1 in the interval
I=[—1,1]. We obtain
K a CFA,
=72 fEAACdc InS(g;c) . (35)

From (11a) the spectrum D, is given by

=1+ (36)
1—¢

As regards the spectrum f,, Eqs. (7) yields

a=1-mn,, (37

fa=1+m,—qmn, , (38)
where 7, =d7, /dg which from (35) is

. Ka c+AL S’(q,C)

nq—ZAcvafA dCS(q;c) ’ (39

with S'=dS /dgq.

The two integrals that occur in Egs. (35) and (39) can-
not in general be calculated analytically. The two excep-
tions are for ¢ =0 and g — 1, for which one obtains

no=K,log,o2 ,
K Go(T,A
1’0—_ 4AC 0 <, C) ’
m=0,
. Ko
nm= 24, G, (c,A),
where
G;(¢,A.)=G,(c,)—G (e )+G(1—c_)—G(1—cy),
fori=0,1,c,=cxA_, and
Gy(0)=6(In6—1) ,
(40)
6,
G1(0)=T(2ln9—1) .

From these results one obtains
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Dy=1+1=f¢,

ap=1 —77(’) ’

Di=1-n\=a,=f, .
Note that the Hausdorff dimension, Dy=1+K_,In2, is in-
dependent of c.

The spectrum D, is a decreasing function of g with

asymptotic values at g — 1 oo given by
Golc ) —Gole), ifecy <3
X 2G0(%)_G0(c_ )_Go( 1 —C4 ),

if ¢ )4

Goll—c_)—Gyll—cy), ifcy <3
Go(l—c_ )+Go(C+ )_260(';‘)7

if ¢, )4

O
o

D
T R T A T e
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2
o
i
o
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O e AN
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] / ol @\ \i
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FIG. 9. Baker’s map (case ]—exact results): spectra of gen-
eralized dimensions and scaling indices, (a) D, vs g, (b) f, vs @
for a =b =0.25, A,=0.0, =0.251 [curve (A4)], 0.3 [curve (B)],
0.4 [curve (O)].

The spectrum f, has a bell shape with a maximum value
D, occurring at a=ay. a, is precisely the arithmetic
mean of the two values of a for which f,=1,

aoz%(a—oc—i.a-é»w) )

whereas =D+ .

These results for the dimension spectra are illustrated
in Figs. 9 and 10. In Fig. 9, which corresponds to the
nonrandom case (recovered by taking the limit A, —0),
we have plotted the spectra D, and f, for different values
of T (with a kept fixed). In Fig. 10 we have plotted the
spectra D, and f, for €= and different values of A,
(with a kept fixed).

Case II: a/c=b/(1—c)=J,c fixed, J random. From
Egs. (32) and (33) we obtain

I'(q,D;J)=J"S(1+¢&;c),
which on substitution into Eq. (34) gives
ne=K;InS(1+§;¢) ,

where K is now defined by

n
o

o

>

FIG. 10. Random baker’s map (case I—exact results): spec-
tra of generalized dimensions and scaling indices (a), D, vs g, (b)
fa vs a, for a=b=0.25, ¢=0.5, A,=0.1 [curve (4)], 0.2
[curve (B)], 0.249 [curve (C)].
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1 ~
X, J a7 B .
Note that this parametric formulation in terms of the
quantity £ coincides with that introduced more generally
in Sec. III. Consequently the quantities g, D,, @, and f,
can be obtained using Egs. (15)-(18). In the particular
cases ¢ =0 and ¢ —1 Egs. (21) and (22) apply.

The asymptotic values of D, at ¢— + « take simple
forms:

D¢w=1+————1—7—~ s
1=1/7%
where
7 .=K,Inc ,

7. =K,In(1—¢) .

If we now take J to be of the form

J=J+A,r,

n
e}

£ : s e
(b)]
b
l‘BE 3
: E
|,6-E* 1
fa E» ]
14+ :
E- 4
1.2 :
E(A) E
10t
10 20

FIG. 11. Baker’s map (case II—exact results): spectra of
generalized dimensions and scaling indices, (a) D, vs g, (b) f,, vs
a, for ¢=0.25, A;=0.0, J=0.001 [curve (A)], 0.3 [curve (B)],
0.599 [curve (O)].

where J and A are fixed and r is a random variable with
uniform probability distribution in the interval [ —1,1],
then

1 1 = =
—=———[Go(J+A;)—Gy(J—A))],
K= 3a; (o7 + 4= GolT—a,)]
where G, was defined in Eq. (40). The nonrandom case
can be recovered by taking the limit A; —O0:
1 -
——=—InJ .
K,

The results for the dimension spectra are illustrated in
Figs. 11 and 12. In Fig. 11, which corresponds to the
nonrandom case, we have plotted the spectra D, and f,
for different values of J (with ¢ kept fixed). In Fig. 12 we
have plotted the spectra D, for J fixed and different
values of A; (with c also kept fixed).

C. Error estimates

The generalized baker’s map, in the case of uniform
Jacobian (case II), offers the possibility of testing the nu-

FIG. 12. Random baker’s map (case II—exact results): spec-

tra of generalized dimensions and scaling indices, (a) D, vs g, (b)
fa vs @, for ¢=0.25, J=0.3, A;=0.0 [curve (4)], 0.15 [curve
(B)], 0.299 [curve (O)].
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merical procedure for determining the spectrum of gen-
eralized dimensions based on the Lyapunov number par-
tition function. In fact, we found in Sec. III that

ne=K,; lim L,(§) ,
n— o

=K, lim L,(§),
where L, and L, are defined by Eqgs. (13) and (20), while
in this section we obtained

ne=K,L(&) ,

M=K, L)
where

L(&)=InS(1+¢&;c),

_S'(1+&;c)

L= S(1+&¢c)

We are therefore led to define the relative error in the
quantities L, and L, by

004

-002F¢
E(Lq)

008/

FIG. 13. Baker’s map (case II): dependence of the (exact) er-
rors E [defined by Eq. (41)] on £ and n, (a) E(L,) vs £, (b) E(L,)
vs £, for ¢ =0.25, T=0.3, A;=0.0, N=10° The curves are la-
beled by a number m defined by m =n /5.

E(L,)= L"(g)—l
TLe ’ 41)
N 7413
L= L(&)

In Fig. 13 we have plotted the exact errors E(L,) and
E(L,) versus ¢ for different values of n (the curves are la-
beled by a number m defined by m =n /5). The numeri-
cal calculations of L, and L, were done using N =10°
randomly chosen initial conditions. The figure refers to
the baker’s map with J fixed; the results for J random are
quite similar. These plots show that: (i) the errors are
very small for |£]| S 1 and for all values of m; (ii) in gen-
eral, the errors increase with |£| and with m, more
significantly so for negative &; (iii) the errors remain very
small for all values of & for m =1; (iv) in general, |E(L, )|
is larger than )E(L,l ).

In Fig. 14 we have plotted the statistical errors E (L, )
and E,(L,), defined by Egs. (26) and (28), versus ¢ for
different values of n. The figure refers to the baker’s map
with J fixed. E_ (L, ) gives a good qualitative portrait of

-00IE
Eq(Ly)
-0.03

-0.05

-OO?- L L

987 6
009 o

007

005}
Eq(L7y)
003+t

FIG. 14. Baker’s map (case II): dependence of the (exact) er-
rors E, [defined by Egs. (26) and (28)] on £ and n, (a) E,(L,) vs
& (b) E,(L,) vs &, for ¢ =0.25, J=0.3, A;=0.0, N =10°% The
curves are labeled by a number of m defined by m =n /5.
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the error [cf. Fig. 13(a)]. E,(L,) seems to be of more
limited use, besides emphasizing that the reliability of the
method decreases as |£| increases.

Note that, while the error in L, and L, is smallest for
small n, we still need large n to obtain an accurate esti-
mate of the dimensions Dq, in conformity with the limit
n— o in (8). In practice, however, we expect accurate
results for not too large n (i.e., larger than any correlation
time of the orbits).

V. THE HENON MAP

We now describe the numerical results obtained for the
Hénon map defined in Eq. (2). These results can be divid-
ed into two groups. In the first group (Figs. 15 and 16)
we essentially discuss the errors intrinsic to the method;
all these figures refer to the Hénon map with fixed param-
eters, the results being similar for the random case. In
the second group (Figs. 17 and 18) we consider the
influence of the randomness on the spectra of generalized
dimensions and of scaling indices.

09tk E

06 ¢ E

L

03¢

00

|
[QIEF N

LAAAM et A

-03 L L L L L i 10

230 -5 00 15

FIG. 15. Hénon map: dependence of the quantities L, and
L, on &andn, (@ L, vs & (b) L, vs & for a=1.2, 5=0.3,
A,=A,=0.0, N=10". The curves are labeled by a number m
defined by m =n /5.

In Fig. 15 we have plotted the quantities L, and L,,
defined by Egs. (13) and (20), versus £ for different values
of n. We see that the dependence of L, and L,, (especial-
ly L,) on n is slight for values of & below some “transi-
tion” value &, roughly around 1. For £=~¢ the quanti-
ty L, becomes positive and the method breaks down; this
is due to the appearance of values of A;, less than 1, and
therefore to homoclinic tangencies. The failure of the
method is compatible with the existence of a “phase tran-
sition” at £=1, as determined by Ott et al.’? and
Grassberger et al.*°

In Fig. 16 we have plotted the errors E_ (L,) and
E_(L,), defined by Egs. (26) and (28), versus £ for
different values of n. In these plots we can clearly distin-
guish two regions, £ <& and £=~¢&4. In the first of these
regions we further distinguish two subregions: for values
of & close to the origin the errors remain very small and
practically independent of n; as £ becomes more negative
the errors start increasing and depending on n, although
they remain small for at least some of the values of n. In
the second region the errors increase very steeply with in-

003 -

n

0.02

Eqlly) g
0.0l F

0.00
-0.0I ?

-0.02 T TN T I T T

FIG. 16. Hénon map: dependence of the relative errors E,
onfandn,(a)E,(L,)vs& (b) E (L,)vs & fora=1.2,b=0.3,
A,=A,=0.0, N=10". The curves are labeled by a number m
defined by m =n /5.
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creasing & for all values of n, indicating the breakdown of
the calculation.

In Fig. 17 we have plotted the spectra of generalized
dimensions D, and of scaling indices f, for the Hénon
map in the three cases: Curve (4) A, =A,=0; curve (B)
A,7#0, A, =0; curve (C) A,50, A, =0. Curves (4'), (B')
and (C’) are copies of curves A4, B, and C shifted upward
by 0.1, 0,2, and 0.3, respectively. The experimental
points on these curves are labeled by the values of the pa-
rameter &.

In Fig. 18(a) we have plotted the Hausdorff and infor-
mation dimensions as functions of the randomness pa-
rameters A, (with A, =0) and in Fig. 18(b) as a function
of A, (with Ay =0). The Hausdorff dimension was calcu-

1.6 prrrr

LB MR ELEARLL N BRI B

10 M I T T T
20 -0 00 10 20

e
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«20 (B) B
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~-30 ]
(A),(8) ]
AT Y ;:
1.4 15

FIG. 17. Hénon map: spectra of generalized dimensions and
of scaling indices, (a) D, vs g, (b) f, vs a, for a=1.2, 5=0.3,
n =50, N=10"; and curve (A4), A,=0.0, A, =0.0; curve (B)
A,=0.0, A,=0.01; curve (C) A,=0.1, A,=0.0. Curves (4'),
(B'), and (C") are copies of curves (A4), (B), and (C) shifted up-
wards by amounts 0.1, 0.2, and 0.3, respectively; on these curves
the experimental points (+) are labeled by values of the parame-
ter £.

lated by using a Newton-Raphson method to determine
the parameter £, that occurs in Eq. (21). Considering the
values of the parameter £ involved in the calculations of
Dy and D, (=—0.8 and 0, respectively) one expects the
accuracy of the method to be high. To emphasize this
point and to relate our results to those of other authors
we have used our numerical procedure to determine the
Hausdorff dimension of the Hénon map with the more
usual parameter values, ¢ =1.4 annd b=0.3: we ob-
tained D =1.2750+¢, with € <10~ * given by the statisti-
cal procedure of Sec. III D; this value is in good agree-
ment with that reported by Badii and Politi.'8

VI. CONCLUSIONS

We have studied qualitative and quantitative properties
of attractors of two-dimensional random maps. As re-
gards the qualitative properties, we have used a snapshot
technique (in which we plot a certain iterate of a large
number of initial conditions in the basin of attraction of
the attractor) to obtain pictures of the attractors; these
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FIG. 18. Hénon map: dependence of the Hausdorff and in-
formation dimensions on randomness, (a) Dy,D;, vs A,, for
a=1.2, A,=0.0, 5=0.3; (b) Dy,D, vs A,, for a=1.2, 5=0.3,
Ab =0.0.
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pictures show similarity with attractors of fixed parame-
ter maps, including a Cantor-set-like transverse structure.

As regards the quantitative properties, we have used
the Lyapunov number partition function method to cal-
culate the spectra of generalized dimensions and of scal-
ing indices of these attractors. We first considered the
generalized baker’s map which is amenable to analytical
treatment; we obtained expressions for the spectra and
discussed how the randomness affects them; we also ex-
amined the errors involved in a numerical implementa-
tion of the Lyapunov method. Finally we applied this
numerical method to the Hénon map with random pa-
rameters; in particular we obtained curves showing how
the Hausdorff and information dimensions change with
the randomness. Our results indicate that the Lyapunov
partition function technique can be implemented for the
numerical calculation of dimension spectra for snapshot
attractors of random maps, and that the statistical error
(i.e., the error due to calculating I" using a finite number
of orbits) in the method can be estimated in a straightfor-
ward way.
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APPENDIX

We obtain an estimate for the error made in the calcu-
lation of the averages (A;,*) and (A;,flnA,, ).

We assume that z=A,,f (or —A;,fInA,,) is a discrete
random variable which takes the set of values {z,},_, y
for the N initial conditions. From this set of values we
can calculate the averages

1 N
<Z>=Nl§lz,’,
(D=L 5 ;2

N &

and the variance of z,

o,=((z?)=(z))1"%.

But (z ), the quantity we are really interested in, is itself
a random variable which takes different values for
different sets of N initial conditions; let 1 denote this ran-
dom variable. We are interested in calculating the stan-
dard deviation of u, defined by

0-;;:(/72_/1 2)1/2

’

where the overbar here denotes average over all possible
sets of N initial conditions. Using the definition of u we
have

—3':'—1 % Z;Z
2 L)
N iLj=1
1 N 5 N
=———N2 2zt ¥ zz
1=1 L) =1
17
1 ) N
=7 N{(z*)+ 2 z;z,
Lj=1
i#j

Approximating each of the z,’s in this last equation by
their average value, that is, z; ~ (z ), we obtain

’

e S[IN(Z2) +N (N —1)(z)?]

().

(z%)+

z|— =

1
1——
N

Substituting u? and i=(z ) into the expression of o, and
assuming that the values of (z) and (z2) are approxi-
mately the same for all sets of initial conditions, we have

e
Note that these error estimates are for the errors incurred
by using a finite number of orbits N in calculating the
averages over position { ) for a given realization of the
random process. They do not address the statistical
spread in { ) that occurs for different realizations. (This
latter spread should decrease with the number of
iterates.)
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