PHYSICAL REVIEW A

VOLUME 41, NUMBER 2

15 JANUARY 1990

Universality in the lattice-covering time problem

A. M. Nemirovsky, H. O. Martin,* and M. D. Coutinho-Filho
Departamento de Fisica, Universidade Federal de Pernambuco, 50739, Recife, Pernambuco, Brazil
(Received 2 August 1989)

The lattice-covering time ¢ is the expected time a random walk (RW) takes to visit all N lattice
sites. Regular D-dimensional lattices with periodic and reflecting boundary conditions are con-
sidered. When D =1 these covering problems are equivalent to those of the first-visit type and they
can be exactly solved. In contrast, when D =2 the lattice-covering time problems are not reducible
to any known lattice RW problem. The asymptotic (N — o) behavior of ¢ is studied using Monte
Carlo methods and interesting questions regarding universality in the covering time problem are

discussed.

I. INTRODUCTION

The theory of random walks has attracted much
theoretical attention over the last fifty years due to its
numerous applications in the physical, biological, and
even social sciences.! Among them one can mention the
theory of classical diffusion, trapping models in solid-
state physics, transport phenomena in disordered struc-
tures, polymer physics, models of motion of microrgan-
isms, and theory of income distribution in the economy.

In a recent report’ we introduced a simple lattice
random-walk (RW) problem, namely the lattice-covering
time problem. The lattice-covering time ¢ is the mean
time a RW takes to visit all sites of a finite D-dimensional
lattice. In particular, we are interested in the asymptotic
limit of large N, with N being the total number of lattice
sites. Although the lattice-covering time problem resem-
bles some of the classical RW problems such as first-
passage time,’ site occupancy,*® trapping,® and the num-
ber of sites visited by an m-step walk,*” in D >2 it cannot
be reduced to any known> 8 lattice RW problem. In con-
trast, lattice-covering time problems in D=1 are
equivalent to some first-visit problems.

One could be puzzled as to how a random walk of frac-
tal dimension 2 can fill spaces of arbitrarily high dimen-
sions. This dilemma is easily resolved since, by the
definition of the problem, one begins with a finite lattice
of N sites that is covered by a RW in finite time, then the
mean time for covering the lattice is calculated, and final-
ly the “thermodynamic” limit of N — oo is taken.

A related problem has been discussed in the mathemat-
ics literature where a continuous RW of finite width €
was considered.” There, one is interested in the asymp-
totic (€—0) limit of the expected time for the walk to
cover a sphere of unit radius in D (D 2> 3) dimensions.
One of the motivations of this problem is a data-analysis
technique known as the Grand Tour.!° It consists of pro-
ducing one-dimensional (1D) projections of a multidimen-
sional data set obtained as the sequence of data points
visited by a RW in the data space. The time needed by
the walk to be within a small distance € of every data
point is relevant because it gives a measure of the quality
of the data inspection. The lattice-covering time problem
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is a discrete version of the Grand Tour.

The Grand Tour reminds one of the ergodic (or
quasiergodic) problem!! in some simple systems'? as the
data space is replaced by, say, a constant energy hyper-
surface in the phase space and one asks about the mean
time for a system with some particular dynamics [from a
given site (state of the system), only nearest-neighbor
points in the phase space are accesible, all with equal
probability] to visit all possible configurations. This, in
turn, suggests an application of the covering time prob-
lem to Monte Carlo analysis'® if one is interested in the
speed at which configurations are sampled once equilibri-
um has been reached, say, in a microcanonical ensemble.
In this case, not all configurations (points in the phase
space) are to be visited, but only some fraction of them.
This corresponds to a dilute covering time problem
which we are presently studying.

One could attempt to reduce the lattice-covering time
problem to some of the known lattice RW problems dis-
cussed in the literature.>~® For example, it is well known
that the number of distinct sites S,, visited by an m-step
RW behaves as S,,~m'"2(D=1), S,, ~m /Inm(D=2),
and S,,~m(D =3). Then, to “derive” the asymptotic
behavior of ¢ one could argue that the number of distinct
sites to be visited by the walk should be N, identifying the
number of steps m with the mean covering time ¢. Thus,
one would conclude that t ~N3(D=1), t ~NInN(D =2),
and t ~N(D 2 3) which is only right at D=1.

In fact, there are important differences between the
covering time and other lattice RW problems discussed
in the literature. The former is defined on finite lattices
with the walk forced to visit all N sites and the “‘thermo-
dynamic limit” of N — o« taken afterwards, thus requir-
ing statistics of walks with the number of steps larger
than or equal to N. In contrast, the latter problems con-
sider walks of a fixed number of steps in unbounded
spaces, and usually the sites to be visited are not previ-
ously selected. These differences manifest in the asymp-
totic behavior of ¢ which, except for D=1, differs from
predictions based upon analogies with the usual lattice
RW problems.

In this paper we present an extended version of our re-
cent letter. There, the lattice-covering time problem was
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introduced and some of the material of the present work
was briefly reported. This work also includes additional
results obtained after the completion of the letter such as
a more complete study of the covering problem with rigid
boundaries in 1<D =<4. Finally, an universality hy-
pothesis for the lattice-covering problem is made. Then,
the 2 <D <4 periodic and rigid data are analyzed in the
light of this hypothesis, helping to distinguish among two
proposed forms for the asymptotic behavior of z.

II. THE LATTICE-COVERING TIME PROBLEM
ON A D-DIMENSIONAL TORUS

In D=1 the lattice-covering time ¢, [the subscript p
denotes periodic boundary conditions (BC’s)] is the mean
time spent by a lattice walker in visiting all sites of a ring
as illustrated in Fig. 1(a). For small lattices the problem
is resolved by direct enumeration. For example, for
N =3 one has

1, =(1/2)X2+(1/2)X3+(1/2°) X4+ - - =3,

where the integer of each term in the series is the time
(number of steps) to complete the walk, and the fraction
in parenthesis gives the normalized probability of finish-
ing the walk after this time. Similarly, for N =4 one
finds

t,=(1/22)X3+(1/2%)X4+(3/2*)X5+(3/2°)x6
+(7/29)X7+(7/27)X8+(15/2%) %9
+(15/2°)X 10+ - - - =6 .

In this way one obtains t=1,3,6,10,15,..., for
N=2,3,4,5,6,. . ., respectively. This sequence of integer
numbers for ¢ together with the Monte Carlo (MC) data
for larger lattices (a sample of which is shown in Table I)
indicates that

t,=N(N—1)/2, (1)

which can be proven'* by reducing the covering problem
on rings to a first-visit problem. It is also equivalent to
the problem of visiting N distinct sites on a 1D infinite
lattice. This is illustrated in Fig. 1(b).

As discussed in Sec. III and Ref. 14 the 1D rigid
lattice-covering time problems are also equivalent to
some first-passage-time and trapping problems. In con-
trast, when D =2 the lattice-covering time problems can-
not be reduced to any known lattice RW. In fact, there is
an essential difference between D=1 and D 22. In the
one-dimensional case there is only one path joining any
two points (two paths on rings) while in higher dimen-
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FIG. 1. (a) 1D periodic lattice (ring) of N sites. The expected
time 7(s) for a RW starting at site 1 to reach a site s is (Ref. 4)
t(s)=(s—1)(N—s+1). (b) The lattice-covering time on rings is
equivalent to the problem of visiting N distinct sites on a 1D
infinite lattice. This is no longer true in D = 2. (c) A 1D lattice
of N sites with rigid boundary conditions. If the walker is at site
1 (N) and attempts to move to the left (right) remains at the
same site waiting one unit of time (reflecting BC).

sions there are many ways to connect two sites (in fact,
infinite ways as N — o). Hence, in D =1 a walk is comp-
leted after the end sites are visited (for example, consider-
ing the rigid BC case, a RW which starts at s=1 com-
pletes when site s =N has been reached). In contrast,
there is no analog to this in D >=2. Thus, the constraint
to visit all sites is much stronger in D =2 than in D=1 so
changing the nature of the problem.

We use MC methods to obtain the expected covering
time for RW’s on (2=<D <4) cubic lattices. Our data
consist of several points (N,t) with N ranging from 10 to
10°, each one obtained after averaging t over at least 500
simulations. Although we find that the power-law form

t,~B,N 2)

with a,(D=2)=1.16, a,(D=3)~a,(D=4)~1.09 pro-
vides reasonable fits to the 2 <D <4 data as illustrated in
Figs. 2 and 3, we think that this is not the right asymp-
totic behavior of ¢, which instead, we believe, is given by
the forms

~ 2 ==
t,~ A,NIn’N, D=2
t,~A,NInN, D>3.

(3a)
(3b)

These forms, with the values of A,(D=2)=0.33,
AP(D =3)=1.55, and AP(D=4)=1.3O, provide a some-
what better fit to our MC data as shown in Fig. 2 (3) for
D=2 (D=3 and 4). In fact, the related work® of the

TABLE I. The error in ¢, is estimated using the second moment of the ¢ distribution.

N t N(N—1)/2 N t N(N—1)/2

5 10.08+0.09 10 60 (17.5740.61) X 10? 1770

6 14.94+0.13 s 120 (71.29+1.85) X 102 7140

8 27.80+0.24 28 250 (31.34+0.85) X 10° 31125
10 45.02+0.39 45 500 (12.80+0.35) X 10* 124750
12 66.310.59 66 1000 (49.25+1.68) X 10* 499 500
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FIG. 2. In-In plot of (¢/N) vs the total number of sites N for
square lattices with periodic boundary conditions. The dashed
line is a power-law fit t~N °» with a,=1.16 while the fit
t~ A,NIn’N with 4,=0.33 is shown by a solid line. For
smaller values of N (N < 10*) each point is the result of averag-
ing 1000 simulations while for bigger lattices we average 500
simulations. Error bars representing the uncertainties in ¢ due
to the finite size of the MC ensembles (estimated from the
second moment of the ¢ distribution) would be about the size of
the little squares.

mathematician strongly suggests logarithmic divergences.
Moreover, problems involving random walks of finite
variance on regular lattices have leading divergences in
the form of integer or half-integer powers of N multi-
plied, in some cases, by logarithms (or integer powers of
logarithms). In addition, in Sec. III we investigate the
lattice-covering time with rigid boundaries and, as a by-
product of our analysis, a further argument in favor of
the logarithmic forms is obtained by making an univer-
sality hypothesis.

III. THE LATTICE-COVERING TIME
PROBLEM WITH RIGID BOUNDARIES

The one-dimensional problem illustrated in Fig. 1(c) is
the following. Given a lattice of N sites, the walk starts

PERIODIC BC
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N

FIG. 3. Same as Fig. 2 for cubic and 4D-hypercubic lattices
with periodic boundary conditions. In D =3 and 4, the power-
law fits with @,(3D)=~a,(4D)=1.09 are indicated by dashed
lines, and the form A,NInN, with A4,(3D)=1.55 and
A,(4D)=1.30, by solid lines.

at either edge, sites s=1 or N, and the mean time t,
(where R stands for rigid BC’s) to cover the lattice is cal-
culated with reflecting boundary conditions, that is, every
time the walker is at site 1(N) and attempts to step to the
left (right), it remains at the same site waiting one unit of
time. As in Sec. II, for small lattices one can obtain exact
results for this problem by direct enumeration. Then, we
find that t5 =0,2,6,12,. .., for N=1,2,3,4,. ... For in-
stance, when N =1 the trivial answer is ¢t =0; for N =2
we have

tr =(1/2)X1+(1/2)X2+(1/2>) X3+ - -+ =2..
Similarly, for N =3 one obtains
tr =(1/22)X2+(1/2%)X3+(2/2*) X4+ (3/2°) X5
+(5/2°)X6+(8/2")X7+(13/28) X8+ - - - =6.

For larger values of N, MC techniques were used to mea-

TABLE II. The quoted mean covering times are obtained by averaging over 5000 simulations for
small lattices and averaging over 500 simulations for larger values of N (N =30). The second moment
of the ¢ distribution is used as an estimate of the error in ¢. Predicted values of ¢ for walks starting at an
edge (s=1) and in the middle (s =N /2) are obtained from (4) and (6), respectively.

N tr(s=1) N(N—-1) tr(s=N/2) N(5N—6)/4
4 11.9£0.2 12 14.110.2 14
6 30.1+0.3 30 35.9+0.3 36
8 56.4+0.6 56 67.31£0.7 68
10 89.8+1.0 90 10910 110
30 864+16 870 1089+18 1080
60 3503+40 3540 4443143 4410
120 (1.43+0.04) X% 10* 1.428 X 10* (1.7410.05) x 10* 1.782%10*
250 (6.08+0.25) X 10* 6.225% 10 (7.82+0.28) % 10* 7.775% 10*
500 (2.51+0.10) X 10° 2.495X10° (3.11£0.14) X 10° 3.1175%X10°
1000 (1.02+0.05) X 10° 9.990 X 10° (1.21£0.06) X 10 1.2485X% 10°
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sure the covering time. A representative sample of our
data is shown in Table II. The obtained sequence of in-
teger numbers for tz on small lattices together with the
MC data for larger lattices strongly suggests that

tg=N(N—1), 4)

which is just twice the value for rings of an equal number
of sites. In fact, this result could have been obtained'*
from a known RW problem: tz(s=1) is the first-passage
time through a site N of a nearest RW on a 1D lattice of
N sites with reflecting BC’s, starting the walk at site s =1.

We now consider a more general case by starting the
RW at some arbitrary site s. It is clear that
tr(s)Ztg(s=1), since to visit all sites a walk has first to
visit either edge, and from there proceed to the other one.
Then tz(s)=tgx(s=1)+¢', where ¢’ is the mean time a
RW takes to reach either edge starting at s. For small
lattices ¢’ can be exactly calculated by direct enumera-
tion. The first nontrivial case is N =3 and s =2, which
gives t'=1. When N =4 and s =2 one finds

P=(1/2)X1+(1/2)X2+(1/2>)X3+ - =2,

and so on. For bigger lattices we measured ¢’ (and ty) for
several lattice sizes starting the RW at various different
sites (see Table II), concluding that

t'=(s—1)N—s), (5)
tR=NN—1D)+(s—1)N—s). (6)

Alternatively, Eq. (5) could have been derived as follows.
One constructs a ring of N'=N —1 sites joining (and
identifying) sites 1 and N. Then ¢’ is the expected time to
reach site 1 starting the RW at site s on a ring of N’ sites
given by* t'=(s — 1)(N'—s+1) [see caption of Fig. 1(a)].

We have studied the lattice-covering time problem in
D=1 using MC methods. We considered square, cubic,
and 4D-hypercubic lattices of various sizes with N rang-
ing from 10% to 10°. Reflecting boundary conditions, as
discussed for the D =1 case, are taken. The MC data
clearly shows that, for large lattices, the covering time is
now independent of the starting site in contrast to the
one-dimensional case. Table III illustrates this fact by
showing the ratio of the covering time starting from a
corner of the lattice to one beginning in the middle, for a
few lattice sizes in D =2, 3, and 4. This ratio is always
very close to unity. Similar results were also obtained
starting at an arbitrary site of the lattice.

Figures 4 and 5 display In-In plots of (z /N ) versus the
total number of sites in D =2, and in D =3 and 4, respec-

TABLE III. ¢g° (¢g") is the mean covering time of a walk that
starts at a corner (in the middle) of the square, cube, or 4D hy-
percube, obtained by averaging over 500 simulations per point.

N tR°/tg" N t°/tg" N tR°/tg"
252 1.034 8} 0.978 54 1.020
352 1.009 10° 0.999 6* 0.998
502 0.961 133 1.006 7 0.980
100? 1.001 16° 0.960 84 1.009

RIGID BC
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N

FIG. 4. Same as Fig. 2 for rigid (reflecting) BC with
agr=1.12and Az =0.44.

tively. As for periodic boundary conditions we find that
both the power-law behavior of Eq. (2) and the logarith-
mic forms of Egs. (3) provide reasonable fits to the MC
data. The power-law (dashed-line) fits of Figs. 4 and 5
have the values of ax(D=2)=1.12, az(D=3)=1.06,
and ai(D=4)=1.07, respectively, somewhat smaller
than those for periodic boundary conditions. The fits
with the logarithmic forms (3) (solid lines) give
Ap(D=2)=0.44, Agx(D=3)=1.96, and Agx(D=4)
=1.71, all of them about 30% bigger than the corre-
sponding ones for the periodic case.

In Sec. IV we make a hypothesis of universality in the
lattice-covering time problem. In the light of this hy-

RIGID BC

10*
N

3

10 5

10

FIG. 5. Same as Fig. 3 for rigid BC with az(D=3)=1.06,
ar(D=4)=1.07, Ax(D=3)=1.96,and Ax(D=4)=1.71.
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FIG. 6. In-In plot of (¢/N) vs N for square lattice with
periodic and rigid ©boundary conditions. The fits
t=~ANIn’N(1+C/InN) with A4=0.30, Cr=5.39, and
C,=0.95 are shown by solid lines. Dashed lines are used to in-
dicate the power-law form ¢t ~ BN with a=1.14, B, =8.58, and
B =11.60.

pothesis we analyze both the periodic and the rigid data
in2<D <4

IV. UNIVERSALITY IN THE COVERING
TIME PROBLEM

We now study the question of universality in the
lattice-covering time problem. By that we mean the fol-
lowing. If, say, the asymptotic behavior of ¢ is the
power-law form (2) one would expect that the exponent a

Rig.

3

10 10* 10°

N

FIG. 7. Same as Fig. 6 for simple cubic lattices. Solid lines
correspond to the logarithmic form ¢~ AN InN(1+C/InN)
with 4=1.63, Cg =2.33, and C,= —0.53 while the power-law
form (dashed line) t~BN® has «=1.08, B,=7.11, and
B =9.04.

25

Rig.

103 104 10°
N

FIG. 8. Same as Fig. 7 for a 4D-hypercubic lattice. The pa-
rameters are 4 =1.23, Cx =4.12, C,=0.69, «=1.08, B,=5.91,
and By =7.82.

at a given D would be independent of the boundary con-
ditions among other ‘“‘irrelevant” features of the model
such as the chosen (regular) lattice or the type of selected
(finite variance) random walk. To the contrary, the
nonuniversal amplitude B would depend on these details.
To check this hypothesis, in Figs. 6—-8 we plot both the
periodic and rigid data in D =2, 3, and 4, respectively.
Indeed we find that the values of {a} and {8} in the cap-
tions of these figures provide reasonable fit to both the
periodic and rigid data in 2<D <4, as expected by the
universality hypothesis. These results also predict
(tg /t,)=(Bg /B,)=1.35, 1.27, and 1.32 in D=2, 3, and
4, respectively. However, Table IV shows that the ratio
(g /t,) decreases about a constant value when the num-
ber of sites doubles. This trend can be accounted'® for if
instead (fg /tp)=1+F/lnN (see Table IV). In fact, the
forms

t~ ANIn’N(1+C/InN), D=2 (7a)

t~ANInN(1+C/InN), D=3 (7b)

where A is universal (i.e., independent of the BC) while

TABLE IV. The measured t; and ¢, are results of averaging
500 simulations per point. (tg/t,) can be fitted by
(tg /t,)=1+F/InN, with F(D=2)=4.0, F(D=3)~3.0, and
F(D=4)=3.5.

N tR /1, N g /1, N tr /1,
25° 1.540 8’ 1.564 5 1.570
352 1.499 10° 1.513 6* 1.530
50? 1.464 13* 1.462 7* 1.534
70? 1.470 16* 1.436 8* 1.436
100? 1.415 20° 1.381 9¢ 1.412
1407 1411 253 1.363 114 1.349
200° 1.426 32 1.300 13 1.330
283° 1.350 40° 1.274 15* 1.325
400* 1.338 50° 1.254 18* 1.312
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the constant C depends on the chosen BC, with the
values of { 4} and {C} in the captions of Figs. 6-8, not
only explain our (t /t,) data but also provide very good
fits to our MC data for both boundary conditions in two,
three, and four dimensions.

In this case, by universality we mean that the
coefficient A4 of the leading divergent term (when N — )
is independent of some irrelevant details such as the type
of boundary condition, though it could, for example, de-
pend on the lattice type. Of course the degree of univer-
sality (if it exists) needs to be further investigated.

V. CONCLUSIONS

We studied the lattice-covering time problem on regu-
lar cubic lattices in 1<D <4 using MC methods and
theoretical analysis. The expected times for covering
one-dimensional lattices of N sites with periodic and
reflecting BC’s are obtained. Notice that the results for
rigid BC’s depend on the initial site since the problem
does not possess translational invariance as in the period-
ic case. In contrast, we numerically verified that in di-
mensions higher than 1 the covering time with rigid
boundaries is independent of the starting site in the
large-N limit.

The one-dimensional rigid and periodic results can be
derived by reducing these 1D covering problems to first-
visit and trapping problems. On the contrary, in D >2
the lattice-covering time problems are not reducible to
any known lattice RW problem. The very different na-
ture of the covering problem in D =1 and in D =2 stems
from the fact that in the former there is a unique path
joining two given sites but there are infinitely many ways
(as N — ) of connecting two sites in higher dimensions.

It is found that both forms, the power law (2) and the
logarithmic ones (3), adjust the rigid and the periodic MC
data, although theoretical arguments presented here
favor the latter form. Moreover, we studied the question

of universality in the covering problem, in particular the
dependence of the results on the chosen boundary condi-
tion. Making an universality hypothesis by assuming
that certain quantities are independent on BC’s, we found
that the logarithmic forms (7) with A4 universal account
nicely for all features of the MC data for both periodic
and rigid BC in D =2, 3, and 4. Nevertheless, we believe
that further numerical and analytical work is required to
fully elucidate the asymptotic behavior of ¢.

There are several interesting lattice-covering time
problems which deserve to be investigated. For instance,
fractal lattices and other type of walks (Levy flights,
infinite memory walks, .. .) can be considered. We are
presently studying the dilute and the many-walker
lattice-covering time problems as both posses very in-
teresting features. For example, preliminary results show
that the leading behavior of ¢ can be drastically altered
according to the site dilution or the walker density.
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are reducible to 1D first-visit and trapping problems. In turn,
these problems are exactly solvable hence the conjectured
forms (1) and (4)-(6) can be shown to be exact. See, C. S. O.
Yokoi, A. Hernandez-Machado, and L. Ramirez-Piscina (un-

published).

150bviously, one could say that the trend of the decreasing

value of (tg /t,) as N increases could be accounted by finite-
size corrections to the power-law behavior. Since there is no
theoretical guidance on the form of these corrections and this
would introduce extra parameters, we have chosen not to
pursue this line further. We should add that the fit
(tg /t,)=1+F/InN is, by no means, a unique one. For exam-
ple, the form A + BN %, with § << 1 also provides a reason-
ably good fit to the data.



